시장보고서
상품코드
1151445

세계의 바이오연료 시장 : 예측(-2033년)

The Global Market for Biofuels to 2033

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 230 Pages, 58 Tables, 51 Figures | 배송안내 : 즉시배송

※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

세계의 바이오연료(Biofuels) 시장에 대해 조사했으며, 시장 개요/유형별·원료별 동향/시장 진입 기업 개요 등 정보를 제공합니다.

목차

제1장 조사 방법

제2장 주요 요약

제3장 산업의 발전(2020-2022년)

제4장 바이오연료

  • 세계 바이오연료 시장
    • 디젤의 대체품
    • 가솔린의 대체품
  • 2022년의 바이오연료 비용 비교, 유형별
  • 유형
    • 고체 바이오연료
    • 액체 바이오연료
    • 기체 바이오연료
    • 기존의 바이오연료
    • 선진 바이오연료
  • 원료
    • 제1세대(1-G)
    • 제2세대(2-G)
    • 제3세대(3-G)
    • 제4세대(4-G)
    • 세대별 장점과 단점

제5장 탄화수소 바이오연료

  • 바이오디젤
  • 재생 가능 디젤
  • 바이오제트(바이오항공) 연료
  • 합성가스
  • 바이오가스와 바이오메탄

제6장 알코올 연료

  • 바이오메탄올
  • 바이오에탄올
  • 바이오부탄올

제7장 폐 플라스틱과 사용한 타이어 유래 바이오연료

  • 플라스틱의 열분해
  • 중고 타이어의 열분해
    • 바이오연료로 전환

제8장 합성 연료(이퓨엘)

  • 소개
  • 원료
  • 제조
  • 전해조
  • 다이렉트 에어 캡쳐(DAC)
  • 비용
  • 시장 과제
  • 기업

제9장 조류 유래 바이오연료

  • 기술 설명
  • 제조

제10장 그린암모니아

  • 제조
  • 그린 암모니아 합성법
  • 블루 암모니아
  • 시장과 용도
  • 비용
  • 추정 시장 수요
  • 기업과 프로젝트

제11장 기업 개요(119개 기업 개요)

제12장 참고문헌

LYJ 22.11.17

Renewable energy sources can be converted directly into biofuels. There has been a huge growth in the production and usage of biofuels as substitutes for fossil fuels. Due to the declining reserve of fossil resources as well as environmental concerns, and essential energy security, it is important to develop renewable and sustainable energy and chemicals.

The use of biofuels manufactured from plant-based biomass as feedstock would reduce fossil fuel consumption and consequently the negative impact on the environment. Renewable energy sources cover a broad raw material base, including cellulosic biomass (fibrous and inedible parts of plants), waste materials, algae, and biogas.

‘The Global Market for Biofuels’ covers biobased fuels, bio-diesel, renewable diesel, sustainable aviation fuels (SAFs), biogas, electrofuels (e-fuels), green ammonia based on utilization of:

  • First-Generation Feedstocks (food-based) e.g. Waste oils including used cooking oil, animal fats, and other fatty acids.
  • Second-Generation Feedstocks (non-food based) e.g. Lignocellulosic wastes and residues, Energy crops, Agricultural residues, Forestry residues, Biogenic fraction of municipal and industrial waste.
  • Third-Generation Feedstocks e.g. algal biomass
  • Fourth-Generation Feedstocks e.g. genetically modified (GM) algae and cyanobacteria.

Report contents include:

  • Market trends and drivers.
  • Market challenges.
  • Biofuels costs, now and estimated to 2033.
  • Biofuel consumption to 2033.
  • Market analysis including key players, end use markets, production processes, costs, production capacities, market demand for biofuels, bio-jet fuels, biodiesel, biobased alcohol fuels, renewable diesel, biogas, electrofuels, green ammonia and other relevant technologies.
  • Production and synthesis methods.
  • Biofuel industry developments and investments 2020-2022.
  • 119 company profiles including BTG Bioliquids, Byogy Renewables, Caphenia, Enerkem, Infinium. Eni S.p.A., Ensyn, FORGE Hydrocarbons Corporation, Fulcrum Bioenergy, Genecis Bioindustries, Gevo, Haldor Topsoe, Opera Bioscience, Steeper Energy, SunFire GmbH, Vertus Energy and many more.

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

2. EXECUTIVE SUMMARY

  • 2.1. Market drivers
  • 2.2. Market challenges
  • 2.3. Liquid biofuels market 2020-2033, by type and production

3. INDUSTRY DEVELOPMENTS 2020-2022

4. BIOFUELS

  • 4.1. The global biofuels market
    • 4.1.1. Diesel substitutes and alternatives
    • 4.1.2. Gasoline substitutes and alternatives
  • 4.2. Comparison of biofuel costs 2022, by type
  • 4.3. Types
    • 4.3.1. Solid Biofuels
    • 4.3.2. Liquid Biofuels
    • 4.3.3. Gaseous Biofuels
    • 4.3.4. Conventional Biofuels
    • 4.3.5. Advanced Biofuels
  • 4.4. Feedstocks
    • 4.4.1. First-generation (1-G)
    • 4.4.2. Second-generation (2-G)
      • 4.4.2.1. Lignocellulosic wastes and residues
      • 4.4.2.2. Biorefinery lignin
    • 4.4.3. Third-generation (3-G)
      • 4.4.3.1. Algal biofuels
    • 4.4.4. Fourth-generation (4-G)
    • 4.4.5. Advantages and disadvantages, by generation

5. HYDROCARBON BIOFUELS

  • 5.1. Biodiesel
    • 5.1.1. Biodiesel by generation
    • 5.1.2. Production of biodiesel and other biofuels
      • 5.1.2.1. Pyrolysis of biomass
      • 5.1.2.2. Vegetable oil transesterification
      • 5.1.2.3. Vegetable oil hydrogenation (HVO)
      • 5.1.2.4. Biodiesel from tall oil
      • 5.1.2.5. Fischer-Tropsch BioDiesel
      • 5.1.2.6. Hydrothermal liquefaction of biomass
      • 5.1.2.7. CO2 capture and Fischer-Tropsch (FT)
      • 5.1.2.8. Dymethyl ether (DME)
    • 5.1.3. Global production and consumption
  • 5.2. Renewable diesel
    • 5.2.1. Production
    • 5.2.2. Global consumption
  • 5.3. Bio-jet (bio-aviation) fuels
    • 5.3.1. Description
    • 5.3.2. Global market
    • 5.3.3. Production pathways
    • 5.3.4. Costs
    • 5.3.5. Biojet fuel production capacities
    • 5.3.6. Challenges
    • 5.3.7. Global consumption ]
  • 5.4. Syngas
  • 5.5. Biogas and biomethane
    • 5.5.1. Feedstocks

6. ALCOHOL FUELS

  • 6.1. Biomethanol
    • 6.1.1. Methanol-to gasoline technology
      • 6.1.1.1. Production processes
  • 6.2. Bioethanol
    • 6.2.1. Technology description
    • 6.2.2. 1G Bio-Ethanol
    • 6.2.3. Ethanol to jet fuel technology
    • 6.2.4. Methanol from pulp & paper production
    • 6.2.5. Sulfite spent liquor fermentation
    • 6.2.6. Gasification
      • 6.2.6.1. Biomass gasification and syngas fermentation
      • 6.2.6.2. Biomass gasification and syngas thermochemical conversion
    • 6.2.7. CO2 capture and alcohol synthesis
    • 6.2.8. Biomass hydrolysis and fermentation
      • 6.2.8.1. Separate hydrolysis and fermentation
      • 6.2.8.2. Simultaneous saccharification and fermentation (SSF)
      • 6.2.8.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
      • 6.2.8.4. Simultaneous saccharification and co-fermentation (SSCF)
      • 6.2.8.5. Direct conversion (consolidated bioprocessing) (CBP)
    • 6.2.9. Global ethanol consumption
  • 6.3. Biobutanol
    • 6.3.1. Production

7. BIOFUEL FROM PLASTIC WASTE AND USED TIRES

  • 7.1. Plastic pyrolysis
  • 7.2. Used tires pyrolysis
    • 7.2.1. Conversion to biofuel

8. ELECTROFUELS (E-FUELS)

  • 8.1. Introduction
    • 8.1.1. Benefits of e-fuels
  • 8.2. Feedstocks
    • 8.2.1. Hydrogen electrolysis
    • 8.2.2. CO2 capture
  • 8.3. Production
  • 8.4. Electrolysers
    • 8.4.1. Commercial alkaline electrolyser cells (AECs)
    • 8.4.2. PEM electrolysers (PEMEC)
    • 8.4.3. High-temperature solid oxide electrolyser cells (SOECs)
  • 8.5. Direct Air Capture (DAC)
    • 8.5.1. Technologies
    • 8.5.2. Markets for DAC
    • 8.5.3. Costs
    • 8.5.4. Challenges
    • 8.5.5. Companies and production
    • 8.5.6. CO2 capture from point sources
  • 8.6. Costs
  • 8.7. Market challenges
  • 8.8. Companies

9. ALGAE-DERIVED BIOFUELS

  • 9.1. Technology description
  • 9.2. Production

10. GREEN AMMONIA

  • 10.1. Production
    • 10.1.1. Decarbonisation of ammonia production
    • 10.1.2. Green ammonia projects
  • 10.2. Green ammonia synthesis methods
    • 10.2.1. Haber-Bosch process
    • 10.2.2. Biological nitrogen fixation
    • 10.2.3. Electrochemical production
    • 10.2.4. Chemical looping processes
  • 10.3. Blue ammonia
    • 10.3.1. Blue ammonia projects
  • 10.4. Markets and applications
    • 10.4.1. Chemical energy storage
      • 10.4.1.1. Ammonia fuel cells
    • 10.4.2. Marine fuel
  • 10.5. Costs
  • 10.6. Estimated market demand
  • 10.7. Companies and projects

11. COMPANY PROFILES (119 company profiles)

12. REFERENCES

비교리스트
0 건의 상품을 선택 중
상품 비교하기
전체삭제