Global Information
회사소개 | 문의 | 비교리스트

제약용 빅데이터 : 테마별 조사

Big Data in Pharmaceuticals - Thematic Research

리서치사 GlobalData
발행일 2022년 03월 상품코드 1073038
페이지 정보 영문 51 Pages 배송안내
가격
US $ 1,950 ₩ 2,770,000 PDF (Single User License) help
1명만 이용할 수 있는 라이선스입니다. PDF 파일은 Copy & Paste가 가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 2,925 ₩ 4,155,000 PDF (Site License) help
동일 사업장 내 모든 분들이 공유하여 사용할 수 있습니다. 이용 인원수에 제한은 없습니다. PDF 파일은 Copy & Paste가 가능합니다. PDF 내의 컨텐츠 인쇄는 제한이 없으나, 전체보고서에 대한 제본은 원칙적으로 2부까지만 허용되며, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 3,900 ₩ 5,540,000 PDF (Global License) help
동일 기업의 모든 분들이 이용할 수 있는 라이선스입니다. 이용 인원수에 제한은 없으며, 해외 사업장 및 100% 자회사는 동일 기업으로 간주됩니다. PDF 파일은 Copy & Paste가 가능합니다. PDF 내의 컨텐츠 인쇄는 제한이 없으나, 전체보고서에 대한 제본은 원칙적으로 10부까지만 허용되며, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.


제약용 빅데이터 : 테마별 조사 Big Data in Pharmaceuticals - Thematic Research
발행일 : 2022년 03월 페이지 정보 : 영문 51 Pages

본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

세계의 제약용 데이터 및 애널리틱스 시장은 2020년에 14억 달러를 기록하고, 2025년에는 19억 달러로 성장할 것으로 예측됩니다. 의료·제약 업계에서는 의사의 메모, 병리 보고, 전자건강기록(EHR), 환자 등록, 게노믹스, 임상시험, 소셜 미디어, 웨어러블 단말기 등 다수의 소스로부터 데이터가 대량으로 생성되어 규모와 복잡성 모두 거대하고, 기존 데이터 관리 기술로는 처리가 비효율적이 되고 있습니다. 이 문제에 대응하기 위해 대량의 데이터를 보호, 보존, 처리, 분석, 집약, 통합하고, 새로운 인사이트를 창출하기 위한 기술과 툴을 개발하는 산업이 급성장하고 있습니다.

빅데이터 분석과 기타 신기술을 조합하여 제약 밸류체인 전체에서 어떻게 활용할 수 있는가를 평가하고 있습니다. 헬스케어, 테크놀러지, 규제, 거시경제 동향, 주요 기업 등 현재 상황의 개요, 향후 빅데이터 분석의 활용 기회에 대해서도 다루고 있습니다. 또한 업계별 분석 및 다수의 제약 기업에 특화한 사례 연구도 제공합니다. 빅데이터 관련 거래, 구인, 소셜 미디어 활동을 분석하고, 관련되는 경우에는 COVID-19 팬데믹의 영향에도 초점을 맞추고 있습니다.

목차

목차

  • 주요 요약
  • 플레이어
  • 테마별 개요
  • 동향
  • 헬스케어 동향
  • 테크놀러지 동향
  • 규제 동향
  • 거시경제 동향
  • 밸류체인
  • 빅데이터 생성
  • 빅데이터 관리
  • 빅데이터 제품 개발
  • 업계 분석
  • 시장 예측 규모
  • 조사 데이터
  • 헬스케어 업계의 디지털 전환과 신기술 조사(2021년)
  • Smart Pharma Survey(2021년)
  • 시판후 조사에서의 RWE(Real-World Evidence) 사용
  • 제약 기업의 빅데이터 관련 업무 분석
  • 거래 분석
  • 인수합병
  • 전략적 제휴
  • 자금 조달 거래
  • 제약 사례 연구
  • Sumitomo Dainippon Pharma와 Exscientia : Drug Discovery & Development
  • Syapse Learning Health Network와 RWE
  • Unlearn.AI : DiGenesis, Twintelligent RCT, Digital Twins
  • Infor와 Bayer : Infor Enterprise Asset Management와 Digital Twins
  • Evidation and Merck : 알츠하이머병에 초점을 맞춘 디지털 모니터링
  • 소셜 미디어의 인플루언서
  • 기업
  • 주요 빅데이터 벤더
  • 제약 업계의 스페셜리스트 빅데이터 벤더
  • 제약 업계를 견인하는 빅데이터 채용자

부록

  • 약어
  • 추가 자료
  • 관련 보고서
  • 참고문헌
  • 저자 소개
  • 헬스케어 애널리스트
  • 매니징 애널리스트
  • 주제 분석 디렉터
  • 헬스케어 사업 및 전략의 글로벌 헤드 및 EVP
  • 우리의 테마별 조사 방법
  • GlobalData 소개
  • 고객 서비스
KSM 22.05.16

List of Tables

List of Tables

  • Table 1: Healthcare trends in the big data space
  • Table 2: Technology trends in the big data space
  • Table 3: Regulatory trends in the big data space
  • Table 4: Macroeconomic trends in the big data space
  • Table 5: Examples of M&A in the big data and pharma spaces, 2019-2022
  • Table 6: Examples of strategic partnerships in the pharma big data space, 2021
  • Table 7: Examples of large funding deals in the big data space since Q2 2020
  • Table 8: Examples of public big data vendors in pharma
  • Table 9: Examples of private big data vendors in pharma
  • Table 10: Examples of leading big data adopters in pharma

List of Figures

List of Figures

  • Figure 1: Who are the leading players in the big data in the pharma space?
  • Figure 2: Big data value chain in pharma
  • Figure 3: Pharma contributed 1.7% to the total global data and analytics market in 2020
  • Figure 4: Pharma will contribute 1.5% to the total global data and analytics market in 2025
  • Figure 5: The total global data and analytics market for pharma was valued at $1.4B in 2020, led by the US
  • Figure 6: The US will dominant the global data and analytics market in pharma in 2025
  • Figure 7: Technologies that pharma is prioritizing for current investments
  • Figure 8: The most disruptive technologies in the upcoming two years
  • Figure 9: The benefits of integrating smart technologies into the pharmaceutical industry by company size
  • Figure 10: Big data is important and could optimize many processes in the pharmaceutical industry
  • Figure 11: Future usage of big data analytics for drug discovery and development will remain the same
  • Figure 12: Pharma will use both in-house capabilities and vendors for big data analytics
  • Figure 13: Impact of the COVID-19 pandemic on investment in big data
  • Figure 14: Top pharma sponsors of clinical trials with an RWE element
  • Figure 15: Oncology is the leading therapy area for clinical trials related to RWE
  • Figure 16: Examples of pharma companies posting jobs related to big data
  • Figure 17: Trends in big data-related job posting by pharma, 2019-2022
  • Figure 18: Big data trends in GlobalData's social media analytics database, March 2021-March 2022
  • Figure 19: Examples of Top Posts Related to Big Data, 2021-2022

This report provides an overview of the big data analytics in the pharma industry.

Big data is generated in vast quantities across healthcare

The healthcare and pharmaceutical industries generate data in abundance from a multitude of sources including physician notes, pathology reports, electronic health records (EHR), patient registries, genomics, clinical trials, social media, wearable devices, and many more. The dataset in question is huge in both size and complexity, rendering traditional data management techniques inefficient for processing.

In response to this problem, a burgeoning industry has become established around the development of technologies and tools that secure, store, process, analyze, aggregate, and integrate large quantities of data such that they can be used to generate new insights. Big data analytics serve as the engine for other emerging technologies such as artificial intelligence (AI), Internet of Things (IoT), 5G, and cloud.

Pharma can utilize big data across its value chain

The identification of patterns, trends, and associations within these datasets are expected to revolutionize the pharma industry. There are numerous use cases for big data analytics in this sector, including the acceleration of drug discovery and development, optimization of manufacturing processes, supply chain management, and the creation of innovative sales and marketing strategies.

This report assesses how big data analytics, combined with other emerging technologies, can be used across the pharma value chain. It provides an overview of the current landscape, including healthcare, technology, regulatory, and macroeconomic trends, as well as key players, while also highlighting opportunities for the use of big data analytics in the future. The report provides an industry-specific analysis based on GlobalData databases and surveys, as well as several pharma-specific case studies. Finally, the report provides an analysis of big data-related deals, jobs, and social media activity, highlighting the impact of the COVID-19 pandemic, where relevant.

Key Highlights

  • The global data and analytics market in the pharmaceutical sector was valued at $1.4 billion in 2020 and is forecast to grow to $1.9 billion by 2025.
  • Surveyed pharma industry professionals believed that big data analytics has a role throughout the pharma process, including manufacturing, supply chain, drug discovery and development, and sales and marketing.
  • Cloud and big data were found to be the leading two technology investment priorities for pharma in 2021, with 47% and 45% of respondents indicating that their organizations had investment in these leading technologies, respectively.
  • While the start of the COVID-19 pandemic saw a slight decline in the number of active job postings related to big data analytics, they rose again in Q4 2020 and have continued an upward trajectory.
  • Real-world evidence is an important source of big data in the pharma industry. Between 2011 and 2022, 187 clinical trials related to RWE collection were identified using GlobalData's Clinical Trials Database.

Scope

  • Overview of the current and future use cases of big data analytics in the pharma industry, across the value chain.
  • Insightful review of the healthcare, technology, regulatory, and macroeconomic trends. Each trend is independently researched to provide qualitative analysis of its implications on the big data space.
  • Reports of the revenue opportunity forecast in the data and analytical markets in the pharma industry from 2020 to 2025, spanning three technology segments and 49 geographical markets.
  • Key players in the big data space, with a focus on technology providers and pharma adopters.
  • Industry analysis of big data in the context of jobs in the pharma industry, use of real-world evidence in post-marketing studies, social media, and several pharma-specific case studies.
  • Deals analysis: outline of key deals within the big data space over the past three years, including mergers and acquisitions, strategic partnership, and funding.

Reasons to Buy

  • Assess who the leading technology players are in the big data space, as well as leading pharma adopters.
  • See examples of how pharma companies are integrating big data analytics into their value chains.
  • Understand what trends are driving the big data space and challenges exist for pharma in the space.
  • See how the big data landscape is evolving, with a review of company activity including mergers and acquisitions (M&A), strategic partnerships and funding deals, as well as a job analysis.
  • Assess the impact of COVID-19 on big data analytics.

Table of Contents

Table of Contents

  • Executive Summary
  • Players
  • Thematic Briefing
  • Trends
  • Healthcare Trends
  • Technology Trends
  • Regulatory Trends
  • Macroeconomic Trends
  • Value Chain
  • Big Data Generation
  • Big Data Management
  • Big Data Product Development
  • Industry Analysis
  • Market Forecast Size
  • Survey Data
  • GlobalData's Digital Transformation and Emerging Technology in the Healthcare Industry Survey, 2021
  • GlobalData's Smart Pharma Survey 2021
  • Use of Real-World Evidence in Post-Marketing Studies
  • Analysis of Big Data-Related Jobs in Pharma
  • Deals Analysis
  • Mergers and Acquisitions
  • Strategic Partnerships
  • Funding Deals
  • Pharma Case Studies
  • Sumitomo Dainippon Pharma and Exscientia: Drug Discovery and Development
  • Syapse's Learning Health Network and RWE
  • Unlearn.AI: DiGenesis, Twintelligent RCTs, and Digital Twins
  • Infor and Bayer: Infor Enterprise Asset Management and Digital Twins
  • Evidation and Merck: Digital Monitoring with Focus on Alzheimer's Disease
  • Social Media Influencers
  • Companies
  • Leading Big Data Vendors
  • Specialist Big Data Vendors in Pharma
  • Leading Big Data Adopters In Pharma

Appendix

  • Abbreviations
  • Further Reading
  • Related Reports
  • Bibliography
  • About the Authors
  • Healthcare Analyst
  • Managing Analyst
  • Director of Thematic Analysis
  • Global Head and EVP of Healthcare Operations and Strategy
  • Our Thematic Research Methodology
  • About GlobalData
  • Contact Us
Back to Top
전화 문의
F A Q