Global Information
회사소개 | 문의

소매금융용 인공지능(AI) : 테마별 조사

Artificial Intelligence (AI) in Retail Banking - Thematic Research

리서치사 GlobalData
발행일 2018년 06월 상품 코드 657608
페이지 정보 영문 41 Pages
US $ 1,950 ₩ 2,215,000 PDF by E-mail (Single User License) help
1명만 이용할 수 있는 라이선스입니다. PDF 파일은 Copy & Paste가 가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 3,900 ₩ 4,430,000 PDF by E-mail (Site License) help
동일 사업장 내 모든 분들이 공유하여 사용할 수 있습니다. 이용 인원수에 제한은 없습니다. PDF 파일은 Copy & Paste가 가능합니다. PDF 내의 컨텐츠 인쇄는 제한이 없으나, 전체보고서에 대한 제본은 원칙적으로 2부까지만 허용되며, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,850 ₩ 6,645,000 PDF by E-mail (Global License) help
동일 기업의 모든 분들이 이용할 수 있는 라이선스입니다. 이용 인원수에 제한은 없으며, 해외 사업장 및 100% 자회사는 동일 기업으로 간주됩니다. PDF 파일은 Copy & Paste가 가능합니다. PDF 내의 컨텐츠 인쇄는 제한이 없으나, 전체보고서에 대한 제본은 원칙적으로 10부까지만 허용되며, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.

소매금융용 인공지능(AI) : 테마별 조사 Artificial Intelligence (AI) in Retail Banking - Thematic Research
발행일 : 2018년 06월 페이지 정보 : 영문 41 Pages

세계의 소매금융용 인공지능(AI) 시장을 분석했으며, 현시점의 AI 보급 상황 및 활용 방법, 향후 AI의 보급·진보 전망, 이에 따른 소매금융 업계의 변화 방향성, 관련 기업의 스코어카드(실적·주도권 등의 평가) 등의 정보를 정리하여 전해드립니다.

시장 진출 기업

기술 개요

  • 정의
  • 기계학습(ML)의 역사
  • 심층학습(DL)은 어떻게 기능하는가?

시장 동향

  • 기술 동향
  • 거시경제 동향
  • 소매금융에서 AI의 활용 상황


  • AI 소프트웨어의 10 카테고리

산업 분석

  • 기술 기업의 관점
  • 웹스케일 기업
  • 법인용 소프트웨어 기업
  • 전용 데이터 세트도 중요
  • AI와 ML에 의한 칩셋 시장의 변혁
  • 모든 AI 엔진의 성공에 필수적인 2 종류의 중요 컴포넌트

소매금융 업계에서 AI의 의의

  • 리테일 뱅크 대상 제안
  • AI 벤더가 소매금융 업계에 판매하기 위한 방법
  • IT 벤더 대상 제안
  • 타임라인
  • 시장 규모·성장률 예측

기업 분석

  • 상장 기술 기업
  • 미상장 기술 기업
  • 소매금융 기업

부록 : 분석 방법

KSA 18.07.09

For six decades machine learning (ML) was poised to take off because members of the 'artificial intelligentsia' had already come up with the theoretical models that could make it work. The problem was that they were waiting for rich data sets and affordable 'accelerated computing' technology to ignite it.

These are now becoming more available, and amid a swirl of hype, ML - i.e., software that becomes smarter as it trains itself on large amounts of data - has gone mainstream, and within five years its deployment will be essential to the survival of companies of all shapes and sizes across all sectors.

For many investors, ML=AI; ML is an AI technology that allows machines to learn by using algorithms to interpret data from connected 'things' to predict outcomes and learn from successes and failures.

There are many other AI technologies - from image recognition to natural language processing (NLP), gesture control, context awareness, and predictive APIs - but ML is where most of the investment community's funding has flowed in recent years. It is also the technology most likely to allow machines to ultimately surpass the intelligence levels of humans.

Many companies, like Alphabet, have already become 'AI-first' companies, with machine learning at their core. At the same time, many ML techniques are getting commoditized by being open sourced and pre-packaged into developer toolkits that anyone can use.


This report is part of our ecosystem of thematic investment research reports, supported by our "thematic engine". About our Thematic Research Ecosystem -

  • GlobalData has developed a unique thematic methodology for valuing technology, media and telecom companies based on their relative strength in the big investment themes that are impacting their industry. Whilst most investment research is underpinned by backwards looking company valuation models, GlobalData's thematic methodology identifies which companies are best placed to succeed in a future filled with multiple disruptive threats. To do this, GlobalData tracks the performance of the top 600 technology, media and telecom stocks against the 50 most important themes driving their earnings, generating 30,000 thematic scores. The algorithms in GlobalData's "thematic engine" help to clearly identify the winners and losers within the TMT sector. Our 600 TMT stocks are categorised into 18 sectors. Each sector scorecard has a thematic screen, a risk screen and a valuation screen. Our thematic research ecosystem has a three-tiered reporting structure: single theme, multi-theme and sector scorecard. This report is a Multi-Theme report, covering all stocks, all sectors and all themes, giving readers a strong sense of how everything fits together and how conflicting themes might interact with one another.

Reasons to buy

  • Our thematic investment research product, supported by our thematic engine, is aimed at senior (C-Suite) executives in the corporate world as well as institutional investors.
  • Corporations: Helps CEOs in all industries understand the disruptive threats to their competitive landscape
  • Investors: Helps fund managers focus their time on the most interesting investment opportunities in global TMT.
  • Our unique differentiator, compared to all our rival thematic research houses, is that our thematic engine has a proven track record of predicting winners and losers.

Table of Contents



  • Definitions 4
  • History of machine learning 4
  • How does deep learning work? 4


  • Technology trends 7
  • Macro-economic trends 9
  • Applications of AI in Retail Banking 10


  • Ten categories of AI software 13


  • The tech sector's angle 20
  • The Webscale companies 20
  • Enterprise software players 21
  • Proprietary datasets are also important 21
  • AI and ML are transforming the chipset market 21
  • The two critical components of any successful AI engine 22


  • Recommendations for retail banks 24
  • How AI vendors can sell into the retail banking sector 26
  • Recommendations for IT vendors 26
  • Timeline 28
  • Market size and growth forecasts 30


  • Listed tech companies 31
  • Privately held tech companies 34
  • Retail banking companies 37


Back to Top
전화 문의