Global Information
회사소개 | 문의

슈퍼커패시터 재료 및 기술 로드맵(2019-2039년)

Supercapacitor Materials and Technology Roadmap 2019-2039

리서치사 IDTechEx Ltd.
발행일 2018년 06월 상품 코드 658697
페이지 정보 영문 180 Pages
가격
US $ 4,995 ₩ 5,638,300 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,295 ₩ 5,976,900 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,495 ₩ 8,460,300 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 7,795 ₩ 8,798,900 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


슈퍼커패시터 재료 및 기술 로드맵(2019-2039년) Supercapacitor Materials and Technology Roadmap 2019-2039
발행일 : 2018년 06월 페이지 정보 : 영문 180 Pages

한글목차

슈퍼커패시터의 신소재는 큰 비지니스가 되고, 슈퍼커패시터 시장을 수십억 달러 시장으로 만들 것입니다.

슈퍼커패시터(Supercapacitor) 시장에 대해 조사했으며, 재료 시장 예측과 기술 타임라인, 전해질, 전이 금속 산화물·금속 유기 구조체(MOF)의 변화하는 우선순위, 그래핀을 이용한 2D 재료로의 새로운 접근, 구조적 슈퍼커패시터의 중요한 역할 등의 정보를 전해드립니다.

제1장 주요 요약과 결론

제2장 서론

제3장 슈퍼커패시터 전해질

  • 서론
  • 제조업체에 의해서 전해질은 변화 : 실례
  • 파라미터 조정 : 브리스톨 대학(영국)
  • 전극에 대한 적합
  • 전극에 영향을 받는 특징의 비교
  • 다양한 슈퍼커패시터 전해질의 커패시턴스 밀도
  • 수성 전해질의 중요성
  • 이온성 전해질

제4장 전이 금속 산화물, 금속 유기 구조체(MOF)

  • 전이 금속 산화물
  • 금속 유기 구조체(MOF)

제5장 슈퍼커패시터 2D 재료

  • 개요
  • 복합 원자층 물질(MXenes)

제6장 그래핀, 탄소나노튜브, 에어로겔, 유도체

  • 현재는 주류로 진보해 나노튜브 연구가 감소
  • 카본 에어로겔
  • 그래핀

제7장 구조적 슈퍼커패시터(Structural Supercapacitors) : 내하중성, 스킨, 텍스타일

  • 내하중성 슈퍼커패시터
  • 플렉서블, 신축성 및 패브릭 슈퍼커패시터
  • 신축성 웨어러블 슈퍼커패시터
  • 페이퍼 슈퍼커패시터
  • 슈퍼커패시터로서의 플렉서블 인쇄회로기판 : 켐브리지 대학

제8장 슈퍼커패시터의 독성을 회피

  • 개요
  • 아세토니트릴
KSM 18.07.11

영문목차

Title:
Supercapacitor Materials and Technology Roadmap 2019-2039
Active materials for supercapacitors and derivatives.

New materials will be big business, powering supercapacitors to a multibillion dollar market.

Supercapacitors will be a large market. It will interest suppliers of a wide range of specialty chemicals and added value feedstock. The report, "Supercapacitor Materials and Technology Roadmap 2019-2039" uniquely appraises these and identifies gaps in the market for device variants and new material capabilities. The report notes that lithium-ion batteries were a cottage industry but as they became a large market added value materials companies prospered from making key materials that the device makers could not address. That is ahead for supercapacitors now.

The growth of the supercapacitor business is being be accelerated by new priorities driven by a wider range of potentially large applications and optimisation of new matched materials. That stretches from structural supercapacitors to ones maximising pseudocapacitance for battery-like functions and others replacing general purpose electrolytic capacitors. Many transition metal oxides and other compounds from liquids to ceramics are now in focus.

"Supercapacitor Materials and Technology Roadmap 2019-2039" is a drill down report from the IDTechEx report, "Supercapacitor Markets and Technology 2018-2028". It is part of the acclaimed IDTechEx series on energy storage and on battery elimination.

The new virtuosity is astounding. Some experimental supercapacitors now work from minus 110C to 300C. Power supply versions at 120 Hz are demonstrated. On the other hand, load-bearing supercapacitors are sometimes achieving lighter weight than the dumb structure they replace. Batteries make things heavier but supercapacitors make them lighter - "negative mass" energy storage? Supercapacitor materials just got exciting.

The 180 page IDTechEx report, "Supercapacitor Materials and Technology Roadmap 2019-2039" involves over 60 organisations through the value chain. It has a comprehensive Executive Summary and Conclusions for those with limited time. The many parameters affecting latest competition between capacitors, supercapacitors and batteries are clearly grasped in new spider diagrams and charts. New infograms give the wider applications being targeted, the methods, the materials parameters being optimised and the most promising routes, including much news for 2018 and potential for the future.

There is a materials market forecast and technology timeline. Learn gaps in the market and prioritisation of parameter improvement now needed. The Introduction comprehensively explains the phenomena being optimised and the different structures emerging for supercapacitors and their variants. Learn why pseudocapacitance is becoming better understood and used as a tool in device tailoring. Why are both hierarchical electrode morphologies and the newer exohedral options needed at the different electrodes required for different potential applications? There is no one size fits all. Indeed, electrode-electrolyte matching is essential with aqueous and ionic electrolytes in focus and solid state considered. See detailed charts comparing parameters achieved.

Chapter 3 explores electrolytes as they change radically to new organic and inorganic, liquid and solid forms, with present and planned commercial versions and the new active electrodes they leverage. Why are aqueous and ionic forms gaining market share?

Chapter 4 covers the changing priorities in transition metal oxides and introduces metal organic frameworks. Chapter 5 covers the new approach to 2D materials with graphene very important but only a part of the story, which now embraces MXenes and much more.

Chapter 6 specifically addresses applied versions of graphene, carbon nanotubes and carbon aerogels, the aerogels even enabling impressive load-bearing components. Chapter 7 appraises the important work on structural supercapacitors - load bearing shapes, smart skin, textiles and even paper structures. Learn about stretchable and flexible forms and more. The report closes with a chapter on how poisons will be avoided in future supercapacitors. Throughout, the text is brought alive with commercial and promised device examples and slides from the latest relevant conferences. They reveal how other global experts see progress, mechanisms and future possibilities.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Focus of this report
  • 1.2. Purpose of this report
  • 1.3. Market forecast for supercapacitor active materials
    • 1.3.1. Background
    • 1.3.2. Active materials market forecast for supercapacitors and derivatives $ billion 2019-2039
  • 1.4. Physics of basic uses
    • 1.4.1. Action
    • 1.4.2. The competition between capacitors, supercapacitors and batteries
    • 1.4.3. How basic functions overlap: Cap, supercap, battery
    • 1.4.4. Spectrum of benefits: capacitor to battery 2019
  • 1.5. The reality for production supercapacitors and their derivatives 2019
  • 1.6. The dream for production supercapacitors and their derivatives: power & energy
  • 1.7. The dream for production supercapacitors and their derivatives: other planned benefits
  • 1.8. Improvements that will create large new markets
    • 1.8.1. Prioritisation
  • 1.9. Cost
  • 1.10. Energy density
    • 1.10.1. Options
    • 1.10.2. Electrolyte-electrode routes to desirable parameters shown red
    • 1.10.3. More than creating area
    • 1.10.4. Seeking affordable higher energy density in context 2019-2029
  • 1.11. Self-discharge
  • 1.12. Options for device physics
  • 1.13. Device active structures and gaps in the market
    • 1.13.1. Exohedral active electrodes
  • 1.14. Options for supercapacitor manufacture
  • 1.15. Technology roadmap 2019-2039

2. INTRODUCTION

  • 2.1. Operating principles and construction
    • 2.1.1. EDLC and AEDLC basics
    • 2.1.2. Supercapacitor assembly
    • 2.1.3. Cost and mass breakdown
    • 2.1.4. Capacitance and energy density
    • 2.1.5. Charging
    • 2.1.6. Discharging, cycling, life
    • 2.1.7. Energy density
    • 2.1.8. Voltage vs capacitance offered
  • 2.2. Pseudocapacitance
    • 2.2.1. Outline basics
    • 2.2.2. Inseparable
    • 2.2.3. A deeper look
    • 2.2.4. From electrode and electrolyte
    • 2.2.5. Choice of materials
    • 2.2.6. From structure
    • 2.2.7. Example: Candy cane pseudocapacitor
  • 2.3. Understanding fundamental phenomena
  • 2.4. Typical methodology to improve supercapacitors
  • 2.5. Active electrode materials
    • 2.5.1. Hierarchical active electrodes
    • 2.5.2. Exohedral active electrodes
  • 2.6. Separators PALL, Universiti Putra, Dreamweaver
  • 2.7. Supercapacitor materials in action: examples
    • 2.7.1. Examples of nine parameters compared
    • 2.7.2. Comparison by manufacturer: examples
    • 2.7.3. Symmetric hybrid supercapacitor; Yunasko

3. SUPERCAPACITOR ELECTROLYTES

  • 3.1. Introduction
  • 3.2. Electrolytes by manufacturer are changing: examples
  • 3.3. Reconciling parameters: Univ. Bristol, Reading UK, Supercapacitor Materials
    • 3.3.1. Parameter compromises
    • 3.3.2. Radically new options: SuperCapacitor Materials
  • 3.4. Matching to Electrode
  • 3.5. Comparison of properties influenced by electrolyte
  • 3.6. Capacitance density of various supercapacitor electrolytes
  • 3.7. Importance of aqueous electrolytes
    • 3.7.1. Rationale
    • 3.7.2. Aqueous and non aqueous electrolytes compared
    • 3.7.3. Example: Evans Capacitor
    • 3.7.4. Example: Tampere University screen printing
  • 3.8. Ionic electrolytes
    • 3.8.1. Rationale
    • 3.8.2. Covalent basics
    • 3.8.3. Low cost route: natural cellulose in ionic liquid Pyr14TFSI
    • 3.8.4. Example of ionic electrolyte ZapGo UK

4. TRANSITION METAL OXIDES, METAL ORGANIC FRAMEWORKS

  • 4.1. Transition metal oxides
  • 4.2. Metal organic frameworks

5. SUPERCAPACITOR 2D MATERIALS

  • 5.1. Overview
  • 5.2. MXenes

6. GRAPHENE, CARBON NANOTUBES, AEROGEL, DERIVATIVES NANJING UNIV. MIT

  • 6.1. Less nanotube work for mainstream advances now
  • 6.2. Carbon aerogel; UST China, Imperial College UK
  • 6.3. Graphene
    • 6.3.1. Overview University of Oregon, NECTEC
    • 6.3.2. Graphene research results CNSI, UCLA Tsinghua Univ.
    • 6.3.3. Specific capacitance vs identified area for graphene-based supercapacitor electrodes by electrolyte type
    • 6.3.4. Curved graphene: Nanotek
    • 6.3.5. Vertically aligned graphene University Grenoble Alpes, CNRS
    • 6.3.6. Aqueous stacked graphene
    • 6.3.7. Graphene CNT supercapacitor: UCLA

7. STRUCTURAL SUPERCAPACITORS: LOAD BEARING, SKIN, TEXTILE

  • 7.1. Load bearing supercapacitors
    • 7.1.1. Imperial College London UK
    • 7.1.2. Queensland University of Technology Australia, Rice University USA
    • 7.1.3. Trinity College Dublin Ireland
    • 7.1.4. Vanderbilt University USA
    • 7.1.5. ZapGo UK
  • 7.2. Flexible, stretchable and fabric supercapacitors
    • 7.2.1. Flexible supercapacitors in tires: Silent Sensors UK
    • 7.2.2. Institute of Nano Science and Technology (INST), Mohali, India
  • 7.3. Stretchable wearable supercapacitors
    • 7.3.1. China and Cambridge University UK
    • 7.3.2. Nanyang TU Singapore
  • 7.4. Paper supercapacitors
    • 7.4.1. Korea University
    • 7.4.2. Rensselaer Polytechnic Institute USA
  • 7.5. Flexible printed circuits as supercapacitors: Cambridge University

8. AVOIDING SUPERCAPACITOR POISONS

  • 8.1. Overview
  • 8.2. Acetonitrile
Back to Top
아시아 최대 시장정보 제공
전세계에서 발행되고 있는 모든 시장조사보고서를
다루고 있습니다.
사이트에서 검색되지 않는 보고서도 문의 바랍니다.