Global Information
회사소개 | 문의

항공우주와 방위용 적층 가공 및 경량 매트리얼(2018-2028년)

Additive Manufacturing and Lightweight Materials for Aerospace and Defense 2018-2028

리서치사 IDTechEx Ltd.
발행일 2018년 06월 상품 코드 654978
페이지 정보 영문 191 Slides
가격
US $ 4,995 ₩ 5,638,300 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,295 ₩ 5,976,900 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,495 ₩ 8,460,300 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 7,795 ₩ 8,798,900 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


항공우주와 방위용 적층 가공 및 경량 매트리얼(2018-2028년) Additive Manufacturing and Lightweight Materials for Aerospace and Defense 2018-2028
발행일 : 2018년 06월 페이지 정보 : 영문 191 Slides

한글목차

항공우주·방위 산업용 적층 가공(AM) 및 경량 매트리얼 시장에 대해 조사했으며, 항공우주·방위 산업에서 이용되고 있는 현재·신규 프린터 기술 종류, 각 적층 가공 기술의 강점과 약점, 각 프린터가 지원하는 매트리얼 클래스, 주요 시장 리더의 적층 가공 전략, 적층 가공의 용도, 시장 성장의 주요 촉진요인과 억제요인 및 주요 기업 개요 등을 정리하여 전해드립니다.

제1장 개요

제2장 복합재료

  • 항공우주·방위 산업의 FRP 예측
  • 항공우주·방위 산업의 CMC 예측
  • CFRP 용도 : 항공기 개요
  • CFRP 용도 : 헬리콥터 개요
  • 제트 엔진에서 복합재료의 역할
  • 차세대 항공기의 CFRP 용도

제3장 고분자기 복합재료(PMC)

  • 섬유 강화 폴리머(FRP)의 서론
  • FRP 구조의 개요
  • CFRP 기업·공급망
  • FRP 제조 각 단계의 혁신
  • 민간 항공우주 부문에서 FRP의 타임라인 등

제4장 세라믹 복합재료(CMC)

  • 세라믹 섬유의 서론
  • 연속 SiC 섬유의 제조
  • 연속 알루미나 섬유의 제조
  • 세라믹 섬유 모노필라멘트의 서론
  • CMC : 주요 기업 등

제5장 금속기 복합재료(MMC)

  • MMC의 서론
  • 금속기 첨가재의 분류·관계성
  • 첨가재 비교 : 종류별
  • 주요 첨가재 혁신의 개요
  • 지속적 세라믹 섬유 MMC : 애플리케이션별 등

제6장 경량 금속

  • 알루미늄 합금
  • 티타늄 합금
  • 마그네슘 합금

제7장 고분자 에어로겔

  • 에어로겔이란?
  • 에어로겔 종류의 분류·관계성
  • 고분자 에어로겔의 서론
  • 고분자 에어로겔 : Aerogel Technologies
  • 고분자 에어로겔 : BASF and Blueshift International Materials 등

제8장 탄소나노튜브 얀

  • 탄소나노튜브(CNT)의 서론
  • CNT 얀의 서론
  • CNT 얀의 구조·벤치마킹 : 주요 기업 등

제9장 적층 가공

  • 적층 가공을 채택하는 이유는?
  • 주요 재료 가공의 관계
  • CAE(Computer Aided Engineering) : 토폴로지
  • 성장 촉진요인과 억제요인
  • 적층 가공 프로세스의 각 유형

제10장 폴리머 적층 가공의 진보

  • PBF(Powder bed fusion) : 선택적 레이저 소결법(SLS)
  • 압출 성형 : 열가소성 물질(TPE)
  • 액층 광중합 : SLA(Stereolithography)
  • 액층 광중합 : 디지털 라이트 프로세싱(DLP)
  • 매트리얼 제팅 등

제11장 금속 적층 가공의 진보

  • PBF(Powder bed fusion) : 직접 금속 레이저 소결법(DMLS)
  • PBF(Powder bed fusion) : 전자빔 용해법(EBM)
  • DED(Directed energy deposition) : 화약식
  • DED(Directed energy deposition) : 용접
  • 바인더 제팅 : 금속 바인더 제팅 등

제12장 적층 가공 전략·사례 연구

  • GE
  • Airbus
  • Boeing
  • GE Aviation: LEAP fuel nozzles
  • Boeing 787 Dreamliner: Ti-6Al-4V structures
  • Boeing: metal microlattice
  • Autodesk and Airbus: optimised partition wall
  • Airbus: bracket
  • RUAG Space and Altair: antenna mount
  • Hofmann: oxygen supply tube

제13장 항공우주 AM 시장 예측

  • 프린터 유닛 공급 예측 : 인스톨 기반·연간 판매 대수
  • 매트리얼 수요 예측 : 질량별

제14장 기업 개요

KSA 18.07.03

영문목차

The aerospace and defense sector is key to assess when it comes to the adoption of any emerging technology. The main players have specific material requirements and big budgets to address their needs. Analysing this sector gives vital insights into longer term trends, in many cases a trickle-down effect of these technologies will be seen into higher-volume and lower budget transportation industries over time.

One of the key demands is lightweighting. Aerospace has the highest carbon footprint per tonne-km over any other mode of transportation and regulatory demands and economic advantages mean that saving any weight is a constant target. Despite the increase regulatory pressure, the aerospace industry remains very healthy with a CAGR of 6.2% for aircraft deliveries from Boeing and Airbus since 2010 and significant number of backorders in place.

This report looks at the key lightweighting approaches for this sector and which players and technologies stand to be the main winners and losers, the predominant focus is on advanced lightweight materials and the rise of additive manufacturing. The material outlook is for all aerospace and defense applications, aircraft have the highest demand by volume and the applications investigated ranges to structural load-bearing roles, interiors, jet engines, and more.

This research was conducted through extensive research from IDTechEx. Granular 10-year market forecasts are provided for each section, and interview-based company profiles of innovative emerging companies addressing this sector are provided alongside this report.

Additive Manufacturing

Technology, Markets and Applications

In 2018, the 3D printing market comprises multiple different printer technologies. This report takes an in-depth look into established printer types compatible with polymer, metal and ceramic materials, including Vat Photopolymerisation (SLA/DLP/CLIP), Powder Bed Fusion (SLS/DMLS/EBM); Material Extrusion, Material Jetting, Binder Jetting and Directed Energy Deposition. Key technological capabilities, aerospace and defense manufacturing readiness levels, SWOT analyses and key manufacturers are discussed for each established printer type. In addition, compatible established material classes including Photosensitive Resins, Thermoplastic Powders, Thermoplastic Filaments, Metal Powders are presented and evaluated.

This report forecasts the key additive manufacturing technologies used by the aerospace and defense sector, with in depth discussion of currently commercialised and emerging printer technologies. The current state of the printer market is analysed, and long-range forecasts from 2018-2023 for accumulated and annual sales of printer technologies and materials including metal powders are evaluated.

Key AM questions that are answered in this report

  • What are the current and emerging printer technology types utilised in aerospace and defense?
  • What are the strengths and weaknesses of different additive manufacturing technologies?
  • Which printers support different material classes?
  • What are the additive manufacturing strategies of some of the market leaders?
  • What applications has additive manufacturing been employed in?
  • What are the key drivers and restraints of market growth?

Lightweight Materials

There are many types of materials that go into the composition of components in the aerospace and defense sector. This report tackles the key lightweight materials, of which the main candidates are outlined below.

image1

This report targets those most relevant to the aerospace and defense sector including: composites (FRP, CMC, MMC), lightweight metals (Al, Ti, Mg), and other emerging materials (specifically polymer aerogels and CNT yarns).

For each material the reader will find:

  • Market forecasts
  • Critical technology assessment
  • Analysis of main players and supply chain
  • Profiles of emerging players
  • Initial and long-term applications

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY

  • 1.1. Market drivers for lightweighting in the aerospace sector
  • 1.2. Overview of the aerospace market
  • 1.3. Material winners and losers in the aerospace and defense sector
  • 1.4. Composite market forecast for aerospace and defense sector
  • 1.5. Timeline for FRPs in the civil aerospace sector
  • 1.6. lightweight metals market forecast for the aerospace and defense sector
  • 1.7. Status of early stage lightweight materials and initial applications
  • 1.8. Why adopt additive manufacturing?
  • 1.9. Drivers and restraints of additive manufacturing
  • 1.10. OEM AM strategy - GE
  • 1.11. OEM AM strategy - Airbus
  • 1.12. OEM AM strategy - Boeing
  • 1.13. Additive manufacturing material market forecast for the aerospace and defense sector

2. COMPOSITES

  • 2.1. FRP forecast for aerospace and defense sector
  • 2.2. CMC forecast for aerospace and defense sector
  • 2.3. CFRP applications - aircraft overview
  • 2.4. CFRP applications - helicopter overview
  • 2.5. Role of composites in jet engines
  • 2.6. CFRP applications in next generation aircraft

3. POLYMER MATRIX COMPOSITES

  • 3.1. Introduction to fiber reinforced polymers (FRPs)
  • 3.2. Overview of FRP composition
  • 3.3. CFRP players and supply chain
  • 3.4. Innovations at each step of FRP manufacturing
  • 3.5. Timeline for FRPs in the civil aerospace sector
  • 3.6. CFRTP - a growing role in the aerospace sector
  • 3.7. Phenolic resins and alternatives in aerospace interiors
  • 3.8. Braided composites - applications and players
  • 3.9. Prepreg material - next generation products
  • 3.10. Spread tow fabrics for thin ply structures - overview
  • 3.11. Spread tow fabrics for thin ply structures - aerospace applications
  • 3.12. Natural fiber composites for aerospace interiors
  • 3.13. S-Glass fibers
  • 3.14. Boron fibers
  • 3.15. Recycling composites - overview
  • 3.16. Use of recycled composites in aerospace
  • 3.17. Advancements in robotic automation for composites
  • 3.18. Advancements in robotic automation for composites (2)
  • 3.19. Robotic automation for thermoplastic composites
  • 3.20. 3D Printing of polymer composites - status and players
  • 3.21. 3D Printing of polymer composites - aerospace applications
  • 3.22. Role of nanocarbon as additives to FRPs
  • 3.23. Routes to incorporating nanocarbon material into composites
  • 3.24. Metallized fiber for composites
  • 3.25. Multifunctional polymer composites - overview
  • 3.26. Key drivers for thermal and electrical property enhancements
  • 3.27. Embedded sensors for structural health monitoring of composites - introduction
  • 3.28. Embedded sensors for structural health monitoring of composites - types
  • 3.29. Fiber optic sensors (FOS) for composite SHM
  • 3.30. Embedded sensors for structural health monitoring of composites - methods
  • 3.31. Embedded energy storage for multifunctional composites
  • 3.32. Data transmission within composite parts
  • 3.33. Routes to "self-healing" composite parts

4. CERAMIC MATRIX COMPOSITES

  • 4.1. Introduction to ceramic fibers
  • 4.2. Manufacturing continuous SiC fibers
  • 4.3. Manufacturing continuous alumina fibers
  • 4.4. Introduction to ceramic fiber monofilaments
  • 4.5. CMC - main players
  • 4.6. SiC/SiC CMC applications - aerospace and defense
  • 4.7. Ox/Ox CMC applications - aerospace and defense

5. METAL MATRIX COMPOSITES

  • 5.1. Introduction to MMCs
  • 5.2. Classification and relationship of metal matrix additives
  • 5.3. Comparison of additives by type
  • 5.4. Overview of key additive innovations
  • 5.5. Continuous ceramic fiber MMC - applications
  • 5.6. Chopped ceramic fibers MMC - applications
  • 5.7. Ceramic particle MMC - applications
  • 5.8. Aluminium MMC Forecast by additive type and form
  • 5.9. Aluminium MMC Forecast by application

6. LIGHTWEIGHT METALS

  • 6.1. Aluminium Alloys
    • 6.1.1. Aluminium introduction and properties
    • 6.1.2. Overview of Aluminium-Lithium alloys
    • 6.1.3. Li-Al forecast for aerospace and defense sector
    • 6.1.4. Overview of Aluminium-Beryllium alloys
    • 6.1.5. Market forecast for Be-Al alloys
    • 6.1.6. Overview of aluminium-scandium alloys
    • 6.1.7. Production outlook for scandium oxide forecast
    • 6.1.8. Emerging role of Scalmalloy
  • 6.2. Titanium Alloys
    • 6.2.1. Titanium - overview and key properties
    • 6.2.2. Titanium players for the aerospace and defense sector
    • 6.2.3. Relationships between titanium players and aerospace OEMs
    • 6.2.4. Titanium alloys forecast for aerospace and defense sector
    • 6.2.5. Advancements in Titanium Alloys
    • 6.2.6. Overview and outlook for titanium aluminide (TiAl)
    • 6.2.7. Advancements in titanium processing
    • 6.2.8. Application of titanium alloys in aerospace and defense
  • 6.3. Magnesium Alloys
    • 6.3.1. Introduction to magnesium and alloys
    • 6.3.2. Advantages and disadvantages of magnesium
    • 6.3.3. Main players in magnesium supply chain
    • 6.3.4. Advancements in metal manufacturing
    • 6.3.5. Main aerospace applications
    • 6.3.6. Emerging application for aerospace interiors
    • 6.3.7. Magnesium alloys forecast for aerospace and defense sector

7. POLYMER AEROGELS

  • 7.1. What is an Aerogel?
  • 7.2. Classification and relationship of aerogel types
  • 7.3. Introduction to polymer aerogels
  • 7.4. Polymer aerogels - Aerogel Technologies
  • 7.5. Polymer aerogels - BASF and Blueshift International Materials
  • 7.6. Polymer aerogels for aerospace interiors
  • 7.7. Polymer aerogels for aerospace antennas
  • 7.8. Research into polymer aerogels - NASA

8. CARBON NANOTUBE YARNS

  • 8.1. Introduction to carbon nanotubes (CNT)
  • 8.2. Introduction to CNT yarns
  • 8.3. Formation and benchmarking of CNT yarns - main players
  • 8.4. Post yarn modification and challenges
  • 8.5. Role of CNT aspect ratio
  • 8.6. CNT yarns - specific conductivity
  • 8.7. CNT yarns - Ampacity
  • 8.8. CNT yarns - temperature coefficient of resistance
  • 8.9. CNT yarn aerospace and defense applications
  • 8.10. Emerging CNT yarn applications

9. ADDITIVE MANUFACTURING

  • 9.1. Why adopt additive manufacturing?
  • 9.2. Major material-process relationships
  • 9.3. Computer Aided Engineering (CAE): Topology
  • 9.4. Drivers and restraints of growth
  • 9.5. The different types of additive manufacturing processes

10. ADVANCES IN ADDITIVE MANUFACTURING OF POLYMERS

  • 10.1. Powder bed fusion: Selective Laser Sintering (SLS)
  • 10.2. Extrusion: Thermoplastics (TPE)
  • 10.3. Vat photopolymerisation: Stereolithography (SLA)
  • 10.4. Vat photopolymerisation: Direct Light Processing (DLP)
  • 10.5. Material jetting
  • 10.6. Binder jetting: polymer binder jetting
  • 10.7. Photosensitive resins
  • 10.8. Thermoplastic powders
  • 10.9. Thermoplastic filaments
  • 10.10. High temperature thermoplastic filaments and pellets
  • 10.11. Composite thermoplastic filaments

11. ADVANCES IN ADDITIVE MANUFACTURING OF METALS

  • 11.1. Powder bed fusion: Direct Metal Laser Sintering (DMLS)
  • 11.2. Powder bed fusion: Electron Beam Melting (EBM)
  • 11.3. Directed energy deposition: Blown Powder
  • 11.4. Directed energy deposition: Welding
  • 11.5. Binder jetting: Metal Binder Jetting
  • 11.6. Extrusion: Metal + polymer filament (MPFE)
  • 11.7. Vat photopolymerisation: Direct Light Processing (DLP)
  • 11.8. Material jetting: nanoparticle jetting (NJP)
  • 11.9. Material jetting: magnetohydrodynamic deposition
  • 11.10. Material jetting: microfluidic electroplating
  • 11.11. Powder morphology requirements
  • 11.12. Water or gas atomisation
  • 11.13. Plasma atomisation
  • 11.14. Powder morphology depends on atomisation process
  • 11.15. Supported materials
  • 11.16. Suppliers of metal powders for AM
  • 11.17. Alloys and material properties
  • 11.18. Aluminium and alloys
  • 11.19. 15-5PH stainless steel
  • 11.20. Nickel superalloy: Inconel 718
  • 11.21. Titanium and alloys
  • 11.22. Metal powder bed fusion post processing
  • 11.23. AM of High Entropy Alloys

12. ADDITIVE MANUFACTURING STRATEGIES AND CASE STUDIES

  • 12.1. GE
  • 12.2. Airbus
  • 12.3. Boeing
  • 12.4. GE Aviation: LEAP fuel nozzles
  • 12.5. Boeing 787 Dreamliner: Ti-6Al-4V structures
  • 12.6. Boeing: metal microlattice
  • 12.7. Autodesk and Airbus: optimised partition wall
  • 12.8. Airbus: bracket
  • 12.9. RUAG Space and Altair: antenna mount
  • 12.10. Hofmann: oxygen supply tube

13. AEROSPACE AM MARKET FORECAST

  • 13.1. Printer units supply forecast: installed base and annual sales
  • 13.2. Material demand forecast by mass

14. COMPANY PROFILES

  • 14.1. 3D Systems
  • 14.2. Acellent Technologies
  • 14.3. Aerogel Technologies
  • 14.4. Airborne
  • 14.5. Alvant
  • 14.6. Advanced Powders and Coatings (AP&C)
  • 14.7. Arcam AB
  • 14.8. Argen Corp
  • 14.9. Blueshift International Materials
  • 14.10. Boeing
  • 14.11. Carpenter
  • 14.12. Cevotec
  • 14.13. Composite Horizons
  • 14.14. Concept Laser
  • 14.15. DexMat
  • 14.16. EOS
  • 14.17. FRA Composites
  • 14.18. Free Form Fibers
  • 14.19. Gamma Alloys
  • 14.20. Hoganas
  • 14.21. Inca-Fiber
  • 14.22. Lockheed Martin
  • 14.23. LPW Technology
  • 14.24. Markforged
  • 14.25. Materialise
  • 14.26. Materion
  • 14.27. Metalysis
  • 14.28. Nanosteel
  • 14.29. Norsk Titanium
  • 14.30. North Thin Ply Technology (NTPT)
  • 14.31. Optomec
  • 14.32. Oxeon
  • 14.33. QUESTEK
  • 14.34. Realizer
  • 14.35. Sandvik
  • 14.36. Stratasys
  • 14.37. SLM Solutions
  • 14.38. Specialty Materials
  • 14.39. TISICS
  • 14.40. TWI
Back to Top
아시아 최대 시장정보 제공
전세계에서 발행되고 있는 모든 시장조사보고서를
다루고 있습니다.
사이트에서 검색되지 않는 보고서도 문의 바랍니다.