½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1466001

¼¼°èÀÇ ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå : À¯Çüº°, ¿ÜÇÇ À¯Çüº°, ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° - ¿¹Ãø(2024-2030³â)

Structural Core Materials Market by Type, Outer Skin Type, End-use Industry - Global Forecast 2024-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: 360iResearch | ÆäÀÌÁö Á¤º¸: ¿µ¹® 196 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå ±Ô¸ð´Â 2023³â¿¡ 55¾ï 1,000¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, 2024³â¿¡´Â 60¾ï 1,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, CAGR 9.14%¸¦ ³ªÅ¸³¾ Àü¸ÁÀÌ°í, 2030³â¿¡´Â 101¾ï 7,000¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ¿¹ÃøµÇ°í ÀÖ½À´Ï´Ù.

±¸Á¶¿ë ÄÚ¾îÀç´Â ¹«°Ô¸¦ ´Ã¸®Áö ¾Ê°í °­µµ¿Í °­¼ºÀ» °­È­ÇÏ´Â µ¥ »ç¿ëµÇ´Â º¹ÇÕ ÀûÃþÆÇÀ» ±¸¼ºÇÏ´Â Áß¿äÇÑ ±¸¼º ¿ä¼ÒÀÔ´Ï´Ù. ÀÌ·¯ÇÑ Àç·á´Â °­È­ ½ºÅ²ÀÇ ¿©·¯ ½ÃÆ® »çÀÌ¿¡ ÀûÃþµÇ¾î °­È­µÈ ±â°èÀû Ư¼ºÀ» °¡Áø »÷µåÀ§Ä¡ ±¸Á¶¸¦ Çü¼ºÇÕ´Ï´Ù. ÀϹÝÀûÀ¸·Î °í°­µµ ´ë Áß·®ºñ, °­¼º Çâ»ó, ¿ì¼öÇÑ ´Ü¿­¼º, ÀúÈí¼ö¼º, ³»½Ä¼º µîÀÇ Æ¯Â¡ÀÌ ÀÖ½À´Ï´Ù. Ç×°ø¿ìÁÖ, ÀÚµ¿Â÷, ¿î¼Û ºÐ¾ß¿¡¼­ °æ·® Àç·á¿¡ ´ëÇÑ ¿ä±¸ Áõ°¡¿Í ¼¼°èÀÇ ¿¡³ÊÁö Àý¾à Á߽à Áõ°¡°¡ °áÇÕµÇ¾î ±¸Á¶¿ë ÄÚ¾îÀçÀÇ Ã¤¿ëÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ±×·¯³ª ¿øÀç·áÀÇ »ó½ÂÀº ±¸Á¶¿ë ÄÚ¾îÀçÀÇ °³¹ß ºñ¿ë Àüü¿¡ Á÷Á¢ ¿µÇâÀ» ¹ÌĨ´Ï´Ù. ±×·³¿¡µµ ºÒ±¸ÇÏ°í ¿øÀç·á ºñ¿ëÀ» ´Ù·ç´Â ºñ¿ë È¿À²ÀûÀÎ »ý»ê ¹× ÀçÈ°¿ë ±â¼ú °³¹ß°ú ´õ °ß°íÇÏ°í ³»±¸¼ºÀÌ ³ôÀº ÄÚ¾î ¼ÒÀçÀÇ ¿¬±¸ °³¹ßÀº ½ÃÀå ¼ºÀåÀÇ »õ·Î¿î ±âȸ¸¦ °¡Á®¿Ã ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
±âÁسâ(2023³â) 55¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â(2024³â) 60¾ï 1,000¸¸ ´Þ·¯
¿¹Ãø³â(2030³â) 101¾ï 7,000¸¸ ´Þ·¯
CAGR(%) 9.14%

À¯Çüº° : ³ôÀº ´Ü¿­¼º¿¡ ÀÇÇØ ¹ßÆ÷ º£À̽ºÀÇ ±¸Á¶¿ë ÄÚ¾îÀç ÀÌ¿ë ±ÞÁõ

¹ß»ç´Â °æ·®À̸鼭 ³»±¸¼ºÀÌ ¿ì¼öÇÏ°í °­µµ ´ë Áß·®ºñ°¡ ¿ì¼öÇϱ⠶§¹®¿¡ °í¼º´ÉÀ» ¿ä±¸ÇÏ´Â ºÐ¾ß¿¡ ¼±È£µÇ´Â ¼ÒÀçÀÔ´Ï´Ù. ºñ¿ë È¿À²ÀûÀÌ°í ¿Âµµ¿Í ½À±â¿¡ ´ëÇÑ ¶Ù¾î³­ ³»¼ºÀÌ Àֱ⠶§¹®¿¡ Ç×°ø¿ìÁÖ, Çرº, dz·Â¿¡³ÊÁö »ê¾÷¿¡ ÀÌ»óÀûÀÎ ¼ÒÀçÀÔ´Ï´Ù. Æú¸®¿°È­ºñ´Ò(PVC), Æú¸®¿¡Æ¿·»Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET), ½ºÆ¼·»¾ÆÅ©¸±·Î´ÏÆ®¸±(SAN) µîÀÇ ¹ßÆ÷ü ±â¹Ý ±¸Á¶¿ë ÄÚ¾îÀç´Â ¶Ù¾î³­ ´Ü¿­ Ư¼º, Ä¡¼ö ¾ÈÁ¤¼º, ¹ü¿ë¼ºÀ¸·Î ´Ù¾çÇÑ ¿ëµµ¿¡ ´ëÀÀÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷, °Ç¼³ »ê¾÷, ÇØ¾ç »ê¾÷¿¡¼­´Â ƯÈ÷ ¿ì¼öÇÑ ¹æÀ½ Ư¼ºÀ» °¡Áø ¹ßÆ÷ü ±â¹Ý ±¸Á¶¿ë ÄÚ¾îÀç°¡ ¼±È£µË´Ï´Ù. ¹úÁý ±â¹Ý ÄÚ¾î´Â °­µµ°¡ ³ô±â ¶§¹®¿¡ Ç×°ø¿ìÁÖ »ê¾÷°ú ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ¼±È£µË´Ï´Ù. °¡º±°í ¶Ù¾î³­ ¾ÐÃà °­µµ, Àü´Ü °­µµ, ³»½Ä¼ºÀ» ³ªÅ¸³»¸ç ¾Ë·ç¹Ì´½°ú ƼŸ´½°ú °°Àº °í±Þ °æ·® ±Ý¼Ó°ú °áÇÕÇÏ¸é ±× Æ¯¼ºÀÌ ´õ¿í µÎµå·¯Áý´Ï´Ù. ¾Æ¶ó¹Ìµå ¹úÁý ÄÚ¾î´Â ¾Æ¶ó¹Ìµå ¹× ÄÉºí·¯ ¼¶À¯ Á¾ÀÌ·Î ¼³°èµÈ °æ·®, °í°­µµ, ºñ±Ý¼Ó Á¦Ç°ÀÌ¸ç ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå¿¡¼­ ³Î¸® »ç¿ëµË´Ï´Ù. Çã´ÏÄÄ ±¸Á¶·Î °æ·®À̸鼭 °­¼ºÀÌ ¶Ù¾î³ª ´Ù¾çÇÑ ºÐ¾ßÀÇ Æø³ÐÀº ¿ëµµ¿¡ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù.

¿ÜÇÇ À¯Çüº° : õ¿¬¼¶À¯ °­È­ Æú¸®¸Ó(NFRP)´Â ȯ°æ ģȭÀûÀÌ°í Àú·ÅÇÑ ºñ¿ëÀ¸·Î »ç¿ë·®ÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù.

ź¼Ò¼¶À¯ °­È­ Çöó½ºÆ½(CFRP)Àº ±× °æ·®¼º°ú ¿ì¼öÇÑ °­µµ ¹× °­¼º Ư¼ºÀ¸·ÎºÎÅÍ ÁÖ·Î ¼±È£µÇ°í ÀÖ½À´Ï´Ù. ÀÌ Àç·á´Â °æ·®È­°¡ Áß¿ä½ÃµÇ´Â ÀÚµ¿Â÷ »ê¾÷ ¹× Ç×°ø¿ìÁÖ »ê¾÷¿¡¼­ ÀϹÝÀûÀ¸·Î »ç¿ëµË´Ï´Ù. À¯¸® ¼¶À¯ °­È­ Æú¸®¸Ó(GFRP)´Â °í°­µµ, °æ·®, ³»½Ä¼ºÀÇ µ¶Æ¯ÇÑ ºí·»µå¸¦ Á¦°øÇϸç Çؾç, °Ç¼³ ¹× Àü·Â »ê¾÷¿¡¼­ ¼±È£µÇ´Â Àç·áÀÔ´Ï´Ù. õ¿¬¼¶À¯ °­È­ Æú¸®¸Ó(NFRP)¿¡ ´ëÇÑ ¿ä±¸´Â õ¿¬ À¯·¡, Àúºñ¿ë, ÇÕ¼º º¹ÇÕÀç·á¿¡ ºñÇØ È¯°æ ģȭÀûÀ̶ó´Â Á¡¿¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÀ¯·Î Æ÷Àå, °Ç¼³ ¹× ÀÚµ¿Â÷ »ê¾÷¿¡¼­ ¿ì¼±ÀûÀ¸·Î »ç¿ëµË´Ï´Ù.

ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° : °Ç¼³ ¹× dz·Â¿¡³ÊÁö »ê¾÷¿¡¼­ ±¸Á¶¿ë ÄÚ¾îÀçÀÇ ¿ëµµ ÁøÈ­

Ç×°ø¿ìÁÖ »ê¾÷Àº Ç×°ø±â »ý»ê¿¡¼­ ÃÖ°í ¼öÁØÀÇ ¼º´ÉÀ» º¸ÀåÇϱâ À§ÇØ °¡º±°í °í°­µµ Àç·á¿¡ Å©°Ô ÀÇÁ¸ÇÕ´Ï´Ù. °Ç¼³ »ê¾÷Àº Ç×°ø¿ìÁÖ »ê¾÷°ú´Â ´Þ¸® ÇÕ¸®ÀûÀÎ °¡°ÝÀ¸·Î °ß°íÇÏ°í ³»±¸¼ºÀÖ´Â Àç·á¸¦ Áß½ÃÇÕ´Ï´Ù. ÇØ¾ç ¿ëµµ¿¡¼­´Â °­µµ¿Í ³»¼ö¼ºÀ» °âºñÇÑ Àç·á°¡ ¿ä±¸µË´Ï´Ù. ¿î¼Û ºÐ¾ß¿¡¼­´Â ¹Ýº¹µÇ´Â ÀÀ·Â°ú ¸¶¸ð¸¦ °ßµð¸ç °æ·®¼º°ú ³»±¸¼ºÀÇ ±ÕÇüÀ» ¸ÂÃá Àç·á°¡ ¿ä±¸µË´Ï´Ù. dz·Â¿¡³ÊÁö ºÐ¾ß¿¡¼­´Â dz·Â ÅͺóÀÇ ¼º´ÉÀ» ÃÖÀûÈ­Çϱâ À§ÇØ ³ôÀº °­µµ ´ë Áß·®ºñ¸¦ °¡Áø Àç·á°¡ ÇÊ¿äÇÕ´Ï´Ù. ÀÚµ¿Â÷ »ê¾÷¿¡¼­´Â °æ·®ÀÌ°í Àú¿¬ºñÀÇ ÀÚµ¿Â÷¸¦ ¿ä±¸ÇÏ´Â µ¿ÇâÀÌ °è¼ÓµÇ°í Àֱ⠶§¹®¿¡ ÀÌ·¯ÇÑ Àç·áÀÇ ¿ëµµ°¡ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ ±¸Á¶¿ë ÄÚ¾îÀç´Â ÀÚµ¿Â÷ »ê¾÷¿¡¼­ »ç¿ëµÇ´Â Â÷ü ºÎÇ°°ú ³»ºÎ ±¸Á¶ÀÇ ¼º´É Çâ»ó, °æ·®È­, ¿¬ºñ °³¼±À» ½ÇÇöÇÕ´Ï´Ù.

Áö¿ªº° ÀλçÀÌÆ®

¾Æ¸Þ¸®Ä« Áö¿ªÀº ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå¿¡¼­ »ê¾÷¿ë ¹× ÀÚµ¿Â÷¿ë ¿ëµµÀÇ ±â¼ú Áøº¸¿¡ Å©°Ô ÁÖ¸ñÇÏ°í ÀÖ½À´Ï´Ù. ¹Ì±¹, ij³ª´Ù, ºê¶óÁú µî ÁÖ¿ä ±¹°¡¿¡¼­´Â °¡º±°í °ß°íÇÑ ¼ÒÀ縦 ¿ä±¸ÇÏ´Â ¼ÒºñÀÚÀÇ °æÇâÀÌ °­ÇÏ¿© ±¸Á¶¿ë ÄÚ¾îÀçÀÇ »ç¿ëÀ» ÃËÁøÇÏ°í ÀÖ½À´Ï´Ù. À¯·´ ¿¬ÇÕ(EU)¿¡¼­´Â ±¸Á¶¿ë ÄÚ¾îÀç ¼ö¿ä°¡ ƯÈ÷ ½ÅÀç»ý ¿¡³ÊÁö¿Í °Ç¼³ ºÐ¾ß¿¡¼­ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. µ¶ÀÏ ¹× ÇÁ¶û½º¿Í °°Àº EMEA ±¹°¡µéÀº ±¸Á¶¿ë ÄÚ¾îÀç Á¦Á¶¿¡ ¾ö°ÝÇÑ ±ÔÁ¦¸¦ ¸¶·ÃÇÏ°í Áö¼Ó°¡´É¼º¿¡ ´ëÇÑ ³ë·Â¿¡ ÈûÀ» ½ñ°í ÀÖ½À´Ï´Ù. Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«(EMEA) Áö¿ªÀº ÃÖ±Ù Çؾç, ½ºÆ÷Ã÷ ¿ëÇ° ¹× Ç×°ø¿ìÁÖ ¿ëµµ¿¡ ´ëÇÑ °ü½É Áõ°¡¸¦ ¹Ý¿µÇÕ´Ï´Ù. Áß±¹, ÀϺ», Àεµ´Â APAC Áö¿ªÀÇ ÁÖ¿ä ±¹°¡·Î °Ç¼³, Ç×°ø¿ìÁÖ, ¿¡³ÊÁö µî ºÐ¾ß¿¡¼­ ÀÎÇÁ¶ó °­È­¿¡ ÁßÁ¡À» µÐ ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, °í°­µµ, °æ·® ±¸Á¶¿ë ÄÚ¾îÀç ¼ö¿ä Áõ°¡¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. APAC Áö¿ªÀÇ ±â¾÷Àº ´Ù¾çÇÑ »ê¾÷¿¡¼­ Áõ°¡ÇÏ´Â ¼ÒºñÀÚ ¼ö¿ä¿¡ ´ëÀÀÇϱ⠶§¹®¿¡ ºñ¿ë È¿À²ÀûÀÌ°í ÀçÈ°¿ë °¡´ÉÇÑ Á¦Ç° °³¹ß¿¡ ÁÖ·ÂÇÏ°í ÀÖ½À´Ï´Ù.

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º

FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º´Â ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå Æò°¡¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ºñÁî´Ï½º Àü·« ¹× Á¦Ç° ¸¸Á·µµ¿Í °ü·ÃµÈ ÁÖ¿ä ÁöÇ¥¸¦ Á¶»çÇÏ°í °ø±Þ¾÷üÀÇ Á¾ÇÕÀûÀÎ Æò°¡¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ ¸é¹ÐÇÑ ºÐ¼®À» ÅëÇØ »ç¿ëÀÚ´Â ÀÚ½ÅÀÇ ¿ä±¸ »çÇ׿¡ ¸Â´Â ÃæºÐÇÑ Á¤º¸¸¦ ±â¹ÝÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. Æò°¡¿¡ µû¶ó °ø±Þ¾÷ü´Â ¼º°øÀÇ Á¤µµ°¡ ´Ù¸¥ 4°³ÀÇ »çºÐ¸éÀ¸·Î ºÐ·ùµË´Ï´Ù : Àü¸é(F), Æнº ÆÄÀδõ(P), Æ´»õ(N), »ý¸í(V).

½ÃÀå Á¡À¯À² ºÐ¼®

½ÃÀå Á¡À¯À² ºÐ¼®Àº ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå¿¡¼­ °ø±Þ¾÷üÀÇ ÇöȲ¿¡ ´ëÇÑ ÀλçÀÌÆ®°¡ ÀÖ´Â »ó¼¼ÇÑ Á¶»ç¸¦ Á¦°øÇÏ´Â Á¾ÇÕÀûÀÎ µµ±¸ÀÔ´Ï´Ù. Àü¹ÝÀûÀÎ ¼öÀÍ, °í°´ ±â¹Ý ¹× ±âŸ ÁÖ¿ä ÁöÇ¥¿¡ ´ëÇÑ °ø±Þ¾÷üÀÇ ±â¿©µµ¸¦ ¸é¹ÐÈ÷ ºñ±³ ¹× ºÐ¼®ÇÔÀ¸·Î½á ±â¾÷ÀÇ ¼º°ú¿Í ½ÃÀå Á¡À¯À² °æÀï¿¡ Á÷¸éÇÏ´Â °úÁ¦¿¡ ´ëÇÑ ÀÌÇظ¦ ±í°Ô ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÀÌ ºÐ¼®Àº Á¶»ç ´ë»ó ±âÁس⿡ °üÂûµÈ ´©Àû, ´ÜÆíÈ­ÀÇ ¿ìÀ§, ÇÕº´ÀÇ Æ¯Â¡ µîÀÇ ¿äÀÎÀ» Æ÷ÇÔÇÑ ÀÌ ºÐ¾ßÀÇ °æÀï Ư¼º¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¼ºÎ ¼öÁØÀÇ È®ÀåÀ¸·Î °ø±Þ¾÷ü´Â ´õ ¸¹Àº Á¤º¸¸¦ ¹ÙÅÁÀ¸·Î ÀÇ»ç °áÁ¤À» ³»¸®°í ½ÃÀå¿¡¼­ °æÀï ¿ìÀ§¸¦ Â÷ÁöÇÏ´Â È¿°úÀûÀÎ Àü·«À» °í¾ÈÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ´ÙÀ½ Ãø¸é¿¡ ´ëÇÑ ±ÍÁßÇÑ ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

1. ½ÃÀå ħÅõ : ÁÖ¿ä ±â¾÷ÀÌ Á¦°øÇÏ´Â ½ÃÀå¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ Á¤º¸¸¦ Á¦½ÃÇÕ´Ï´Ù.

2. ½ÃÀå °³Ã´ : À¯¸®ÇÑ ½ÅÈï ½ÃÀåÀ» ±íÀÌ ÆÄ°íµé°í ¼º¼÷ÇÑ ½ÃÀå ºÎ¹®ÀÇ Ä§Åõµµ¸¦ ºÐ¼®ÇÕ´Ï´Ù.

3. ½ÃÀå ´Ù¾çÈ­ : ½ÅÁ¦Ç° Ãâ½Ã, ¹Ì°³Ã´ Áö¿ª, ÃÖ±Ù °³¹ß, ÅõÀÚ¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

4. °æÀï Æò°¡ ¹× Á¤º¸ : ½ÃÀå Á¡À¯À², Àü·«, Á¦Ç°, ÀÎÁõ, ±ÔÁ¦ »óȲ, ƯÇã »óȲ, ÁÖ¿ä ±â¾÷ÀÇ Á¦Á¶ ´É·Â¿¡ ´ëÇÑ Ã¶ÀúÇÑ Æò°¡¸¦ ½Ç½ÃÇÕ´Ï´Ù.

5. Á¦Ç° °³¹ß ¹× Çõ½Å : ¹Ì·¡ ±â¼ú, ¿¬±¸°³¹ß È°µ¿, ȹ±âÀûÀÎ Á¦Ç° °³¹ß¿¡ ´ëÇÑ ÁöÀû ÀλçÀÌÆ®¸¦ Á¦°øÇÕ´Ï´Ù.

ÀÌ º¸°í¼­´Â ´ÙÀ½°ú °°Àº ÁÖ¿ä Áú¹®¿¡ ÇØ´çÇÕ´Ï´Ù.

1. ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå ±Ô¸ð ¹× ¿¹ÃøÀº?

2. ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå ¿¹Ãø ±â°£ µ¿¾È ÅõÀÚ¸¦ °ËÅäÇØ¾ß ÇÒ Á¦Ç°, ºÎ¹®, ¿ëµµ, ºÐ¾ß´Â ¹«¾ùÀΰ¡?

3. ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀåÀÇ ±â¼ú µ¿Çâ ¹× ±ÔÁ¦ ƲÀº?

4. ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå¿¡¼­ ÁÖ¿ä º¥´õÀÇ ½ÃÀå Á¡À¯À²Àº?

5. ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå ÁøÀÔ¿¡ ÀûÇÕÇÑ ÇüÅ ¹× Àü·«Àû ¼ö´ÜÀº?

¸ñÂ÷

Á¦1Àå ¼­¹®

Á¦2Àå Á¶»ç ¹æ¹ý

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå °³¿ä

Á¦5Àå ½ÃÀå ÀλçÀÌÆ®

  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø¿äÀÎ
      • ¼¼°è °Ç¼³ ¹× ÀÎÇÁ¶ó °³¹ß È°µ¿ Áõ°¡
      • ÀÚµ¿Â÷ ¹× Ç×°ø¿ìÁÖ ºÐ¾ßÀÇ °æ·® ¹× °í°­µµ ¼ö¿ä
    • ¾ïÁ¦¿äÀÎ
      • ±¸Á¶¿ë ÄÚ¾îÀçÀÇ È¯°æ¿¡ ´ëÇÑ ¿µÇâ ¹× Æ¯Á¤ ÆÛÆ÷¸Õ½º Á¦ÇÑ
    • ±âȸ
      • °³·® ¹× ÁøÈ­ÇÑ ±¸Á¶¿ë ÄÚ¾îÀçÀÇ ÀÎÆ®·Î´ö¼Ç
      • ½ÅÀç»ý ¿¡³ÊÁö ÇÁ·ÎÁ§Æ®¿¡ À־ÀÇ ±¸Á¶¿ë ÄÚ¾îÀçÀÇ Ã¤¿ë
    • °úÁ¦
      • ±¸Á¶¿ë ÄÚ¾îÀçÀÇ Á¦Á¶ ¹× ¼³°èÀÇ º¹À⼺
  • ½ÃÀå ¼¼ºÐÈ­ ºÐ¼®
    • À¯Çüº° : ´Ü¿­¼ºÀÇ ³ôÀ̷κÎÅÍ ¹ßÆ÷ÀçÀÇ ÀÌ¿ë ±ÞÁõ
    • ¿ÜÇÇ À¯Çüº° : ȯ°æ ģȭÀûÀΠƯ¼º°ú Àú·ÅÇÑ ºñ¿ëÀ¸·Î õ¿¬¼¶À¯ °­È­ Æú¸®¸Ó(NFRP)ÀÇ »ç¿ëÀÌ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù.
    • ÃÖÁ¾ ÀÌ¿ë »ê¾÷º° : °Ç¼³ ¹× dz·Â¿¡³ÊÁö »ê¾÷¿¡ À־ÀÇ ±¸Á¶¿ë ÄÚ¾îÀçÀÇ ÀÀ¿ëÀÇ ÁøÈ­
  • ½ÃÀå µ¿Ç⠺м®
    • ÃÖÁ¾ ÀÌ¿ë »ê¾÷¿¡ ´ëÇÑ ´ë±Ô¸ð ÅõÀÚ·Î ÀÎÇØ ³²ºÏ ¾Æ¸Þ¸®Ä«ÀÇ ±¸Á¶ ÇÙ½É Àç·á¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù.
    • ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡´Â ¹æ´ëÇÑ ¿øÀç·á ¹× ³ëµ¿·ÂÀÌ ÀÖÀ¸¸ç, ±¸Á¶¿ë ÄÚ¾îÀçÀÇ ±¤¹üÀ§ÇÑ »ý»ê ´É·ÂÀ» ÅëÇØ ±¹³» ¹× ÇØ¿Ü ±â¾÷¿¡°Ô Á¦Ç° ´É·ÂÀ» È®´ëÇÒ ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.
    • °Ç¼³ ¹× Çؾç»ê¾÷ÀÇ Áö¼Ó°¡´ÉÇÑ ¹ßÀü¿¡ ´ëÇÑ Á¤ºÎÀÇ Áö¿øÈ®´ë¿Í EMEA Áö¿ª¿¡¼­ ´ë±â¾÷ÀÇ °ß°íÇÑ ±â¹Ý
  • °íÀÎÇ÷¹À̼ÇÀÇ ´©Àû ¿µÇâ
  • Porter's Five Forces ºÐ¼®
  • ¹ë·ùüÀÎ ¹× Áß¿ä °æ·Î ºÐ¼®
  • ±ÔÁ¦ ƲÀÇ ºÐ¼®

Á¦6Àå ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå : À¯Çüº°

  • ¹ß»ç ÄÚ¾îÀç
  • Æû ÄÚ¾îÀç
  • ¹úÁý ÄÚ¾îÀç

Á¦7Àå ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå : ¿ÜÇÇ À¯Çüº°

  • ź¼Ò¼¶À¯ °­È­ Æú¸®¸Ó
  • À¯¸®¼¶À¯ °­È­ Æú¸®¸Ó
  • õ¿¬¼¶À¯ °­È­ Æú¸®¸Ó

Á¦8Àå ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå : ÃÖÁ¾ ÀÌ¿ë »ê¾÷º°

  • Ç×°ø¿ìÁÖ
  • ÀÚµ¿Â÷ ¹× ¿î¼Û
  • °ø»ç
  • ¸¶¸°
  • dz·Â¿¡³ÊÁö

Á¦9Àå ¾Æ¸Þ¸®Ä«ÀÇ ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå

  • ¾Æ¸£ÇîƼ³ª
  • ºê¶óÁú
  • ij³ª´Ù
  • ¸ß½ÃÄÚ
  • ¹Ì±¹

Á¦10Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå

  • È£ÁÖ
  • Áß±¹
  • Àεµ
  • Àεµ³×½Ã¾Æ
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • Çʸ®ÇÉ
  • ½Ì°¡Æ÷¸£
  • Çѱ¹
  • ´ë¸¸
  • ű¹
  • º£Æ®³²

Á¦11Àå À¯·´, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ±¸Á¶¿ë ÄÚ¾îÀç ½ÃÀå

  • µ§¸¶Å©
  • ÀÌÁýÆ®
  • Çɶõµå
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • À̽º¶ó¿¤
  • ÀÌÅ»¸®¾Æ
  • ³×´ú¶õµå
  • ³ªÀÌÁö¸®¾Æ
  • ³ë¸£¿þÀÌ
  • Æú¶õµå
  • īŸ¸£
  • ·¯½Ã¾Æ
  • »ç¿ìµð¾Æ¶óºñ¾Æ
  • ³²¾ÆÇÁ¸®Ä«
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ½ºÀ§½º
  • ÅÍÅ°
  • ¾Æ¶ø¿¡¹Ì¸®Æ®(UAE)
  • ¿µ±¹

Á¦12Àå °æÀï ±¸µµ

  • ½ÃÀå Á¡À¯À² ºÐ¼®(2023³â)
  • FPNV Æ÷Áö¼Å´× ¸ÅÆ®¸¯½º(2023³â)
  • °æÀï ½Ã³ª¸®¿À ºÐ¼®
    • Gurit, dz·Â ¹ßÀü OEM2»ç¿Í Àå±â °ø±Þ °è¾àÀ» ü°á
    • Toray, ´Ù¾çÇÑ ¿ëµµ¿¡ ¼¼°è ÃÖ°í °­µµÀÇ Åº¼Ò¼¶À¯¸¦ ¹ß¸Å
    • New Company°¡ ÃÊ°æ·®, Àúź¼ÒÀÇ ¡¸¿¡¾î·Î°Ö¡¹´Ü¿­À縦 ¹ß¸Å
    • Schweiter, ÇÙ½É Àç·á »ç¾÷ °­È­ - JMB Wind Engineering Àμö ¿Ï·á
    • Hexcel, ¸ð·ÎÄÚ¿¡¼­ »õ·Ó°Ô È®ÀåµÈ ¿£Áö´Ï¾î¸µ ÄÚ¾î ¿ÀÆÛ·¹ÀÌ¼Ç °øÀåÀ» °³¼³
    • 3A Composites Core Materials°¡ ¿£ÁöÄÚ¾î »ç¾÷ ¶óÀÎÀ» ½ÃÀÛ
    • Owens Corning, ·¯¼¿ºô¿¡ ½Ã¼³À» °Ç¼³ÇØ 50¸íÀÇ ½Å±Ô °í¿ëÀ» âÃâÇÒ °èȹÀ» ¹ßÇ¥
    • Argosy Japan Aerospace Materials°¡ ³ª°í¾ß¿¡ ¼³¸³
    • 3A Composites Core Materials°¡ ¼Öº£ÀÌÀÇ TegracoreTM ÆûÀ» Àμö
    • Unilin Technologies, Ç¥¸é¿¡¼­ ¹Ù´ÚÀç ¾÷°è¸¦ À§ÇÑ »õ·Î¿î PVC ÇÁ¸®ÄÚ¾î ±â¼úÀ» ¹ßÇ¥

Á¦13Àå °æÀï Æ÷Æ®Æú¸®¿À

  • ÁÖ¿ä ±â¾÷ ÇÁ·ÎÆÄÀÏ
  • ÁÖ¿ä Á¦Ç° Æ÷Æ®Æú¸®¿À
AJY 24.05.02

[196 Pages Report] The Structural Core Materials Market size was estimated at USD 5.51 billion in 2023 and expected to reach USD 6.01 billion in 2024, at a CAGR 9.14% to reach USD 10.17 billion by 2030.

Structural core materials are critical components in constructing composite laminates utilized to bolster strength and rigidity without adding significant weight. These materials are layered between multiple sheets of strengthening skins to form a sandwich structure with enhanced mechanical properties. They are generally characterized by a high strength-to-weight ratio, improved stiffness, superior thermal insulation, low water absorption, and corrosion resistance. The growing need for lightweight materials in the aerospace, automotive & transportation sectors, coupled with the increasing emphasis on energy conservation globally, increases the adoption of structural core materials. However, the high cost of raw materials directly influences the overall cost of developing structural core materials. Nevertheless, developing cost-effective production and recycling techniques to tackle the raw material costs and research advancements in higher firmness and improved durability core materials can introduce new opportunities for market growth.

KEY MARKET STATISTICS
Base Year [2023] USD 5.51 billion
Estimated Year [2024] USD 6.01 billion
Forecast Year [2030] USD 10.17 billion
CAGR (%) 9.14%

Type: Burgeoning utilization of foam-based structural core materials owing to their high thermal insulation property

Balsa is a lightweight yet durable material considered for its excellent strength-to-weight ratio and preferred by sectors that demand high performance. Its cost-effectiveness and exceptional resistance to temperature and moisture make it an ideal pick for the aerospace, naval, and wind energy industries. Foam-based structural core materials, such as poly polyvinyl chloride (PVC), polyethylene terephthalate (PET), and styrene acrylonitrile (SAN), cater to various applications owing to their impressive thermal insulation property, dimensional stability, and versatility. The automotive, construction and marine industries prefer foam-based structural core materials, particularly for their excellent acoustic insulation properties. Honeycomb-based cores are preferred in the aerospace and automotive industries due to their high strength. They are lightweight and exhibit superior compression, shear strength, and corrosion resistance, which gets accentuated when paired with advanced, lightweight metals such as aluminum and titanium. The aramid honeycomb core is a lightweight, high-strength, non-metallic product engineered from Aramid/Kevlar fiber paper and is extensively utilized in the structural core materials market. The honeycomb design facilitates rigidity while maintaining significant weight advantages, enabling it to be a preferred choice for a vast range of applications across varied sectors.

Outer Skin Type: Increasing usage of natural fiber-reinforced polymer (NFRP) due to its environmentally friendly characteristics and lower costs

Carbon fiber-reinforced plastic (CFRP) is primarily favored for its lightweight and superior strength and stiffness properties. This material is commonly utilized in the automotive and aerospace industries, where weight lowering is a critical consideration. Glass fiber reinforced polymer (GFRP) offers a unique blend of high strength, low weight, and corrosion resistance, making it a preferred material in marine, construction, and power industries. Need-based preferences for natural fiber-reinforced polymer (NFRP) revolve around its natural origin, low cost, and more eco-friendly profile compared to synthetic composites. This leads to its preferential use in packaging, construction, and automotive industries.

End-use Industry: Evolving applications of structural core materials in the construction and wind energy industry

The aerospace industry relies heavily on lightweight and high-strength materials to ensure top-tier performance in aircraft production. The construction industry, unlike the aerospace industry, emphasizes affordable, robust, and durable materials. Marine applications demand materials that combine strength with water resistance. In the transportation sector, materials must withstand repeated stress and wear and offer a balance of lightweight and durability. The wind energy sector seeks materials with high strength-to-weight ratios to optimize wind turbine performance. In the automotive industry, these materials are expanding their applications due to the ongoing trends toward lightweight and fuel-efficient vehicles. Moreover, structural core materials offer improved performance, reduced weight, and better fuel economy for body parts and internal structures used in the automotive industry.

Regional Insights

The Americas region significantly focuses on technological advancements in industrial and automotive applications in the structural core materials market. The major countries, such as the United States, Canada, and Brazil, involve a predominant trend for lightweight yet sturdy materials among consumers, thereby promoting the use of structural core materials. The European Union has witnessed increased demand for structural core materials, specifically in the renewable energy and construction sectors. The EMEA countries such as Germany and France are focused on sustainability efforts through the established stringent regulations in structural core materials manufacturing. The Middle East and Africa (EMEA) region reflects a growing interest in marine, sporting goods, and aerospace applications in recent years. China, Japan, and India are major countries in the APAC region witnessing investments focused on enhancing infrastructure in sectors such as construction, aerospace, and energy, contributing to the increased demand for high-strength, lightweight structural core materials. The players in the APAC region are focused on developing cost-effective and recyclable products to cater to the growing consumer demand across diverse industries.

FPNV Positioning Matrix

The FPNV Positioning Matrix is pivotal in evaluating the Structural Core Materials Market. It offers a comprehensive assessment of vendors, examining key metrics related to Business Strategy and Product Satisfaction. This in-depth analysis empowers users to make well-informed decisions aligned with their requirements. Based on the evaluation, the vendors are then categorized into four distinct quadrants representing varying levels of success: Forefront (F), Pathfinder (P), Niche (N), or Vital (V).

Market Share Analysis

The Market Share Analysis is a comprehensive tool that provides an insightful and in-depth examination of the current state of vendors in the Structural Core Materials Market. By meticulously comparing and analyzing vendor contributions in terms of overall revenue, customer base, and other key metrics, we can offer companies a greater understanding of their performance and the challenges they face when competing for market share. Additionally, this analysis provides valuable insights into the competitive nature of the sector, including factors such as accumulation, fragmentation dominance, and amalgamation traits observed over the base year period studied. With this expanded level of detail, vendors can make more informed decisions and devise effective strategies to gain a competitive edge in the market.

Key Company Profiles

The report delves into recent significant developments in the Structural Core Materials Market, highlighting leading vendors and their innovative profiles. These include 3A Composites GmbH by Schweiter Technologies AG, 3M Company, Amorim Cork Composites S.A., Armacell International S.A., BASF SE, Carbon-Core Corp., Composites One LLC, CoreLite, Diab Group, DuPont de Nemours, Inc., Euro-Composites S.A., Evonik Industries AG, General Plastics Manufacturing Company, Inc., Gurit Services AG, Hexcel Corporation, Huntsman Corporation, I-Core Composites LLC, Kordsa Teknik Tekstil, Lantor BV, Marex Composites, Inc., Mitsubishi Chemical Group Corporation, Owens Corning, Plascore, Inc., RelCore Composites Inc., RTX Corporation, SABIC, SAERTEX GmbH & Co. KG, Showa Aircraft Industry Co., Ltd., SingCore, Sino Composite Co., Ltd., Solvay S.A., Suzhou Beecore Honeycomb Materials Co., Ltd, The Gill Corporation, and Toray Industries, Inc..

Market Segmentation & Coverage

This research report categorizes the Structural Core Materials Market to forecast the revenues and analyze trends in each of the following sub-markets:

  • Type
    • Balsa Core Materials
    • Foam Core Materials
    • Honeycomb Core Materials
  • Outer Skin Type
    • Carbon Fiber Reinforced Polymer
    • Glass Fiber Reinforced Polymer
    • Natural Fibre-Reinforced Polymer
  • End-use Industry
    • Aerospace
    • Automotive & Transportation
    • Construction
    • Marine
    • Wind Energy
  • Region
    • Americas
      • Argentina
      • Brazil
      • Canada
      • Mexico
      • United States
        • California
        • Florida
        • Illinois
        • New York
        • Ohio
        • Pennsylvania
        • Texas
    • Asia-Pacific
      • Australia
      • China
      • India
      • Indonesia
      • Japan
      • Malaysia
      • Philippines
      • Singapore
      • South Korea
      • Taiwan
      • Thailand
      • Vietnam
    • Europe, Middle East & Africa
      • Denmark
      • Egypt
      • Finland
      • France
      • Germany
      • Israel
      • Italy
      • Netherlands
      • Nigeria
      • Norway
      • Poland
      • Qatar
      • Russia
      • Saudi Arabia
      • South Africa
      • Spain
      • Sweden
      • Switzerland
      • Turkey
      • United Arab Emirates
      • United Kingdom

The report offers valuable insights on the following aspects:

1. Market Penetration: It presents comprehensive information on the market provided by key players.

2. Market Development: It delves deep into lucrative emerging markets and analyzes the penetration across mature market segments.

3. Market Diversification: It provides detailed information on new product launches, untapped geographic regions, recent developments, and investments.

4. Competitive Assessment & Intelligence: It conducts an exhaustive assessment of market shares, strategies, products, certifications, regulatory approvals, patent landscape, and manufacturing capabilities of the leading players.

5. Product Development & Innovation: It offers intelligent insights on future technologies, R&D activities, and breakthrough product developments.

The report addresses key questions such as:

1. What is the market size and forecast of the Structural Core Materials Market?

2. Which products, segments, applications, and areas should one consider investing in over the forecast period in the Structural Core Materials Market?

3. What are the technology trends and regulatory frameworks in the Structural Core Materials Market?

4. What is the market share of the leading vendors in the Structural Core Materials Market?

5. Which modes and strategic moves are suitable for entering the Structural Core Materials Market?

Table of Contents

1. Preface

  • 1.1. Objectives of the Study
  • 1.2. Market Segmentation & Coverage
  • 1.3. Years Considered for the Study
  • 1.4. Currency & Pricing
  • 1.5. Language
  • 1.6. Stakeholders

2. Research Methodology

  • 2.1. Define: Research Objective
  • 2.2. Determine: Research Design
  • 2.3. Prepare: Research Instrument
  • 2.4. Collect: Data Source
  • 2.5. Analyze: Data Interpretation
  • 2.6. Formulate: Data Verification
  • 2.7. Publish: Research Report
  • 2.8. Repeat: Report Update

3. Executive Summary

4. Market Overview

5. Market Insights

  • 5.1. Market Dynamics
    • 5.1.1. Drivers
      • 5.1.1.1. Rise in construction and infrastructure development activities worldwide
      • 5.1.1.2. Demand for lightweight and high-strength in the automotive and aerospace sectors
    • 5.1.2. Restraints
      • 5.1.2.1. Environmental impact and certain performance limitations of structural core materials
    • 5.1.3. Opportunities
      • 5.1.3.1. Introduction of improved and advanced structural core materials
      • 5.1.3.2. Adoption of structural core materials in renewable energy projects
    • 5.1.4. Challenges
      • 5.1.4.1. Complexities in the manufacturing and designing of structural core materials
  • 5.2. Market Segmentation Analysis
    • 5.2.1. Type: Burgeoning utilization of foam-based structural core materials owing to their high thermal insulation property
    • 5.2.2. Outer Skin Type: Increasing usage of natural fiber-reinforced polymer (NFRP) due to its environmentally friendly characteristics and lower costs
    • 5.2.3. End-use Industry: Evolving applications of structural core materials in the construction and wind energy industry
  • 5.3. Market Trend Analysis
    • 5.3.1. Massive investment in the end-use industries augmenting high demand for structural core material in the Americas.
    • 5.3.2. Extensive production capabilities for structural core materials with immense raw material and labor availability in the Asia-Pacific offering opportunities for product capacity expansion for native and international companies
    • 5.3.3. Expanding government support for sustainable development of construction and marine industry coupled with a robust foothold of major companies in the EMEA region
  • 5.4. Cumulative Impact of High Inflation
  • 5.5. Porter's Five Forces Analysis
    • 5.5.1. Threat of New Entrants
    • 5.5.2. Threat of Substitutes
    • 5.5.3. Bargaining Power of Customers
    • 5.5.4. Bargaining Power of Suppliers
    • 5.5.5. Industry Rivalry
  • 5.6. Value Chain & Critical Path Analysis
  • 5.7. Regulatory Framework Analysis

6. Structural Core Materials Market, by Type

  • 6.1. Introduction
  • 6.2. Balsa Core Materials
  • 6.3. Foam Core Materials
  • 6.4. Honeycomb Core Materials

7. Structural Core Materials Market, by Outer Skin Type

  • 7.1. Introduction
  • 7.2. Carbon Fiber Reinforced Polymer
  • 7.3. Glass Fiber Reinforced Polymer
  • 7.4. Natural Fibre-Reinforced Polymer

8. Structural Core Materials Market, by End-use Industry

  • 8.1. Introduction
  • 8.2. Aerospace
  • 8.3. Automotive & Transportation
  • 8.4. Construction
  • 8.5. Marine
  • 8.6. Wind Energy

9. Americas Structural Core Materials Market

  • 9.1. Introduction
  • 9.2. Argentina
  • 9.3. Brazil
  • 9.4. Canada
  • 9.5. Mexico
  • 9.6. United States

10. Asia-Pacific Structural Core Materials Market

  • 10.1. Introduction
  • 10.2. Australia
  • 10.3. China
  • 10.4. India
  • 10.5. Indonesia
  • 10.6. Japan
  • 10.7. Malaysia
  • 10.8. Philippines
  • 10.9. Singapore
  • 10.10. South Korea
  • 10.11. Taiwan
  • 10.12. Thailand
  • 10.13. Vietnam

11. Europe, Middle East & Africa Structural Core Materials Market

  • 11.1. Introduction
  • 11.2. Denmark
  • 11.3. Egypt
  • 11.4. Finland
  • 11.5. France
  • 11.6. Germany
  • 11.7. Israel
  • 11.8. Italy
  • 11.9. Netherlands
  • 11.10. Nigeria
  • 11.11. Norway
  • 11.12. Poland
  • 11.13. Qatar
  • 11.14. Russia
  • 11.15. Saudi Arabia
  • 11.16. South Africa
  • 11.17. Spain
  • 11.18. Sweden
  • 11.19. Switzerland
  • 11.20. Turkey
  • 11.21. United Arab Emirates
  • 11.22. United Kingdom

12. Competitive Landscape

  • 12.1. Market Share Analysis, 2023
  • 12.2. FPNV Positioning Matrix, 2023
  • 12.3. Competitive Scenario Analysis
    • 12.3.1. Gurit Announces Major Long-Term Supply Contracts With two Wind Oems
    • 12.3.2. Toray Industries Launches World's Highest Strength Carbon Fiber for Diverse Applications
    • 12.3.3. New Company Launches Ultra-Light, Low Carbon 'Aerogel' Insulation Materials
    • 12.3.4. Schweiter Strengthens its Core Materials Business - Acquisition of JMB Wind Engineering Completed
    • 12.3.5. Hexcel Marks Opening of Newly Expanded Engineered Core Operations Plant in Morocco
    • 12.3.6. 3A Composites Core Materials Launches Engicore Business Line
    • 12.3.7. Owens Corning Announces Plan to Build Facility in Russellville, Create 50 New Jobs
    • 12.3.8. Argosy Japan Aerospace Materials Established in Nagoya, Japan
    • 12.3.9. 3A Composites Core Materials Acquires Solvay's TegracoreTM Foam
    • 12.3.10. Unilin Technologies Launches New PVC Free Core Technologies for the Flooring Industry at Surfaces

13. Competitive Portfolio

  • 13.1. Key Company Profiles
  • 13.2. Key Product Portfolio
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦