Global Information
회사소개 | 문의

첨단 리튬 이온과 리튬 이온 배터리 이후(2018-2028년)

Advanced Li-ion & Beyond Li-ion Batteries 2018-2028

리서치사 IDTechEx Ltd.
발행일 2018년 05월 상품 코드 584395
페이지 정보 영문 365 Slides
가격
US $ 4,995 ₩ 5,600,300 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,295 ₩ 5,936,700 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,495 ₩ 8,403,300 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 7,795 ₩ 8,739,700 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


첨단 리튬 이온과 리튬 이온 배터리 이후(2018-2028년) Advanced Li-ion & Beyond Li-ion Batteries 2018-2028
발행일: 2018년 05월 페이지 정보 : 영문 365 Slides

한글목차

첨단 리튬 이온(Advanced Li-ion) 시장에 대해 조사했으며, 배터리의 기본, 첨단 리튬 이온 배터리, 리튬 이온 전극재, 불활성 재료, 리튬 이온 기술, 리튬 유황 배터리, 리튬 공기 배터리, 레독스 흐름전지 등에 대해 분석한 결과를 전해드립니다.

제1장 주요 요약과 예측

제2장 서론

제3장 배터리의 기본

  • 배터리란 무엇인가?
  • 에너지 밀도
  • 리튬 이온 배터리란?
  • 안전성

제4장 첨단 리튬 이온 배터리

  • 배터리 및 열역학
  • 리튬은 리튬 이온 배터리의 유일한 요소는 아니다
  • 기존 리튬 vs. 첨단 리튬 이온
  • 250Wh/kg 이상을 얻는 방법

제5장 리튬 이온 전극재

  • 배터리 계통도 : 리튬형
  • 양극 재료
  • 음극 재료

제6장 불활성 재료

  • 분리막
  • 집전체
  • 바인더
  • 용제
  • 전도성 첨가제
  • 전해질, 염제, 첨가제
  • 고체 전해질

제7장 현재의 리튬 이온 vs. 향후의 리튬 이온

  • BMW의 향후 리튬 이온
  • LGChem의 향후 배터리에 관한 견해
  • 배터리 프로젝트

제8장 리튬 이온 기술 이후

  • 리튬 이온은 배터리 특효약인가?

제9장 리튬-유황

  • 모티베이션 : 왜 리튬 유황 배터리인가?
  • 리튬-유황 배터리
  • 리튬-유황 배터리의 응용
  • 리튬-유황 밸류체인

제10장 리튬-공기

  • 배터리의 성배(Holy Grail) : 리튬 공기 배터리
  • 리튬-공기 배터리(LAB)의 종류
  • 수성 LAB
  • 비수성 LAB
  • LAB의 기술적 문제

제11장 기타 리튬 배터리

  • 리튬/염화티오닐(Li-SOCl2)
  • 리튬/옥소(Li-I2)
  • 리튬/이산화황 : Seoul National University

제12장 나트륨-이온

제13장 레독스 흐름전지

제14장 슈퍼커패시터 및 리튬 이온 커패시터

제15장 마그네슘-이온

제16장 나트륨-유황

제17장 납-공기

제18장 납-탄소

제19장 리튬 이온 vs. 기타 기술 벤치마크

제20장 유효 시장

  • 전기자동차
  • 소비자 가전
  • 웨어러블
  • 거치형 저장(BESS)
  • 사물인터넷(IoT)

제21장 시장 예측

제22장 기업 개요

제23장 부록

LSH 17.12.12

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

영문목차

Advanced Li-ion battery technologies are being developed all the time, but only a few make it to the mass production stage. Every other week a hot start-up announces a breakthrough technology that will revolutionise the battery industry forever. IDTechEx brings clarity in the energy storage industry with a detailed analysis of advanced Li-ion batteries and other battery technologies.

The truth is that battery innovation takes place gradually and long validation cycles are needed before a new material can find its way into the mainstream market. Car companies are extremely cautious when adopting new battery technologies, as they do not want to set the whole industry on a collision course because of battery-related incidents. As an example, the adoption of high-nickel-content cathode materials like NMC622 and NMC811 has long been delayed, however according to recent announcements by LGChem and rumours about the new Nissan LEAF, NMC811 may enter the market as soon as 2018. On the other hand, the Chinese government has issued policy regulations that encourage battery companies in the country to switch from LFP cathodes to others that are more energy-dense, such as NMC and NCA, the one currently found in Tesla's electric cars.

image1

Based on conversations with industry leaders and IDTechEx's own expertise, this report analyses the Li-ion industry with a critical outlook into how it will evolve over the next ten years. The report also leverages on IDTechEx's unique overview of 45 different electric vehicle categories, which include land, water, and air vehicles. These categories are used as the starting point to outline what battery chemistry will be the dominating one in forklifts, AGVs, plug-in hybrids, buses, trucks, two-wheelers, ships, drones, and airplanes. Li-ion batteries and advanced Li-ion batteries are benchmarked and compared to other battery chemistries like lithium sulphur, lithium air, sodium ion, magnesium ion, zinc- carbon, supercapacitors, zinc air, and redox flow batteries. Additional markets like consumer electronics, wearables, and stationary storage are also presented and analysed with forecasts as to which battery chemistry will prevail or establish itself in a given niche.

The report is complemented with 12 full company profiles, as well as dozens of case studies from leading Li-ion manufacturers like LGChem and Tesla, or materials suppliers like 3M, Umicore, BASF, SGL, and Solvay. The advanced Li-ion industry is analysed in terms of cathode, anode, and electrolyte innovation, not to mention other key components like electrode binders, current collectors, additives, and conductive agents. A thorough analysis of graphite, both natural and synthetic, as well as silicon-based anodes, lithium titanate, lithium metal; LCO, NMC, LFP, NCA, and sulphur presents advantages and disadvantages of each material from both a technological and a strategic standpoint. The report includes ten year forecasts from 2018 through 2028 that detail the market share of each material over the next decade, answering key questions like:

  • What applications will LFP find after new regulations in China?
  • When is it more convenient to use lithium titanate as opposed to graphite?
  • What is the state of development with silicon anodes, and will they be used in silicon-dominant or graphite-dominant blends?
  • Are solid-state batteries ready for commercial development?

Through primary research, technology insights, and an impressive resource base, IDTechEx has put together a unique report that details all of the above, together with our signature ten-year market forecasts and a worldwide, comprehensive overview of the battery industry of the future.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND FORECASTS

  • 1.1. Li-ion batteries revolutionise energy availability
  • 1.2. Why does battery innovation matter?
  • 1.3. LIB cell cost ($/kWh) forecasts according to IDTechEx
  • 1.4. Materials, processes, and markets for Advanced Li-ion
  • 1.5. LIB standard chemistries in 2018, 2023, and 2028
  • 1.6. Beyond Li-ion: new battery chemistries
  • 1.7. Non-commercial new battery technologies
  • 1.8. Forecasts ($B)
  • 1.9. List of industry events mentioned in this report

2. INTRODUCTION

  • 2.1. What's the big deal with batteries?
    • 2.1.1. What's the big deal with batteries?
    • 2.1.2. What is energy storage and why does it matter?
    • 2.1.3. LIB evolution over the last quarter of century
    • 2.1.4. Prospects for Li-ion batteries
    • 2.1.5. Challenges ahead
    • 2.1.6. Li-ion batteries in the news
    • 2.1.7. Better, cheaper Li-ion batteries
  • 2.2. More than Li-ion

3. BATTERY BASICS

  • 3.1. What is a battery?
    • 3.1.1. What is a battery?
    • 3.1.2. Redox reactions
    • 3.1.3. Electrochemical reactions based on electron transfer
    • 3.1.4. Primary (non-rechargeable) vs. secondary (rechargeable) batteries
    • 3.1.5. Electrochemistry definitions
    • 3.1.6. Useful charts for performance comparison
    • 3.1.7. What does 1 kilowatthour (kWh) look like?
  • 3.2. Energy Density
    • 3.2.1. Energy density in context
    • 3.2.2. Electrochemical inactive components reduce energy density
  • 3.3. What is a Li-ion battery?
    • 3.3.1. What is a Li-ion battery (LIB)?
    • 3.3.2. There is more than one type of LIB
    • 3.3.3. How can LIBs be improved?
    • 3.3.4. Push and pull factors in Li-ion research
    • 3.3.5. The battery trilemma
    • 3.3.6. A quote from Thomas Edison on batteries
    • 3.3.7. Performance goes up, cost goes down
    • 3.3.8. General Motors' view on battery prices
  • 3.4. Safety
    • 3.4.1. Safety
    • 3.4.2. Samsung's Firegate
    • 3.4.3. The risks of a battery-intensive future

4. ADVANCED LI-ION BATTERIES

  • 4.1. Batteries and thermodynamics
  • 4.2. Lithium is not the only element in Li-ion batteries
    • 4.2.1. The elements used in Li-ion batteries
  • 4.3. Conventional Li-ion vs. Advanced Li-ion
    • 4.3.1. Conventional Li-ion vs. Advanced Li-ion - what is the difference?
    • 4.3.2. Summary of Advanced Li-ion technologies
    • 4.3.3. Better batteries with a wider cell voltage
    • 4.3.4. Better batteries with a higher electrode capacity
    • 4.3.5. LGChem keynote at Interbattery 2017 in Seoul
  • 4.4. Ways to get above 250 Wh/kg

5. LI-ION ELECTRODE MATERIALS

  • 5.1. A family tree of batteries - Lithium-based
    • 5.1.1. A peek into the Samsung Galaxy Note 7 - LIB teardown
    • 5.1.2. A peek into Tesla's 18650 batteries - LIB teardown
  • 5.2. Anode materials
    • 5.2.1. Anode materials - Battery-grade graphite
    • 5.2.2. Synthetic graphite
    • 5.2.3. Anode alternatives - energy density vs. specific energy
    • 5.2.4. Anode alternatives - lithium metal and LTO
    • 5.2.5. Lithium metal - Hydro-Quebec
    • 5.2.6. Li metal strategies - Tadiran, Polyplus, Solidenergy
    • 5.2.7. Lithium metal needs to be handled in a dry room
    • 5.2.8. The cost of using lithium metal
    • 5.2.9. LTO - Toshiba
    • 5.2.10. LTO - Nippon Chemicon
    • 5.2.11. Anode alternatives - other carbon materials
    • 5.2.12. Hard carbon as additive for LIBs - Kuraray
    • 5.2.13. Anode alternatives - silicon, tin and alloying materials
    • 5.2.14. Pure silicon, silicon-dominant, silicon-rich, graphite-dominant anode materials
    • 5.2.15. Silicon manufacturing - Paraclete Energy
    • 5.2.16. Graphite-dominant silicon anodes - SiLion and Black Diamond
    • 5.2.17. Graphite-dominant silicon anodes - Nexeon
    • 5.2.18. Silicon-dominant anodes - Fraunhofer ISE
    • 5.2.19. Silicon-dominant anodes - 3M
    • 5.2.20. Silicon-dominant anodes - 3M
    • 5.2.21. Silicon-dominant anodes - Enevate
    • 5.2.22. Silicon-dominant anodes - Amprius
    • 5.2.23. Pure silicon anodes - Enovix
    • 5.2.24. Pure silicon anodes - Leyden Jar
    • 5.2.25. Silicon alloy anodes - BioSolar
    • 5.2.26. Silicon oxide anodes - Shin-Etsu
    • 5.2.27. The silicon anode value chain
    • 5.2.28. IP uncertainty in silicon anodes
    • 5.2.29. Graphene's role in silicon anodes
    • 5.2.30. Graphene and silicon - SiNode Systems
    • 5.2.31. Benchmark comparison of 11 Silicon-based battery companies
  • 5.3. Cathode materials
    • 5.3.1. Standard cathode materials - LCO and LFP
    • 5.3.2. Cathode alternatives - NCA
    • 5.3.3. Cathode alternatives - LNMO, NMC, V2O5
    • 5.3.4. LMO - ZSW Ulm
    • 5.3.5. Li-ion battery cathode recap
    • 5.3.6. Ultra-high energy NMC - Kokam
    • 5.3.7. Future NMC/NCM - From 111 to 622 and 811
    • 5.3.8. NMC Cathode materials at Interbattery 2017
    • 5.3.9. Future NMC/NCM - Hanyang University
    • 5.3.10. Future NMC/NCM - BASF
    • 5.3.11. Future NMC/NCM - Umicore
    • 5.3.12. Patent litigation over NMC/NCM - Umicore vs. BASF
    • 5.3.13. Patent litigation - the positive example of LFP
    • 5.3.14. New cathode materials - FDK Corporation

6. INACTIVE MATERIALS

  • 6.1. Separators
    • 6.1.1. Separators - polyolefins
    • 6.1.2. Separator manufacturing
    • 6.1.3. Polyolefin separators - Celgard
    • 6.1.4. Ceramic separators - Sion Power's Licerion
    • 6.1.5. Ceramic coatings - Litarion, Optodot, Nabaltec
    • 6.1.6. Ceramic coatings
    • 6.1.7. Cellulose separators - Uppsala university
    • 6.1.8. New battery separators - Dreamweaver
  • 6.2. Current collectors
    • 6.2.1. Current collectors - aluminium and copper
    • 6.2.2. Current collectors - copper from LS Mtron
    • 6.2.3. New current collectors - Dreamweaver
    • 6.2.4. Porous current collectors - Nano-Nouvelle
  • 6.3. Binders
    • 6.3.1. Binders - aqueous vs. non-aqueous
    • 6.3.2. Binder processing
    • 6.3.3. Better binders - Solvay
    • 6.3.4. Replacing toxic NMP - PPG
    • 6.3.5. Better binders - Zeon
    • 6.3.6. Better binders - Ashland
  • 6.4. Solvents
    • 6.4.1. NMP vs. aqueous processing
  • 6.5. Conductive additives
    • 6.5.1. Conductive agents
    • 6.5.2. Conductive agents - Imerys
    • 6.5.3. Conductive agents - Orion Engineered Carbons
    • 6.5.4. Conductive agents - OCSiAl
  • 6.6. Electrolytes, salts, and additives
    • 6.6.1. Electrolytes - the solvents
    • 6.6.2. Electrolytes - Ionic liquids
    • 6.6.3. Electrolytes - conducting salts
    • 6.6.4. Electrolyte additives
  • 6.7. Solid-state electrolytes
    • 6.7.1. Solid-state batteries - after the 2016 hype
    • 6.7.2. Lithium-ion batteries vs. Solid-State batteries
    • 6.7.3. Comparison between inorganic and polymer electrolytes
    • 6.7.4. Inorganic electrolytes
    • 6.7.5. Difference between inorganic and polymer electrolytes
    • 6.7.6. Critical aspects of solid electrolytes
    • 6.7.7. Solid electrolytes - Toyota Motors
    • 6.7.8. Solid electrolytes - Solvay
    • 6.7.9. Solid electrolytes - Solvay
    • 6.7.10. Electrolytes - Solid Power
    • 6.7.11. Solid electrolytes - Solidenergy
    • 6.7.12. Solid electrolytes - US Army Research Lab
    • 6.7.13. Solid-state Electrolyte Technology evaluation

7. CURRENT LI-ION VS. FUTURE LI-ION

  • 7.1. Future Li-ion according to BMW
  • 7.2. LGChem's view of future batteries
  • 7.3. Battery Projects
    • 7.3.1. ARPA-E Battery 500 Project
    • 7.3.2. ARPA-E Battery 500 Project
    • 7.3.3. Approved projects
    • 7.3.4. Approved projects
    • 7.3.5. Approved projects

8. BEYOND LI-ION TECHNOLOGIES

  • 8.1. Is Li-ion the silver bullet of batteries?
    • 8.1.1. Is Li-ion the silver bullet of batteries?
    • 8.1.2. Is Li-ion the silver bullet of batteries?
    • 8.1.3. The innovation cycle
    • 8.1.4. Li-ion vs. future Li-ion vs. beyond Li-ion
    • 8.1.5. There are several avenues to better batteries
    • 8.1.6. What is the future battery technology?
    • 8.1.7. Cathodes for post-Li-ion

9. LITHIUM-SULPHUR

  • 9.1. Motivation - Why Lithium Sulphur batteries?
    • 9.1.1. Operating principle of lithium-sulphur batteries
    • 9.1.2. Advantages of LSBs
    • 9.1.3. Challenges for LSBs
    • 9.1.4. Challenges for LSBs - Polysulphide solubility issue
    • 9.1.5. Challenges for LSBs - Sulphur conductivity
    • 9.1.6. Challenges for LSBs - Anode protection
    • 9.1.7. Solutions to LSB challenges - electrode structure approach
    • 9.1.8. Solutions to LSB challenges - electrode structure approach
    • 9.1.9. Solutions to LSB challenges - Electrolyte approaches
  • 9.2. Lithium-sulphur batteries
    • 9.2.1. Lithium-sulphur batteries - Polyplus
    • 9.2.2. Lithium-sulphur batteries - Sion Power
    • 9.2.3. Lithium-sulphur batteries - Oxis Energy
    • 9.2.4. Silicon/sulphur battery - GIST University
    • 9.2.5. LSB Electrolytes - TU Dresden
    • 9.2.6. Lithium-sulphur - Daimler
  • 9.3. Lithium sulphur battery applications
    • 9.3.1. Lithium sulphur battery applications - Defense
    • 9.3.2. Li sulphur battery applications - autonomous vehicles
  • 9.4. Lithium Sulphur value chain

10. LITHIUM-AIR

  • 10.1. The Holy Grail of batteries - lithium-air batteries
  • 10.2. Types of Lithium-air batteries
  • 10.3. Aqueous LABs
    • 10.3.1. Aqueous LABs - Polyplus
    • 10.3.2. Aqueous LABs - Ohara Corp.
    • 10.3.3. Aqueous LABs - Energie De France (EDF)
  • 10.4. Non-aqueous LABs
    • 10.4.1. Non-aqueous LABs - Oxford University
    • 10.4.2. Non-aqueous LABs - Toyota
  • 10.5. Technical challenges for LABs
    • 10.5.1. Technical challenges for LABs

11. OTHER LI-BASED BATTERIES

  • 11.1. Lithium/thionyl chloride (Li-SOCl2)
  • 11.2. Lithium/iodine (Li-I2)
  • 11.3. Lithium/sulphur dioxide - Seoul National University

12. SODIUM-ION

  • 12.1. Sodium-ion batteries as a drop-in technology
  • 12.2. Working principle of sodium-ion batteries
  • 12.3. Sodium-ion vs. Lithium-ion
  • 12.4. Life cycle assessment of Na-ion vs. Li-ion
  • 12.5. Sodium-ion - Laboratories
    • 12.5.1. Sodium-ion - Sharp Laboratories of Europe
    • 12.5.2. Sodium-ion - Faradion
    • 12.5.3. Sodium-ion - NEI Corporation
    • 12.5.4. Sodium-ion - Broadbit Batteries
    • 12.5.5. Aqueous sodium-ion - Alveo Energy
    • 12.5.6. Aqueous sodium-ion - Juline-Titans (former Aquion Energy)
  • 12.6. The cost of sodium-ion batteries - CIC Energigune
  • 12.7. New cathodes for sodium-ion - Seoul National University

13. REDOX FLOW BATTERIES

  • 13.1. Catholytes and anolytes
  • 13.2. Exploded view of an RFB and polarisation curve
  • 13.3. The case for RFBs
    • 13.3.1. The case for RFBs
    • 13.3.2. The case for RFBs
  • 13.4. Types of RFBs
    • 13.4.1. RFB chemistries: Iron/Chromium
    • 13.4.2. RFB chemistries: PSB flow batteries
    • 13.4.3. RFB chemistries: Vanadium/Bromine
    • 13.4.4. RFB chemistries: all Vanadium (VRFB)
    • 13.4.5. Hybrid RFBs: Zinc/Bromine
    • 13.4.6. Hybrid RFBs: Hydrogen/Bromine
    • 13.4.7. Hybrid RFBs: all Iron
    • 13.4.8. Other RFBs: organic
    • 13.4.9. Other RFBs: non-aqueous
    • 13.4.10. Lab-scale flow battery projects
    • 13.4.11. Microflow batteries?
  • 13.5. Other RFB configurations
  • 13.6. Redox Flow Battery Technology Recap
  • 13.7. Hype Curve® for RFB technologies
  • 13.8. Comparison with fuel cells and conventional batteries
  • 13.9. Redox Flow Batteries
    • 13.9.1. Redox Flow Batteries - Sumitomo Electric
    • 13.9.2. Redox Flow Batteries - ThyssenKrupp

14. SUPERCAPACITORS AND LITHIUM-ION CAPACITORS

  • 14.1. Operating principle of supercapacitors
  • 14.2. Types of capacitor
  • 14.3. Principles - capacitance
  • 14.4. Principles - supercapacitance
    • 14.4.1. Principles - supercapacitance
    • 14.4.2. Principles - supercapacitance
  • 14.5. Supercapacitors: victims of the wrong performance metric?
    • 14.5.1. Supercapacitors: victims of the wrong performance metric?
    • 14.5.2. Supercapacitors: victims of the wrong performance metric?
  • 14.6. Forklifts may not be the same again
    • 14.6.1. Forklifts may not be the same again
    • 14.6.2. Forklifts may not be the same again
  • 14.7. Lithium-ion capacitors (LIC)
  • 14.8. Supercapacitors and Lithium-ion capacitors
  • 14.9. LICs for EV fast charging infrastructures - ZapGo

15. MAGNESIUM-ION

  • 15.1. Magnesium-ion batteries
  • 15.2. Magnesium-ion - Ljubljana University
  • 15.3. Magnesium-ion - ZSW Ulm

16. SODIUM-SULPHUR

  • 16.1. Sodium-sulphur batteries
  • 16.2. Sodium-sulphur batteries - NGK Insulators

17. ZINC-AIR

  • 17.1. Zinc-air batteries - operating principle
  • 17.2. The problem of making Zn-air high-power
  • 17.3. Zn-air batteries - EMW Energy
  • 17.4. Zn-air batteries - Fluidic Energy
  • 17.5. Zn-air batteries - EOS Energy Storage

18. ZINC-CARBON

  • 18.1. Zinc-carbon batteries
  • 18.2. Zinc-carbon batteries - Medical applications
  • 18.3. Zinc-carbon batteries - Cosmetic skin patches
  • 18.4. Zinc-carbon - FlexEL LLC
  • 18.5. Zinc-carbon - Zinergy Power

19. BENCHMARK OF LI-ION VS. OTHER TECHNOLOGIES

  • 19.1. A family tree of batteries - Li-ion
  • 19.2. A family tree of batteries - Non-Li-ion
  • 19.3. Benchmarking of theoretical battery performance
  • 19.4. Benchmarking of practical battery performance
  • 19.5. Battery technology benchmark - Comparison chart
  • 19.6. Battery technology benchmark - open challenges

20. ADDRESSABLE MARKETS

  • 20.1. Electric vehicles
    • 20.1.1. Electric vehicles as a catch-all term
    • 20.1.2. Electric vehicles - Volkswagen
    • 20.1.3. Electric buses - Toshiba
    • 20.1.4. Electric aircraft - UBER Elevate
  • 20.2. Consumer electronics
    • 20.2.1. Battery technologies for consumer electronics
  • 20.3. Wearables
    • 20.3.1. Battery technologies for wearables
    • 20.3.2. Wearables suffer from bulky batteries
  • 20.4. Stationary storage (BESS)
    • 20.4.1. The increasingly important role of stationary storage
    • 20.4.2. Li-ion is capturing market share at the expense of lead-acid
    • 20.4.3. Stationary storage battery choice in 2017
  • 20.5. Internet of Things (IoT)
    • 20.5.1. Battery choices for the Internet of Things

21. MARKET FORECASTS

  • 21.1. Cathode materials forecasts 2018 - 2028
    • 21.1.1. LIB market by cathode material - GWh
    • 21.1.2. LIB markets by cathode material - $B
    • 21.1.3. LIB-based EV market share - $B
    • 21.1.4. LIB cathode production, 2018 vs. 2028
    • 21.1.5. Cathode market forecasts - a detailed analysis
    • 21.1.6. EV battery tech market share - $B
    • 21.1.7. Lead acid and NiMH battery markets in electric vehicles 2018 - 2028 ($M)
    • 21.1.8. Selected EV markets and cathode/battery type market share
    • 21.1.9. Different technologies will dominate different EV segments
    • 21.1.10. PHEV vs. HEV markets by battery choice ($B)
    • 21.1.11. PHEV vs. HEV markets by battery choice - analysis
    • 21.1.12. Pure electric vehicle markets by battery choice ($B)
    • 21.1.13. 48V mild hybrid and micro-EV markets by battery choice ($B)
    • 21.1.14. Pure EV and 48V mild hybrid markets by battery choice - analysis
  • 21.2. Anode materials forecasts 2018 - 2028
    • 21.2.1. LIB market by anode material - GWh
    • 21.2.2. LIB market by anode material - 2018 vs. 2028
    • 21.2.3. LIB market by anode material - $B
    • 21.2.4. LIB-based EV market share - $B
    • 21.2.5. Selected EV markets and anode type market share
    • 21.2.6. Pure electric vehicle markets and market share by anode
    • 21.2.7. Pure electric vehicles and anode markets - analysis
    • 21.2.8. Other passenger EV anode markets
    • 21.2.9. Other passenger EV anode markets - analysis
  • 21.3. Li-ion electrolyte forecasts 2018 - 2028
    • 21.3.1. Electrolyte technology market share (GWh)
    • 21.3.2. Electrolyte technology market share ($B)
    • 21.3.3. Electric vehicle electrolyte market share (%)
    • 21.3.4. Electrolyte market - analysis
  • 21.4. Battery forecasts for drones and electric aircraft, 2018 - 2028
    • 21.4.1. Drones and electric aircraft - can lithium-sulphur make it?
    • 21.4.2. Drone market share by anode ($M)
  • 21.5. Battery forecasts for marine EVs, 2018 - 2028
    • 21.5.1. Battery technologies for the marine sector
  • 21.6. Battery forecasts for consumer electronics, 2018 - 2028
    • 21.6.1. Consumer electronics cathode and anode choice ($B)
  • 21.7. Battery forecasts for stationary storage (BESS), 2018 - 2028
    • 21.7.1. Stationary storage battery choice ($B)
    • 21.8. Disruptive potential vs. rate of innovation
    • 21.9. Summary tables - cathode, anode, electrolyte ($B)

22. COMPANY PROFILES

  • 22.1. SiNode Systems
  • 22.2. Broadbit Batteries
  • 22.3. Unienergy Technology
  • 22.4. NGK
  • 22.5. 24M
  • 22.6. Johnson Battery Technology
  • 22.7. Nano Nouvelle
  • 22.8. US Army Research Lab
  • 22.9. Voltaiq
  • 22.10. PARC
  • 22.11. Energous
  • 22.12. Tanktwo

23. APPENDIX

  • 23.1. List of abbreviations
Back to Top
아시아 최대 시장정보 제공
전세계에서 발행되고 있는 모든 시장조사보고서를
다루고 있습니다.
사이트에서 검색되지 않는 보고서도 문의 바랍니다.