Global Information
회사소개 | 문의

에너지수확 : 마이크로와트에서 메가와트로(2019-2029년)

Energy Harvesting Microwatt to Megawatt 2019-2029

리서치사 IDTechEx Ltd.
발행일 2018년 07월 상품 코드 360964
페이지 정보 영문 220 Slides
가격
US $ 4,995 ₩ 5,711,200 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,295 ₩ 6,054,300 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,495 ₩ 8,569,700 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 7,795 ₩ 8,912,800 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


에너지수확 : 마이크로와트에서 메가와트로(2019-2029년) Energy Harvesting Microwatt to Megawatt 2019-2029
발행일 : 2018년 07월 페이지 정보 : 영문 220 Slides

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

한글목차

에너지수확(Energy Harvesting) 시장을 조사 분석했으며, 현재 및 향후의 기술 수준과 활용 분야, 기술별 개요·장점·과제 등을 정리하여 전해드립니다.

제1장 주요 요약과 결론

제2장 서론

  • 에너지수확(EH)의 정의와 배경
  • 주행중인 차량에서의 에너지수확
  • 선박에서의 에너지수확
  • 항공기에서의 에너지수확
  • 화학제품 공장에서의 에너지수확
  • 비약과 성공 : 용도별
  • 플렉시블 하베스터(Flexible harvester)
  • 구조재에서의 에너지수확
  • 진동에서의 에너지수확
  • 지열발전
  • 물 이동에서의 발전
    • 소규모 수력발전, 해상발전 등

제3장 에너지수확(EH) 시스템

  • 에너지수확 시스템

제4장 태양광 발전

  • 개요
  • 4개의 기본 메커니즘 : 현황, 장점, 과제, 잠재적 시장
  • 성공사례 연구
  • 실리콘 시장 지배 : 바리에이션과 성공사례
    • 단결정/다결정 실리콘
    • 다결정 실리콘 태양전지의 저가화
    • 단결정 실리콘 태양전지의 사례
    • 아몰퍼스 실리콘
  • Rectenna nantenna-diode
  • 실리콘 이외의 태양광발전용 주력 옵션
  • 염료감응형 태양전지(DSSC)
  • 박막 태양전지의 점유율 확대
    • 개요
    • 차체용·최신형 박막 태양전지
    • 플렉서블 CIGS 태양전지 : 허리케인에 대한 내성 확인
    • MEMS식 태양광발전
    • 새로운 태양광 기술과 2D 반도체 나노재료
  • 페로브스카이트 태양전지의 발전
    • 제조 방법
    • 텐덤형 태양전지
  • 배터리 없는 태양광 전기 쿠킹

제5장 운동에너지 : 전기역학(ELECTRODYNAMIC)

  • 정의와 범위
  • 완전히 다른 방식에 대한 지속적 투자
  • 수력 및 풍력터빈 : 원리는 동일
  • 3개 블레이드 수평축 터빈 : 조력/풍력발전의 경우
  • 수력·풍력발전에서의 전기역학적 우위성 : 분산형 발전 동향
  • 풍력발전 : 예외적으로 다채로운 전력 관리(EM) 옵션
  • 동기/비동기 전동 발전기 비교
  • 전기역학 발전의 예외 사례 : 교훈
    • 선형 발전기
    • 6D movement harvesting
    • 육상 풍력발전
    • 풍력발전 터빈 선택
    • 공중 풍력발전(AWE)의 기회
    • MEMS 발전기

제6장 운동에너지 : 마찰전기

  • 정의
  • 마찰전기 시리즈
    • 사례 연구 : 폭넓은 선택
  • 마찰전기 나노제너레이터(TENG: Triboelectric nanogenerator)
  • TENG 디바이스의 4개 기본 구조
    • TENG 모드의 장점과 잠재적 용도
  • 성과
  • 최근의 발전
  • 4개 모드에 관한 연구 초점
  • 마찰전기식 EH : 수치상 장점과 과제
  • 자기가열식 마찰전기란?
  • 재료 시장의 기회
    • TENG용 실험용/상업 생산용 재료
  • 전문가 인터뷰
  • 재생 플라스틱로 만든 배터리 없는 게임기
  • 연구 사례 : 마찰 파동, 타이어, 셔츠에서의 마찰 전기
  • 인체 : 차세대 전원공급장치
  • 마찰전기 발전기 전망(2019-2029년)과 최대 출력 전망
  • 전문 용어

제7장 운동에너지 : 압전 소자

  • 정의
  • 배경
  • 발전과 운용 원칙
  • 장점과 과제
  • 향후 제안과 프로젝트
  • 현재의 이용 사례
  • 현재의 연구 프로젝트

제8장 운동에너지 : 정전 용량, 자왜

  • 개요
  • 연구 사례

제9장 열에너지 : 열전, 초전, 해양온도차발전(OTEC)

  • 열전
    • 개요
    • 열전 발전기 : 설계시 고려사항
    • 용도
    • 최근의 발전
  • 초전
  • 해양온도차발전(OTEC)
LSH 18.07.25

영문목차

The future of energy harvesting will not be an extension of the past. It will hugely benefit society, creating billion dollar businesses but mostly in completely new ways. Few have heard of the companies now taking significant orders. The new 220 page IDTechEx report, "Energy Harvesting Microwatt to Megawatt 2019-2029" has the insights and new information. It is uniquely comprehensive and up to date. For example, the report covers the disappointing market of vibration harvesting and reveals new forms but it takes you up a notch to new priorities. Random movement of humans powering wearables is a major focus now. Indeed, semi-random ocean wave harvesting is clocking orders of up to $100 million this year for silent, invisible devices needing little or no energy storage - another important theme at all power levels.

On latest interviews and evidence, the globe-trotting PhD analysts preparing the report conclude that piezoelectrics and thermoelectrics may be overtaken in sales by triboelectric harvesters. These promise lower cost, non-poisonous materials in mass-produced devices from microwatts to megawatts, not stuck at the low end. However, ambitious new piezoelectric and thermoelectric research and aspirations are also assessed. Throughout the report, many gaps in the market are identified and new technology and market comparisons are made.

The Executive Summary and Conclusions is comprehensive for those in a hurry. Easily grasped but comprehensive, it has many new infographics and forecasts. The Introduction then presents definitions, technology comparisons, system design basics and the newly significant sectors of flexible and very importantly new structural harvesting. Latest airborne wind and ocean harvesting reveals a trend to operation without infrastructure. Vibration harvesting is also covered here since all these exploit many harvesting modes fully detailed in the following chapters. The report goes into many billion dollar opportunities and new directions such as battery and poison elimination. Learn how some are further advanced than most realise with 110 solar road projects and over 120MW of new wave power just ordered in farms of small units.

Chapter 3 goes fully into Energy Harvesting Systems. That includes importance of multimode harvesting even matching time dependence of load. Energy storage options are compared including the significance of greatly improved supercapacitors. Chapter 4 is called Photovoltaic Reinvented because it reveals new chemistries, solar windows, even customised greenhouses, energy independent vehicles and more. Chapter 5 Motion: Electrodynamic appropriately gives thorough coverage of the other dominant technology and its new forms from integral sensor power to geothermal. An infographic shows four wind power formats now appearing under the sea: future winners are identified. Chapter 6 Motion: Triboelectric covers what the authors predict to be a large future market and why. Haptic switches with self-powered radio and high-power electricity from tires and waves are some of the experiments.

Chapter 7 is Motion: Piezoelectric and chapter 8 Motion: Capacitive Electret, Dielectric Elastomer Generator DEG and Magnetostrictive now targeting a wider range of power levels and applications. Finally Chapter 9 explores Heat: Thermoelectric, Pyroelectric and Ocean Thermal Gradient.

Throughout, there is a great deal of coverage of the material formulations involved and the huge potential for materials including flexible and load-bearing electrical materials. This report is of particular interest to those making fine chemicals, added value materials and devices and those involved in product and systems integration and software. Users and potential users, those seeking to improve healthcare, replace batteries, diesel gensets and vehicle engines and go off grid will find much of interest.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Purpose of this report
  • 1.3. Overview and main conclusions
  • 1.4. Market drivers for energy harvesting
  • 1.5. Features of energy harvesting
    • 1.5.1. Characteristics
    • 1.5.2. Low power vs high power EH features
  • 1.6. EH transducer principles and materials
  • 1.7. EH technologies by actual and potential usefulness
  • 1.8. Some EH needs by power level
  • 1.9. Main candidates for EH technology by power level
  • 1.10. Challenges of EH technologies
  • 1.11. Conclusions: low and high power
  • 1.12. Conclusions: low power
  • 1.13. Conclusions: high power
  • 1.14. Huge significance of massless energy
  • 1.15. Market forecasts in detail by technology 2019-2029

2. INTRODUCTION

  • 2.1. Energy harvesting definition and background
    • 2.1.1. Types of EH energy source
    • 2.1.2. Energy harvesting: the new key enabling technology for vehicles land, water and air
    • 2.1.3. Internet of Things, WSN, wireless sensors
  • 2.2. Harvesting for on-road vehicles
  • 2.3. Harvesting for marine vessels
  • 2.4. Harvesting for air vehicles
  • 2.5. Energy harvesting as a chemical factory
  • 2.6. Hype and success: applications
  • 2.7. Flexible harvesters
    • 2.7.1. MW on the sea using flexible triboelectrics
    • 2.7.2. Flexible piezoelectrics
    • 2.7.3. Capacitive flexible
    • 2.7.4. Flexible photovoltaics
    • 2.7.5. Flexible photovoltaics solar plane Canada
    • 2.7.6. "Zero Genset" opportunity: transportable, available at the touch of a button, zero emission replacement for the diesel genset and means of grid defection
  • 2.8. Structural energy harvesting
    • 2.8.1. Smart roads, parking areas
    • 2.8.2. Building integrated photovoltaics BIPV
    • 2.8.3. Building integrated photovoltaic thermal (BIPVT)
    • 2.8.4. Solar greenhouses generate electricity and optimally grow crops UC Santa Cruz
    • 2.8.5. Solar greenhouses: University of Colorado Boulder 2018
  • 2.9. Vibration harvesting
    • 2.9.1. History
    • 2.9.2. Perpetuum successful as a specialist solution seller
    • 2.9.3. 8power impresses
  • 2.10. The big money is in higher power random movement
  • 2.11. Geothermal
  • 2.12. Electricity from water movement
    • 2.12.1. Inland water power: sources, location potential
    • 2.12.2. Marine power: sources, location potential
    • 2.12.3. Where ocean power is both strongest and close to population
    • 2.12.4. Wave and open tidal power are largely complementary
    • 2.12.5. Small inland hydro <10MW SOFT report
    • 2.12.6. Wave power <10MW SOFT report
    • 2.12.7. Tidal power <10MW SOFT report

3. ENERGY HARVESTING SYSTEMS

  • 3.1. Energy harvesting systems
    • 3.1.1. Overview and parameters optimised
    • 3.1.2. System architecture
    • 3.1.3. EH maturity: driven by demand not time on the market
    • 3.1.4. Iterative system optimisation: example for Energy Independent Electric Vehicles EIEV
    • 3.1.5. Building controls: EnOcean
    • 3.1.6. AC and DC Mini and micro grids land and water: multi-mode harvesting
    • 3.1.7. DC microgrid
    • 3.1.8. Diesel genset replacement: touch of a button
    • 3.1.9. Energy independent electric restaurant van
    • 3.1.10. Inerjy EcoVert
    • 3.1.11. Energy independent ship opportunity: 3MW gap in the market
    • 3.1.12. Comparison of desirable features of EH technologies
    • 3.1.13. Relative benefits of EH technologies vs needs
    • 3.1.14. Energy storage technologies for EH systems compared
    • 3.1.15. The case for Redox Flow Batteries becoming important in EH systems
    • 3.1.16. The reasons why supercapacitors are more used in EH systems

4. PHOTOVOLTAICS REINVENTED

  • 4.1. Overview
  • 4.2. The four basic mechanisms: status, benefits, challenges, market potential
  • 4.3. The four basic mechanisms explained
  • 4.4. Best research-cell efficiencies
  • 4.5. Silicon the winner so far: variants and successes
    • 4.5.1. Single vs poly silicon
    • 4.5.2. Single crystal scSi vs polycrystal pSi
    • 4.5.3. pSi PV becomes cheaper than onshore wind power in 2020
    • 4.5.4. Example of trend to single crystal silicon: Sono Motors solar family car 2019
    • 4.5.5. Amorphous silicon
  • 4.6. Rectenna nantenna-diode
  • 4.7. Main PV options beyond silicon
  • 4.8. DSSC
  • 4.9. Thin film versions gain share
    • 4.9.1. Overview
    • 4.9.2. Advanced thin film PV on car bodywork
    • 4.9.3. Flexible CIGS: Hurricane proof mobile desalinator MIT USA in Puerto Rico
    • 4.9.4. MEMS PV
    • 4.9.5. New solar technology with 2D semiconductor nanomaterials
  • 4.10. Perovskite progress: improved process, tandem cell
    • 4.10.1. Fabrication
    • 4.10.2. Perovskite silicon tandem: record 25.2% efficiency
  • 4.11. Photovoltaic electric cooking without batteries

5. MOTION: ELECTRODYNAMIC

  • 5.1. Definitions and scope
  • 5.2. Keeps being reinvented in radically different forms
  • 5.3. EM and PV work well together
  • 5.4. Principles of air and water turbines are the same: geometry
  • 5.5. Principles of air and water turbines are the same: groundgen vs airgen.
  • 5.6. Three bladed horizontal axis turbines the winner for open water tidal power and wind
  • 5.7. Electrodynamic wins at water and wind power: trend to distributed power
  • 5.8. Wave power have exceptionally diverse EM options
  • 5.9. Synchronous and asynchronous motor generators compared
  • 5.10. Unusual examples of electrodynamic harvesting: lessons
    • 5.10.1. Linear generators
    • 5.10.2. 6D movement harvesting
    • 5.10.3. Ground turbine wind power does not downsize well: physics and poorer wind
    • 5.10.4. Wind turbine choices
    • 5.10.5. AWE opportunities
    • 5.10.6. MEMS harvester

6. MOTION: TRIBOELECTRICITY

  • 6.1. Definition
  • 6.2. Triboelectric series
    • 6.2.1. Triboelectric dielectric series examples showing wide choice of properties
  • 6.3. Triboelectric nanogenerator (TENG)
  • 6.4. Four basic TENG device structures
    • 6.4.1. TENG modes with advantages, potential uses
  • 6.5. Achievement
  • 6.6. Progress in 2018
  • 6.7. Research focus on the four modes
  • 6.8. Parametric advantages and challenges of triboelectric EH
  • 6.9. Self Healing Triboelectrics?
  • 6.10. Materials opportunities
    • 6.10.1. Materials in experimental TENGs and those likely in production
  • 6.11. Interview with Prof. Zhong Lin Wang Gatech
  • 6.12. Electronic game with no battery from recycled plastic
  • 6.13. Triboelectric wave, tire and shirt power, Clemson University
  • 6.14. Your gadget's next power supply? Your body
  • 6.15. Triboelectric harvesting device timeline 2019-2039 with approximate power
  • 6.16. Terminology

7. MOTION: PIEZOELECTRIC

  • 7.1. Definition
  • 7.2. Background
  • 7.3. Principle of creation and operation
  • 7.4. Benefits and challenges
  • 7.5. Proposals and projects keep coming, often inherently unreliable
  • 7.6. Ongoing uses
    • 7.6.1. Textron Bell helicopters
    • 7.6.2. AVX
    • 7.6.3. Midé Volture™ piezoelectric energy harvester
  • 7.7. Current research projects beyond fundamentals and vibration
    • 7.7.1. Piezoelectric roads: University of California Merced
    • 7.7.2. Piezoelectric roads: Lancaster University UK
    • 7.7.3. Piezoelectric paving Georgiatech

8. MOTION: CAPACITIVE AND MAGNETOSTRICTIVE

  • 8.1. Overview
  • 8.2. Electret progress
  • 8.3. University of Dallas Twistron electrostatic harvester
  • 8.4. The DEG dream for wave power
  • 8.5. Magnetostriction: Oscilla Power USA

9. HEAT: THERMOELECTRIC, PYROELECTRIC, OCEAN THERMAL ENERGY CONVERSION

  • 9.1. Thermoelectric
    • 9.1.1. Overview
    • 9.1.2. Thermoelectric generator design considerations
    • 9.1.3. Applications
    • 9.1.4. Recent advances
  • 9.2. Pyroelectric
  • 9.3. Ocean thermal energy conversion OTEC
Back to Top
아시아 최대 시장정보 제공
전세계에서 발행되고 있는 모든 시장조사보고서를
다루고 있습니다.
사이트에서 검색되지 않는 보고서도 문의 바랍니다.