Global Information
회사소개 | 문의

에너지수확기술 : 오프그리드 마이크로와트에서 메가와트로(2017-2027년)

Energy Harvesting: Off-grid Microwatt to Megawatt 2017-2027

리서치사 IDTechEx Ltd.
발행일 2018년 05월 상품 코드 360964
페이지 정보 영문 209 Slides
가격
US $ 5,495 ₩ 6,166,400 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,795 ₩ 6,503,100 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 8,225 ₩ 9,230,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,525 ₩ 9,566,700 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


에너지수확기술 : 오프그리드 마이크로와트에서 메가와트로(2017-2027년) Energy Harvesting: Off-grid Microwatt to Megawatt 2017-2027
발행일: 2018년 05월 페이지 정보 : 영문 209 Slides

한글목차

에너지수확기술(Energy Harvesting) 시장을 조사 분석했으며, 현재 및 향후의 용도와 기술 분석, 기술별 개요, 장점, 과제 등을 정리하여 전해드립니다.

제1장 주요 요약 및 결론

제2장 서론

제3장 현재 및 향후의 용도

  • 서론
  • 에너지수확기술은 일반적으로 어디에서 이용되는가?
  • 지역적 차이
  • 에너지수확기술은 자주 투입되며 그 후에 방기된다
  • 건물 관리, 건물일체형 태양광발전시스템(BIPV), 통신용 사물인터넷(IoT) 및 로컬 그리드
  • 자동차에서의 이용
  • 제조업체

제4장 기술과 시스템

  • 개요
  • 옵션 비교

제5장 기술 : 전기역학(ELECTRODYNAMIC)

  • 개요
  • 회전식 전동기계 기술 선택
  • 공중 풍력에너지(AWE: Airborne Wind Energy)
  • 전형적인 파워트레인 컴포넌트 및 회생 제동
  • 자동차에서의 통합 동향
  • 인력에 의한 Electrodynamic Harvesting
  • Electrodynamic Vibration Energy Harvesting
  • Electrodynamic Regenerative Shock Absorbers 및 Self-powered Active Suspension
  • Flywheel KERS vs. Motor Regen. Braking
  • 3D·6D 무브먼트
  • 자동차에서의 차세대 모터 발전기, 터빈 EH

제6장 기술 : 태양광발전(HOTOVOLTAICS)

  • 개요
  • pn 접합(pn junction) vs. 대체
  • 웨이퍼 vs. 박막
  • 중요한 태양광발전 파라미터
  • 실리콘 이외의 일부 옵션 비교
  • 감을 수 있는(rollable), 접을 수 있는(foldable), 신축성 있는(stretchable) PV 도래
  • OPV

제7장 기술 : 열전기(THERMOELECTRICS)

  • 열전발전기(TEG)의 기본과 제조
  • 활성 물질 선택
  • 박막 TE의 장점
  • 자동차 TEG
  • 부스바(bus bars)와 핫파이프상의 전동 센서 트랜시버
  • 고출력 열전기 : 수십 와트
  • 고출력 열전기 : 킬로와트

제8장 기술 : 압전(PIEZOELECTRICS)

  • 개요
  • 활성 물질
  • 피에조 효과
  • 가전
  • 박막의 장점
  • 엘라스토머의 장점 : KAIST(한국)
  • Vibration Energy Harvester
  • 고출력 압전의 과제

제9장 정전 용량(CAPACITIVE ELECTROSTATIC)

  • 원리
  • 엘라스토머로의 통합
  • 정전용량식 플렉서블(Capacitive flexible)
  • MEMS Electrostatic Scavengers

제10장 자왜(magnetostrictive), 미생물, Nantenna

  • 자왜(magnetostrictive)
  • 미생물 연료전지(Microbial fuel cells)
  • Nantenna-diode
LSH 16.07.04

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

영문목차

Title:
Energy Harvesting: Off-Grid Microwatt to Megawatt 2017-2027
Applications, technologies, forecasts including regeneration.

An over $7bn market for energy harvesting transducers by 2027

This unique report of detailed analysis is easily grasped because many new infographics and forecasts are presented. No other analysis looks at the complete picture from microwatts for autonomous sensors to megawatts off grid for community power. The executive summary and conclusions appraises the results of the intense global travel schedule of the PhD level analyst team researching the subject in 2016 with ongoing updates. Extensive interviews were carried out in various languages plus global conference attendance and assessment of privileged information from the IDTechEx events on the subject. IDTechEx analysts have studied energy harvesting for 15 years and have seen the trends.

The report has an introduction looking critically at the successes and failures, the overall situation and the companies and universities involved. An extensive chapter on applications reveals how an aircraft or a house for example, has need of energy harvesting producing a whisper of electricity for small electronic devices such as MEMS up to large power levels for moving, cooking, heating etc. The commonality is revealed by the technologies and companies involved. We consider the four leading technologies - electrodynamics, photovoltaics, piezoelectrics and thermoelectrics - forecasting them by numbers and market value to 2027. The report explains how curiosities such as electret, capacitive, triboelectric and magnetostriction forms of EH now looks good in trials for many uses.

"Energy Harvesting: Off-grid Microwatt to Megawatt 2017-2027" predicts winners and losers in applications and technologies for EH and lists many companies involved with critical assessment of where the billion dollar business will emerge and what are the dead ends. What EH will be adopted in for wearable technology? Why are the Internet of Things, microgrids, Energy Independent Electric Vehicles EIV and other emerging hot topics impacted? How is multimode energy harvesting and energy harvesting without energy storage progressing? What hope is there of avoiding the many toxic materials involved in EH? What EH is powered by legal push and what is reverting back to batteries? What are the radically new forms of photovoltaics and electrodynamics all about such as solar roads and Airborne Wind Energy AWE? It is all here, replete with examples and simple explanations.

There are huge opportunities for materials companies in all this, from inorganics to composites and organics as we move to structural electronics - a materials play - instead of "components in a box". The report explains how, why, where and when.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition
  • 1.2. Features of EH
  • 1.3. Low power vs high power off-grid
  • 1.4. Types of EH energy source
  • 1.5. Ford and EPA assessment of regeneration potential in a car
  • 1.6. EH by power level
    • 1.6.1. Needs by power level
    • 1.6.2. Technologies by power level
    • 1.6.3. Vibration and random movement harvesting
  • 1.7. EH transducer options compared
  • 1.8. Energy storage technologies in comparison
  • 1.9. EH system architecture
  • 1.10. Energy Harvesting Maturity
  • 1.11. Market forecasts 2017-2027
  • 1.12. Popularity by technology 2017-2027
    • 1.12.1. Overview
    • 1.12.2. Typical vibration sources encountered
    • 1.12.3. The vibration harvesting opportunity
  • 1.13. Some energy harvesting highlights of "IDTechEx Show!" Berlin May 2017
  • 1.14. Micropelt iTRV - EnOcean Remote Management
  • 1.15. Energy Independent ship opportunity
  • 1.16. Solar cell and current inverter

2. INTRODUCTION

3. APPLICATIONS NOW AND IN FUTURE

  • 3.1. Introduction
    • 3.1.1. Energy harvesting is an immature industry
    • 3.1.2. IFEVS EIV self-powers travel, oven, lighting
  • 3.2. Where is EH used in general?
    • 3.2.1. Examples of energy harvesting by power level
    • 3.2.2. Hype and success: applications
    • 3.2.3. Some EH applications by location
    • 3.2.4. Power needs of electronic and electrical products
  • 3.3. Regional differences
  • 3.4. EH is sometimes introduced then abandoned
  • 3.5. Lower power ICs and different design approach facilitate low power EH adoption
  • 3.6. Building control, BIPV, IOT for communities, local grid
    • 3.6.1. Introduction
    • 3.6.2. Building controls: EnOcean
    • 3.6.3. Building integrated photovoltaics BIPV
    • 3.6.4. In communities: IOT
    • 3.6.5. In communities: microgrid
  • 3.7. Uses in vehicles
    • 3.7.1. Land water and air: low to high power
    • 3.7.2. EV end game: Energy Independent Vehicles EIV
    • 3.7.3. Transitional options to EIV
  • 3.8. Manufacturers

4. TECHNOLOGIES AND SYSTEMS

  • 4.1. Overview
  • 4.2. Comparison of options
    • 4.2.1. Technology choice by intermittent power generated
    • 4.2.2. EH technology choice by intermittent power generated
    • 4.2.3. Roadmap for low power EH: Bosch
    • 4.2.4. Potential efficiency
    • 4.2.5. Hype and success - technology
    • 4.2.6. Parameters
    • 4.2.7. Multi-modal harvesting today
    • 4.2.8. Integrated multi-modal: European Commission Powerweave project etc
    • 4.2.9. Wi-Fi harvesting

5. TECHNOLOGY: ELECTRODYNAMIC

  • 5.1. Overview
  • 5.2. Choices of rotating electrical machine technology
  • 5.3. Airborne Wind Energy AWE
    • 5.3.1. TwingTec Switzerland 10 kW+, Ampyx Power
    • 5.3.2. Google Makhani AWE 600kW trial, Enerkite
  • 5.4. Typical powertrain components and regenerative braking
  • 5.5. Trend to integration in vehicles
  • 5.6. Human-powered electrodynamic harvesting
    • 5.6.1. Knee Power
  • 5.7. Electrodynamic vibration energy harvesting
    • 5.7.1. Overview
  • 5.8. Electrodynamic regenerative shock absorbers and self-powered active suspension
    • 5.8.1. ClearMotion USA
  • 5.9. Flywheel KERS vs motor regen. braking
  • 5.10. 3D and 6D movement
  • 5.11. Next generation motor generators, turbine EH in vehicles

6. TECHNOLOGY: PHOTOVOLTAICS

  • 6.1. Overview
  • 6.2. pn junction vs alternatives
  • 6.3. Wafer vs thin film
  • 6.4. Important photovoltaic parameters
  • 6.5. Some choices beyond silicon compared
  • 6.6. Tightly rollable, foldable, stretchable PV will come
  • 6.7. OPV
    • 6.7.1. OPV and Opvius
    • 6.7.2. Germany's KIT
  • 6.8. Solar cell and current inverter
  • 6.9. Increasing silicon photovoltaic efficiency

7. TECHNOLOGY: THERMOELECTRICS

  • 7.1. Thermoelectrics: Doors Close, Doors Open
    • 7.1.1. Tough place: but still they come
    • 7.1.2. New prospects
  • 7.2. Basis and fabrication of thermoelectric generators TEG
  • 7.3. Choice of active materials
  • 7.4. Benefits of Thin Film TE
  • 7.5. TEG systems
  • 7.6. Automotive TEG
  • 7.7. Powering sensor transceivers on bus bars and hot pipes
  • 7.8. High power thermoelectrics: tens of watts
  • 7.9. High power thermoelectrics: kilowatt

8. TECHNOLOGY: PIEZOELECTRICS

  • 8.1. Overview
  • 8.2. Active materials
    • 8.2.1. Overview
    • 8.2.2. Exceptional piezo performance announced 2016
  • 8.3. Piezo Effect - Direct
  • 8.4. Piezo effect - converse
  • 8.5. Piezo options compared
  • 8.6. Piezo in cars - potential
    • 8.6.1. Piezo EH powered tyre sensor
  • 8.7. Piezo EH in helicopter
  • 8.8. Consumer Electronics
  • 8.9. Benefits of Thin Film
  • 8.10. Benefits of elastomer: KAIST Korea
  • 8.11. Vibration energy harvester (Joule Thief)
  • 8.12. Challenges with high power piezoelectrics
  • 8.13. Glycine

9. CAPACITIVE ELECTROSTATIC

  • 9.1. Principle
  • 9.2. Interdigitated to elastomer
  • 9.3. Capacitive flexible
  • 9.3.1. Dielectric elastomer generators
  • 9.4. MEMS Electrostatic Scavengers
    • 9.4.1. Advanced MEMS capacitive vibration harvester in 2016
  • 9.5. Twistron from the University of Texas, Dallas
  • 9.6. CRIEPI breakthrough?

10. MAGNETOSTRICTIVE, MICROBIAL, NANTENNA

  • 10.1. Magnetostrictive
  • 10.2. Microbial fuel cells
  • 10.3. Nantenna-diode

11. TRIBOELECTRIC

  • 11.1. Definition
  • 11.2. Triboelectric dielectric series
  • 11.3. Triboelectric dielectric series examples showing wide choice of properties
  • 11.4. Triboelectric nanogenerator (TENG)
  • 11.5. Achievement
  • 11.6. Four ways to make a TENG
    • 11.6.1. Overview
    • 11.6.2. TENG modes with advantages, potential uses
    • 11.6.3. Research focus on the four modes
    • 11.6.4. Parametric advantages and challenges of triboelectric EH
Back to Top
아시아 최대 시장정보 제공
전세계에서 발행되고 있는 모든 시장조사보고서를
다루고 있습니다.
사이트에서 검색되지 않는 보고서도 문의 바랍니다.