Global Information
회사소개 | 문의

오프그리드 무공해 전력(2018-2038년) : 새로운 시장, 새로운 기술 로드맵

Off-grid Zero-emission Electricity 2018-2038: New Markets, New Technology Roadmap

리서치사 IDTechEx Ltd.
발행일 2018년 05월 상품 코드 578153
페이지 정보 영문 355 Slides
가격
US $ 4,995 ₩ 5,638,300 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,295 ₩ 5,976,900 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,495 ₩ 8,460,300 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 7,795 ₩ 8,798,900 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


오프그리드 무공해 전력(2018-2038년) : 새로운 시장, 새로운 기술 로드맵 Off-grid Zero-emission Electricity 2018-2038: New Markets, New Technology Roadmap
발행일: 2018년 05월 페이지 정보 : 영문 355 Slides

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

한글목차

세계의 오프그리드 무공해 전력(Off-grid Zero-emission Electricity) 시장을 조사했으며, 시장 및 기술 개요, 시장 성장 영향요인 및 과제, 시스템 요소, 주요 지역의 활동, 주요 발전 기술과 동향, 향후의 기술 발전 로드맵, 주요 기업 및 조직의 대처 사례 등의 정보를 정리하여 전해드립니다.

제1장 주요 요약과 결론

  • 오프그리드 무공해 전력 공급이란?
  • 무공해 오프그리드 시스템 아키텍처
  • multi-mode harvesting에 의한 미니 그리드
  • 전력 자급형 선박의 시장 기회
  • 온그리드 vs. 오프그리드 : 국가별
  • 개요 : 오프그리드의 구조와 역사
  • 오프그리드 주요 기술
  • 유효 시장(Addressable markets)
  • 기술 로드맵 등

제2장 서론

  • 시스템 요소
  • 기본 구성
  • 에너지수확기술(EH)
  • 시장에서의 갭
  • 전기역학
  • 지열
  • 100kW 이상 파력의 자기변형(Magnetostriction)
  • 배터리란?

제3장 세계에서의 진보와 시장 기회 : 실례

  • 개요
  • 파이낸싱 및 코디네이션
  • 아프리카의 동향
  • 미국령 사모아
  • 안티과
  • 호주
  • 방글라데시
  • 캄보디아
  • 중국
  • 콩고 민주공화국
  • 두바이
  • 인도
  • 재생 전력
  • 지역 경험
  • 일본
  • 케냐
  • 라오스
  • 말리
  • 몰타
  • 모로코
  • 뉴질랜드
  • 나이지리아
  • 푸에르토리코
  • 시에라리온
  • 탄자니아
  • 미국 등

제4장 오프그리드 에너지수확기술(EH) 비교

  • 개요
  • 중요한 파라미터
  • EH 기술의 매력적인 기능 비교
  • EH 기술의 상대적 장점과 요구
  • EH 기술의 과장광고 곡선(Hype curve)

제5장 빛과 적외선에서 얻는 전력

  • 개요
  • 예 : 미니 그리드로서의 보트
  • 실리콘 이외의 주요 PV 옵션
  • pn 접합 vs. photoelectrochemical DSSC
  • G24i 실내 모듈 vs. aSi 모듈의 전력밀도 비교
  • DSSC 유효 틈새 시장
  • BIPV
  • 발전하는 도로 : PV, 압전 등

제6장 풍력발전

  • 개요
  • 틈새 시장에 진입하는 100kW 이하 풍력터빈
  • 풍력에 의한 전기 자급 : Inergy 70kW
  • Energy Observer : 풍력과 태양광
  • AWE(Airborne Wind Energy)
  • 전기역학 : 유선 드론의 Pumping Action
  • 주요 Airborne Wind Energy 옵션
  • 예 : AWE의 시장 기회
  • AWE의 요구 등

제7장 블루 에너지 발전

  • 개요
  • WITT : 6D 파력발전
  • Sea Horse : 오키나와 과학기술 대학

제8장 배터리

  • 전기화학의 정의
  • 배터리 트릴레마(battery trilemma)
  • 거치형 저장장치의 중요성 확대
  • 거치형 저장장치의 새로운 길
  • 오프그리드 축전 기술
  • 축전 기술 비교
  • 전력계통 보조서비스(Ancillary Service)에서 배터리 저장의 가치
  • 비용 : 주요 장벽
  • 밸류체인
  • 산업간 배터리 협업 사례
  • Tesla Energy
  • Powerwall
  • BYD
  • Sharp
  • Sony
  • Toshiba
  • Mercedes-Benz, Daimler
  • 레독스 흐름전지(RFB) 등
LSH 17.12.06

영문목차

Grid electricity is being bypassed. Extension of national grids is nowhere near keeping up with population growth. The sheer cost of upgrading national grids and their vulnerability to terrorism and natural disasters is leading to clean off grid power. It will also replace 800 GW of diesel gensets.

The new 250+ page IDTechEx report, "Off-grid Zero-emission Electricity: New Markets, New Technology Roadmap 2018-2038" reveals the market drivers and changing technologies involved. Primarily it concerns the rapid expansion of clean distributed energy as microgrids and minigrids of 0.5kW- 1MW. The Executive Summary and Conclusions includes detailed forecasts and technology roadmaps. The Introduction explains off grid history, definitions, comparison of the ten energy harvesting technologies, the fringe topic geothermal and the nature and challenges of off grid batteries plus electricity cost comparisons. A chapter on progress and opportunities worldwide: profiles continents and 21 countries. Chapter 4 compares technologies in more detail than earlier. The emphasis is on what is new and important for the future: this is seen in the drill down chapter on electricity from light and infrared scoping such things as perovskites, Building Integrated Photovoltaics BIPV, solar vs piezo roads and "Silent City" leading to the chapter on electricity from wind including a close look at the newly commercial Aerial Wind Energy AWE and such things as piezo + photovoltaic sails as multi-mode harvesting becomes important. Off grid electricity from water is then explained with a detailed look at off grid battery technologies at the end of the report.

The presentation is compact with new detailed infograms and forecasts and a creative, critical approach by the many PhD level analysts who have toured the world to gain the information using local languages for technical interviews. It is shown that the biggest markets are on the mainland initially mainly in developing countries but mini grids are popular in island states, both developed and developing. There are more than 10,000 inhabited islands around the world and an estimated 750 million islanders and the report profiles many doing off grid, giving gives statistics, trends and achievements. In most cases, renewables are already a cost-effective replacement for their diesel generators and others benefit from solar panels taking much of their load as is also scoped in Africa and elsewhere.

The report even shows that vehicles and charging stations where needed will become micro and mini grids increasingly not connected to national grids. For example, Tesla promises solar bodywork and Elon Musk says he will take all his intended 10 GW of charging stations worldwide off grid. There is a clear roadmap in the report showing 2.2 million larger vehicles becoming candidates for energy independence as clean off grid minigrids in 2028 including the largest ships having zero emission instead of each emitting NOx and particulates of millions of cars. Off grid is shown to be a prudent diversification for utilities and fossil fuel companies now investing in it. The potential is considerable and for the first time it has now been fully scoped by this report, from single solar panels on huts in Africa to the 17 types of land vehicle, boat, ship and plane from 2014-2028 that will trend to being travelling minigrids with zero emission.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. What is an off grid zero emission electricity supply?
  • 1.2. Zero emission off grid system architecture
  • 1.3. Minigrids with multi-mode harvesting
  • 1.4. Purpose and context of this report
  • 1.5. Much is changing
    • 1.5.1. Stealing the emperor's clothes: Market drivers for off grid are strengthening
  • 1.6. Market driven approach: uninterrupted transportable green electricity
  • 1.7. Energy independent ship opportunity: 3MW gap in the market
  • 1.8. The ultimate all-weather mobile genset: no emissions, little energy storage?
  • 1.9. Definitions
    • 1.9.1. Overview
    • 1.9.2. Where the term zero emission off-grid is used
    • 1.9.3. Off-grid structural types
  • 1.10. On-grid vs off grid by country
  • 1.11. More reasons to worry about national grids now
    • 1.11.1. Five factors
    • 1.11.2. Why even electricity utilities back off grid
  • 1.12. Overview of off grid structure and history
    • 1.12.1. Structure
    • 1.12.2. History
    • 1.12.3. Electricity supply in 2018 and 2050: here comes off grid
    • 1.12.4. Access to electricity by people in 2018: conflicting forces
    • 1.12.5. Australia can and should go off grid?
    • 1.12.6. IRENA view
    • 1.12.7. IRENA background data
    • 1.12.8. Bridging technologies: solar assisted diesel gensets
  • 1.13. Which renewables, mainly zero emission, take over grid and off grid generation
  • 1.14. Off-grid leading technologies: PV with Li-ion batteries winning
  • 1.15. Addressable markets
    • 1.15.1. Introduction
    • 1.15.2. Reliable electricity in Africa
    • 1.15.3. Population by per capita income
    • 1.15.4. Off grid renewable energy installed capacity in 2050
    • 1.15.5. Installed capacity 2018-2050 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.15.6. Installed capacity 2018kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.15.7. Installed capacity 2028 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.15.8. Installed capacity 2040 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.15.9. Installed capacity 2050 kTWh/yr by grid, fringe of grid, off grid stationary, vehicle
    • 1.15.10. Situation where grid access is lacking or poor
    • 1.15.11. Average annual lighting spend by off-grid population $/year 2012
    • 1.15.12. Africa
    • 1.15.13. Sales of large hybrid and pure electric vehicles globally in 17 categories number k 2013-2028
    • 1.15.14. Off-grid solar forecast
    • 1.15.15. Pico solar as indicator of microsolar
  • 1.16. Technology roadmaps
    • 1.16.1. Overview
    • 1.16.2. Off grid technology and adoption roadmap: harvesting
    • 1.16.3. Off grid technology and adoption roadmap: storage
  • 1.17. Continuity as important as cost: energy storage vs energy harvesting for continuity
    • 1.17.1. Overview
    • 1.17.2. Adoption, transition, optimisation
    • 1.17.3. Options for tapping excellent 200+m wind: particularly strong at night when PV is off

2. INTRODUCTION

  • 2.1. Electrification alone will save 42% of world power demand
  • 2.2. System elements
  • 2.3. Basic configuration
  • 2.4. Energy harvesting (EH)
    • 2.4.1. Definition and overview
    • 2.4.2. Market drivers for off grid energy harvesting
    • 2.4.3. Features of energy harvesting
    • 2.4.4. EH transducer construction, materials
    • 2.4.5. Energy harvesting transducer options compared for all applications
    • 2.4.6. Off-Grid Energy Harvesting technology intermittent power generated
    • 2.4.7. Efficiency
    • 2.4.8. Energy harvesting is an immature industry
    • 2.4.9. IFEVS Italy energy independent electric restaurant van
  • 2.5. Gaps in the market : replace 6-800GWh of diesel gensets
  • 2.6. Electrodynamics
    • 2.6.1. Overview
    • 2.6.2. Electrodynamic parameters
  • 2.7. Geothermal
  • 2.8. Magnetostriction for 100kW+ wave power
  • 2.9. What is a battery?
    • 2.9.1. Basics
    • 2.9.2. Ecosystem for the whole battery life
    • 2.9.3. Ongoing lithium-ion fires and explosions - computers, cars, aircraft
    • 2.9.4. Hoverboards
    • 2.9.5. Next Li-ion failures and production delays due to cutting corners
  • 2.10. E.ON electricity utility promotes off-grid
  • 2.11. Standards and certification
  • 2.12. ABB microgrids
  • 2.13. China leads in photovoltaics
  • 2.14. Tesla off grid houses 30% cheaper than grid
  • 2.15. Renault Group's smart island

3. PROGRESS AND OPPORTUNITIES WORLDWIDE: EXAMPLES

  • 3.1. Overview
  • 3.2. Finance and coordination
  • 3.3. Trend in Africa
  • 3.4. American Samoa
  • 3.5. Antigua
  • 3.6. Australia
    • 3.6.1. Schneider gets greenlight for energy project in South Australia
    • 3.6.2. Tesla off grid houses 30% cheaper than grid
  • 3.7. Bangladesh
  • 3.8. Cambodia
  • 3.9. China
  • 3.10. Democratic Republic of Congo
  • 3.11. Dubai
  • 3.12. India
  • 3.13. Renewable electricity: more attention now
  • 3.14. Local experience
  • 3.15. Japan
  • 3.16. Kenya
  • 3.17. Laos
  • 3.18. Mali
  • 3.19. Malta
  • 3.20. Morocco
  • 3.21. New Zealand
  • 3.22. Nigeria
  • 3.23. Puerto Rico
  • 3.23.1. sonnen brings power to Puerto Rico
  • 3.24. Sierra Leone
  • 3.25. Tanzania
  • 3.26. USA
    • 3.26.1. Microgrids boost edge of grid and provide backup

4. OFF-GRID ENERGY HARVESTING TECHNOLOGIES COMPARED

  • 4.1. Overview
  • 4.2. Important parameters
  • 4.3. Comparison of desirable features of EH technologies
  • 4.4. Relative benefits of EH technologies vs needs
  • 4.5. Hype curve for EH technologies
  • 4.6. Thermoelectric microgrids: when?

5. ELECTRICITY FROM LIGHT AND INFRARED

  • 5.1. Overview
  • 5.2. Thermoelectric Microgrids: When?
  • 5.3. Example: boat as a minigrid
  • 5.4. Main PV options beyond silicon
  • 5.5. Best research-cell efficiencies
  • 5.6. Photovoltaics becomes cheaper than large onshore wind in 2020
  • 5.7. Photovoltaics experience curve 2018
  • 5.8. pn junction vs photoelectrochemical DSSC
  • 5.9. Comparison G24i Indoor Module vs aSi Module Power Density
  • 5.10. DSSC addressable niche markets
  • 5.11. Solar greenhouses generate electricity and grow crops
  • 5.12. University of Colorado Boulder 2018
  • 5.13. Building integrated photovoltaic thermal (BIPVT)
  • 5.14. Electricity generating roads, paths: Piezo, electrodynamic or heat?
  • 5.15. Electricity from heat of roads, parking lots etc
  • 5.16. Silent city
  • 5.17. Building integrated photovoltaics BIPV
  • 5.18. Increasing silicon photovoltaic efficiency

6. ELECTRICITY FROM WIND

  • 6.1. Small wind turbines
  • 6.2. Electricity from wind
  • 6.3. Below 100kW wind turbines get niche
  • 6.4. Off grid electricity from wind
  • 6.5. Ground turbine wind power does not downsize well: physics and poorer wind
  • 6.6. Turbine choices
  • 6.7. Vertical Axis Wind Turbines VAWT have a place
  • 6.8. Electrical autonomy using wind alone: Inerjy 70kW energy independent boat being built with H-VAWT
  • 6.9. Energy Observer microgrid - VAWT wind and sun
  • 6.10. Airborne Wind Energy
  • 6.11. Electrodynamics: pumping action of tethered drone
  • 6.12. Main Airborne Wind Energy options taken seriously
  • 6.13. Example: opportunities for AWE
  • 6.14. Two very different needs for AWE
  • 6.15. Bladetips Energy
  • 6.16. Ampyx Power
  • 6.17. TwingTec
  • 6.18. Primary conclusions: the MW grid opportunity most are chasing
  • 6.19. Primary conclusions: the opportunity beyond MW grid
  • 6.20. Primary conclusions: AWE technologies
  • 6.21. Hybrid piezo photovoltaic film and fiber for sails etc

7. ELECTRICITY FROM WATER "BLUE ENERGY"

  • 7.1. Overview
  • 7.2. Witt 6D wave harvester
  • 7.3. Sea Horse - Okinawa Institute of Science and Technology Japan
  • 7.4. Marine Power Systems UK
  • 7.5. Lighting the oceans with wave power - Yanko Design
  • 7.6. River power
  • 7.7. Combining water and solar

8. BATTERIES

  • 8.1. Electrochemistry definitions
  • 8.2. Useful charts for performance comparison
  • 8.3. The battery trilemma
  • 8.4. Stationary energy storage is not new
  • 8.5. The increasingly important role of stationary storage
  • 8.6. New avenues for stationary storage
  • 8.7. Off grid energy storage technologies
  • 8.8. Energy storage technologies in comparison
  • 8.9. Values provided by battery storage in ancillary services
  • 8.10. Costs: a major impediment
  • 8.11. Value Chain
  • 8.12. The launch of Tesla Energy and corresponding sales
  • 8.13. Powerwall's specifications
  • 8.14. Powerwall - a breakthrough product?
  • 8.15. Analysis of Tesla's strategy
  • 8.16. Background of Tesla's Gigafactory
  • 8.17. The impact of Tesla's Gigafactory
  • 8.18. The story did not start with Tesla and will not end with Tesla
  • 8.19. BYD
  • 8.20. BYD's layout is similar to Tesla and it makes wind turbines too
  • 8.21. Mercedes-Benz Energy Storage and Daimler's 2nd-use stationary battery storage project
  • 8.22. Redox Flow Batteries (RFB)
  • 8.23. The case for RFBs
  • 8.24. The price of RFBs
  • 8.25. The price of RFBs - LCOS
  • 8.26. Redox flow batteries in the news
  • 8.27. Redox flow batteries and caves
  • 8.28. Guide to understanding the charts
  • 8.29. Largest operational RFB projects
  • 8.30. Market players (operational projects)
  • 8.31. Hype curve for RFB technologies
  • 8.32. Other RFB configurations

9. OTHER OFF GRID ENERGY STORAGE

Back to Top
아시아 최대 시장정보 제공
전세계에서 발행되고 있는 모든 시장조사보고서를
다루고 있습니다.
사이트에서 검색되지 않는 보고서도 문의 바랍니다.