Global Information
회사소개 | 문의 | 비교리스트

AIoT 칩 개발과 주요 기업

Development of AIoT Chips and Leading Companies

리서치사 MIC - Market Intelligence & Consulting Institute
발행일 2020년 06월 상품 코드 943435
페이지 정보 영문 22 Pages
US $ 1,400 ₩ 1,654,000 PDF by E-mail (Single user license)

AIoT 칩 개발과 주요 기업 Development of AIoT Chips and Leading Companies
발행일 : 2020년 06월 페이지 정보 : 영문 22 Pages

PC 테크놀러지의 인기와 성숙도가 높아짐에 따라 AI(인공지능)와 IoT(사물인터넷)의 총칭인 AIoT(Artificial Intelligence of Things)가 다음 초점이 되고 있습니다. 사람들의 일상생활에 채용되는 IoT 애플리케이션 수가 증가함에 따라 각 업계는 센서를 사용해 데이터를 취득하면서 IoT 테크놀러지를 사용해 물리 공간과 가상 공간을 접속하고 있습니다. 취득한 데이터는 AI 칩을 사용해 계산 및 처리되고 보다 우수한 고속의 조작이 보증됩니다.

IoT를 지원하는 AI 칩 개요에 대해 다루었으며, Intel, NVidia, MediaTek, Qualcomm 등 주요 기업의 전개 전략과 그 솔루션, AIoT에서 대만 반도체 업계의 주요 기업, AIoT 칩의 향후 동향에 대한 체계적인 정보를 제공합니다.


제1장 AIoT 개발

  • UX를 개선하기 위한 시나리오 분석
  • AIoT가 에징 컴퓨터 수요를 증대

제2장 주요 AIoT 칩 제조업체의 전개 전략

  • Intel
  • NVidia
  • MediaTek
  • Qualcomm

제3장 AIoT에서 대만 반도체 업계의 전개 전략

  • AIoT 동향에 대응해 AITA(AI on Chip Taiwan Alliance)가 설립

제4장 MIC의 견해


  • 기업 리스트
KSM 20.07.06

List of Topics

  • Development of AI and IoT and includes global IoT connected device forecastfor the period 2020-2023 with market volume breakdown by product category: PCs, TV, smartphones, M2M, tablet, etc
  • Development of major AIoT chipmakers, including Intel, NVidia, MediaTek, and Qualcomm
  • Development strategies of Taiwan's semiconductor industry in AIoT and includes the ecosystem built around AIoT

Companies covered

  • Aaeon Technology
  • AIMobile
  • Altera
  • Amazon
  • Andes Technology
  • ASE
  • ASUS
  • Bridgestone
  • Cadence
  • Chicony Electronics
  • Chipbond
  • Delta
  • Egis Technology
  • eMemory Technology
  • ESMT
  • Etron
  • FocalTech
  • Google
  • GUC
  • Himax Technologies
  • Holtek
  • Intel
  • Intelligent Factory
  • Macronix
  • MediaTek
  • Mellanox
  • Microsoft
  • Movidius
  • Nanya
  • Nervana Systems
  • Novatek
  • Nvidia
  • Peakhills Group
  • Phison
  • Powerchip
  • Qualcomm
  • Quanta
  • Ralytek
  • Realtek
  • Silicon Motion
  • Sitronix
  • Skymizer
  • Sonix Technology
  • SPIL
  • Sunplus
  • Synopsys
  • TongHsing Electronics
  • UMC
  • VIA Technologies
  • Wave Computing
  • Windbond

Over the years, with the PC technology growing into popularity and maturity, the convergence of AI (Artificial Intelligence) and IoT (Internet of Things), collectively called AIoT (Artificial Intelligence of Things), has become the next area of focus. With an increasing number of IoT applications adopted in people’s everyday lives, individual industries have been connecting physical and virtual space using IoT technology while using sensors to acquire data. The acquired data is then computed and processed further using AI chips to ensure better and faster operations. This report provides an overview of AI chips in support of IoT, looks into deployment strategies of leading companies such as Intel, NVidia, MediaTek, and Qualcomm, and their solutions, as well as major players of Taiwan’s semiconductor industry in AIoT; examines future trends of AIoT chips.

Table of Contents

1.Development of AIoT

  • 1.1 Scenario Analysis Strengthened to Improve UX
  • 1.2 AIoT Increases the Demand for Edging Computer

2. Deployment Strategies of Major AIoT Chipmakers

  • 2.1 Intel
    • 2.1.1 Hybrid Processor Architecture to Compensate the Disadvantage of CPU Parallel Computing
  • 2.2 NVidia
  • 2.3 MediaTek
  • 2.4 Qualcomm

3.Deployment Strategies of Taiwan’s Semicondcutor Industry in AIoT

  • 3.1 AI on Chip Taiwan Alliance Established in Response to AIoT Trends

4. MIC Perspective


  • List of Companies

List of Tables

  • Table 1 Taiwanese IC Design Companies with AI Investments
  • Table 2 AITA (AI on Chip Taiwan Alliance) and its Members

List of Figures

  • Figure 1 Global IoT Connected Devices, 2018-2023
  • Figure 2 AIOT Features of Amazon Alexa
  • Figure 3 Computing Architecture of Amazon Alexa
  • Figure 4 Illustration of an Embedded IoT Device with Intel Movidius
  • Figure 5 Server Platform of Nvidia HGX-2
  • Figure 6 Qualcomm Cloud AI 100 Designed for Processing High Efficient Inference Workloads
Back to Top
전화 문의