Global Information
회사소개 | 문의 | 비교리스트

바이오플라스틱(2023-2033년) : 기술, 시장, 주요 기업 및 예측

Bioplastics 2023-2033: Technology, Market, Players, and Forecasts

리서치사 IDTechEx Ltd.
발행일 2022년 07월 상품코드 1108022
페이지 정보 영문 175 Slides 배송안내 1-2일 (영업일 기준)
가격
US $ 6,500 ₩ 8,574,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 9,200 ₩ 12,135,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.


바이오플라스틱(2023-2033년) : 기술, 시장, 주요 기업 및 예측 Bioplastics 2023-2033: Technology, Market, Players, and Forecasts
발행일 : 2022년 07월 페이지 정보 : 영문 175 Slides

본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

바이오 플라스틱 산업은 2033년까지 연간생산량 7,078 킬로 톤으로 확대될 것입니다.

바이오 플라스틱 제조업체는 빠르게 생산을 확대하고 있으며 향후 10년 이내에 연평균 복합 성장률(CAGR) 10.1% 까지 성장할 것으로 기대됩니다. 탈탄소화 약속, 일회용 플라스틱 금지법 및 지속 가능성에 대한 소비자 요구가 높아져 가고 있습니다. 보고서는 바이오 플라스틱 시장의 성장 동력, 핵심 기술 분석, 응용 프로그램 논의 등을 통해 시장의 기회와 성장을 예측합니다.

플라스틱 수요 증가

플라스틱에 대한 수요는 플라스틱이 환경에 미치는 위협적인 인식의 증가에도 불구하고 꾸준히 증가하고 있습니다. 플라스틱의 전 세계 소비는 2050년까지 두 배가 될 것으로 예측됩니다. 플라스틱이 환경과 기후 변화에 미치는 영향에 대처하기 위해서 업계는 순환 경제로 전환하고 있습니다. 그러나 매년 생산되는 모든 플라스틱이 100% 재활용 되더라도 증가하는 소비를 충족시키기 위해서는 여전히 원재료에 대한 필요성이 대두되고 있습니다. 바이오 기반 공급 원료에서 합성된 플라스틱인 바이오 플라스틱은 기존 방식으로 제조된 플라스틱을 대체할 수 있습니다. 바이오 플라스틱은 적은 탄소 발자국을 사용하며 기존 플라스틱의 지속 가능한 대체제로 활용할 수 있습니다.

도전과제

바이오 플라스틱 유형이 극복해야할 많은 과제가 여전히 있습니다. 실질적으로 순환 경제의 일부가 되어 지속 가능성을 갖추기 위해서는 End-of-life 가공을 위해 설계되어야 합니다. 예들 들어, 가장 널리 생산되는 100% 바이오 기반 플라스틱 재료인 PLA 는 산업용 퇴비로는 사용될 수 있지만 실질적 퇴비 가치는 제로이므로 업계에서 사용 빈도가 낮습니다. 한편, PLA를 재활용하는 것은 PET와 달리 까다로고 고비용의 전용 인프라를 필요로 하기 때문에 대부분의 PLA는 잘못 관리되거나 매립지로 이동합니다.

전 세계적으로 가장 널리 사용되는 PP와 PE는 주요 바이오 플라스틱 솔루션이 없는 상태로 남아 있습니다. 바이오 나프타(Bio-naphtha)는 바이오 기반의 PP와 PPE를 만드는데 사용되지만, 바이오 알코올 및 산소 공급액에서 바이오 나프타를 합성하는 것은 비효율적입니다. 이로 인해, 화학 제조업체는 바이오 연료 및 바이오 에너지를 갖춘 공급 원료를 확보하기 위한 경쟁에 놓여 있습니다. 반면에 바이오 나프타는 식물 오일로 만들 수 있지만, 이러한 원료는 지정학적 불안정으로 인해 가격 변동성이 높습니다.

초기 단계의 바이오 플라스틱 유형은 유능한 특성을 보여 줍니다. 그러나 아직 상당한 범위의 응용 프로그램 및 재료에 대한 수요 개발이 중요한 과제로 남아 있습니다. 틈새 시장의 기회를 보는 기업들은 응용 프로그램의 포트폴리오 확장을 위해 브랜드 업체 및 제품 개발자와의 파트너쉽을 형성해야 합니다.

보고서는 바이오 플라스틱 유형별로 시장을 분류하고 논의하며 각 부문의 성장요인과 제약조건을 살펴 보고 있습니다. 향후 10년의 시장을 예측하고 불안 요인과 시장 가능성을 탐구합니다.

목차

1. 요약

  • 1.1. 바이오 플라스틱이란 무엇입니까?
  • 1.2. 플라스틱 글로벌 공급의 폭발적 증가
  • 1.3. 순환 경제에서의 바이오 플라스틱
  • 1.4. 환경 비용 : 플라스틱 오염의 상승 조류
  • 1.5. 단당류에서 바이오 기반 폴리머 탐색
  • 1.6. 식물성 오일에서 바이오 기반 폴리머 탐색
  • 1.7. 합성 바이오 기반 폴리머 및 모노머 : 주요 회사
  • 1.8. 자연 발생 바이오 기반 폴리머 : 주요 회사
  • 1.9. 폴리락트산(PLA)
  • 1.10. 애완 동물 및 PEF
  • 1.11. 기타 합성 바이오기반 폴리머
  • 1.12. 폴리아미드 특성, 적용 및 기회
  • 1.13. 폴리하이드록시알카노에이트(PHA)
  • 1.14. 다당류
  • 1.15. 브렌트유 가격이 바이오플라스틱 산업에 미치는 영향
  • 1.16. 바이오 플라스틱의 생산성
  • 1.17. 바이오 플라스틱 : 기술 준비 수준
  • 1.18. 공급 원료 가격 상승
  • 1.19. 바이오플라스틱 글로벌 총생산 능력 전망 2023-2033

2. 소개

3. 바이오 기반 합성 폴리머 : 폴리 락트산 (PLA)

4. 생계 합성 중합체: 다른 합성 생물물질 폴리에스테르

5. 바이오 기반 합성 폴리머 : 폴리 아미드

6. 생물 기반 합성 중합체: 다른 합성 바이오 기반 중합체

7. 자연 발생 바이오 플라스틱 및 바이오 기반 폴리머 : 폴리 히드 록시 알카노에이트 (PHA)

8. 자연 발생 바이오 플라스틱 및 바이오 기반 폴리머 : 다당류

9. 시장 및 예측

  • 9.1. 세계 총 플라스틱 생산량은 전년 대비 2.6 % 계속 증가하고 있습니다.
  • 9.2. 지역별 바이오플라스틱의 글로벌 생산능력(2021)
  • 9.3. 바이오 플라스틱 : 가공성
  • 9.4. 바이오 플라스틱 : 포장에 응용 프로그램
  • 9.5. 바이오 플라스틱 : 유연한 포장을위한 적용 가능성
  • 9.6. 바이오 플라스틱 : 단단한 포장에 대한 적용 가능성
  • 9.7. 바이오 플라스틱 및 자동차 응용 분야
  • 9.8. 바이오 플라스틱 농업 및 섬유 응용 프로그램
  • 9.9. 방법론
  • 9.10. 바이오 플라스틱 글로벌 총 생산 능력 대 전체 플라스틱 용량 예측 2023-2033
  • 9.11. 바이오플라스틱 글로벌 총생산 능력 전망 2023-2033
  • 9.12. 바이오플라스틱 글로벌 총생산 능력 전망 2023-2033
  • 9.13. 폴리락트산(PLA) 글로벌 생산 능력 전망 2023-2033
  • 9.14. PET 및 PEF 글로벌 생산 능력 전망 2023-2033
  • 9.15. 기타 폴리에스테르 글로벌 수용량 전망2023-2033
  • 9.16. 폴리아미드 및 기타 합성 폴리머 글로벌 생산 능력 전망 2023-2033
  • 9.17. PHA의 글로벌 생산 능력 전망 2023-2033
  • 9.18. 다당류 글로벌 용량 전망 2023-2033
BHI 22.08.03

Title:
Bioplastics 2023-2033: Technology, Market, Players, and Forecasts
Biobased PLA, PET, PEF, polyesters, polyolefins, polyamides, polyurethanes, PHA and polysaccharides, for packaging, automotive, textiles, agriculture, consumer goods, and other applications in the circular economy.

The bioplastic industry will expand production capacity by 10.1% CAGR to 7,078 kilotons in 2033.

Bioplastics manufacturers are scaling production rapidly and the industry is expected to grow by 10.1% CAGR in the next ten years. Manufacturers are driven by brand-owner pull to meet decarbonization commitments, consumer demand for sustainability, and single-use fossil-based plastic ban laws. In this report, IDTechEx explores the drivers of the bioplastic market's growth, analyses key and emerging technologies, examines end-of-life options, discusses applications, and forecasts the opportunities and growth of the market.

Plastic demand grows

Plastic demand continues to grow even as we become increasingly aware of the threat that plastics pose to our environment. Global consumption of plastics will double by 2050. To combat the impact of plastic on environment and climate change, the industry is transitioning towards a circular economy. Yet, even if all the plastic produced every year was 100% recycled, there would still be a need for virgin feedstock to meet growing consumption. Bioplastics - plastics which are synthesised from biobased feedstocks - can replace incumbent fossil-based plastics here. Given their biobased origin, these plastics are a lower carbon footprint and sustainable option to incumbent fossil-based plastics.

Climbing out of the valley of death

The bioplastics industry began decades ago, but during the 2010s the industry fell deep into the valley of death, indicated by a string of bankruptcies and business repositioning away from the space. This slump was driven by recoil from bullish initial investment in the space, and a significant bottleneck when it came to scaling production to commercial level. Furthermore, the high relative cost of bioplastics compared with a substantial drop in the price of Brent crude made bioplastics poor competition against conventional plastics, reinforcing the decline.

Yet, recent changes have turned the tide in the bioplastics industry, revitalizing its growth mode. Foremost, there has been a shift towards sustainability demand from brand-owners themselves. This is driven from both sides: by consumer pull that continues to strengthen, and by legislation changes (plus anticipation for future changes) towards sustainability- such as single use fossil-based plastics bans. The cornerstone COP26 conference, supported by the IPCC report, fuelled brand-owner commitments to decarbonization, too. This surplus demand is pushing manufacturers to expand their capacities faster, with many brand-owners forming partnerships to accelerate the scaling-up process.

Technology readiness level of bioplastics by types

            Source: IDTechEx

Many companies are beginning to overcome the commercial scale bottleneck and as technology develops bioplastics are being produced for lower costs. Additionally, consumers are more willing now to pay the premium for sustainable bioplastics. Overall, these factors are driving bioplastics towards being more affordable and competitive against conventional plastics. This is supported by a spike in Brent crude prices recently, which make bioplastics a more attractive alternative.

Drop-in disruptors

A major factor for bioplastic adoption to disrupt the plastics industry is the drop-in materials. These are biobased feedstocks or building blocks that can be a direct substitute for incumbent feedstocks. By substituting with drop-ins, manufacturers can easily facilitate the transition from fossil to biobased. The same processes can be used, rather than establishing entirely new plants, and end-product properties are unchanged. This also means that the well-established end-of-life options of incumbent plastic products can be used, particularly recycling streams which massively improve the sustainability of a plastic product. Using drop-ins, the biobased material can be traced with chain-of-custody models like mass balance, which create transparency and trust throughout the value chain regarding sustainable material origins and processes. Overall, the plastics market will more readily adopt drop-in bioplastics which have a strong advantage over other bioplastics.

Challenges for bioplastics

Yet, there are still many challenges for several bioplastic types to overcome. To be truly sustainable and become part of the circular economy, bioplastics must be designed for end-of-life processing. For example, PLA, the most widely produced 100% biobased plastic material can be industrially composted, however this provides no value to the compost so there are few off-takers in the industry. Meanwhile, recycling PLA, unlike drop-in biobased PET, requires dedicated infrastructure that is uncommon and very expensive to adopt. Instead, most PLA is mismanaged or goes to landfill.

The largest groups of plastics worldwide, PP and PE, remain without a major bioplastic solution. Bio-naphtha is used to make biobased PP and PPE, but synthesis of bio-naphtha from bio-alcohols and oxygenates is inefficient (because of waste oxygen in the process). Furthermore, this puts chemical manufacturers into competition for feedstock with biofuel and bioenergy. On the other hand, bio-naphtha can be made from plant oils, however these raw materials suffer from price fluctuations resulting from geopolitical instability.

Younger bioplastic types that are still in demonstration or pilot scale show promising properties. However, they have yet to develop a significant range of applications, critical to developing demand for the materials. Companies in these niches need to form partnerships with brand-owners and formulators to expand their application portfolios.

IDTechEx 10-year market forecast segmented by bioplastic types

The report segments and discusses the market by bioplastic types, looking at the drivers and constraints of each segment. These segments are extrapolated in the 10-year forecast, to explore the segments' technology readiness, potential for market disruption, and the landscape for planned capacity expansions.

This report provides the following information

  • Bioplastics in the circular economy
  • Corporate activity, trends, and themes in bioplastics

Technology trends

  • Analysis of technologies for polymerization of synthetic biobased monomers
  • Analysis of technologies for extraction of naturally occurring polymers
  • Technology readiness level of biobased polymers
  • Corporate activity, partnerships, bankruptcies, and industry growth
  • Drivers for bioplastics and integration in the circular economy
  • Key challenges for the industry
  • Emerging technologies in synthetic and naturally occurring bioplastics
  • Bioplastic properties, processability, and applications

Market Forecasts & Analysis

  • 10-year granular market forecasts by 13 biobased polymer types
  • Analysis of materials for processability, and for packaging applications
  • Key market applications

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. What are bioplastics?
  • 1.2. Global supply of plastics will continue to grow exponentially
  • 1.3. Bioplastics in the circular economy
  • 1.4. Environmental costs: the rising tide of plastic pollution
  • 1.5. Navigating biobased polymers from monosaccharides
  • 1.6. Navigating biobased polymers from vegetable oils
  • 1.7. Synthetic biobased polymers and monomers: key companies
  • 1.8. Naturally occurring biobased polymers: key companies
  • 1.9. Polylactic acid (PLA)
  • 1.10. PET and PEF
  • 1.11. Other synthetic biobased polymers
  • 1.12. Polyamide properties, applications and opportunities
  • 1.13. Polyhydroxyalkanoates (PHA)
  • 1.14. Polysaccharides
  • 1.15. Effects of Brent crude prices on the bioplastic industry
  • 1.16. Out of the valley of death: bioplastics becoming productive
  • 1.17. Bioplastics: technology readiness level
  • 1.18. Rising feedstock prices
  • 1.19. Bioplastics global total capacity forecast 2023-2033

2. INTRODUCTION

  • 2.1. Scope of the report
  • 2.2. Key terms and definitions
  • 2.3. What are bioplastics?
  • 2.4. Global supply of plastics will continue to grow exponentially
  • 2.5. Decarbonizing economies
  • 2.6. Bioplastics in the circular economy
  • 2.7. Environmental costs: the rising tide of plastic pollution
  • 2.8. The plastic waste management pyramid
  • 2.9. Recycling polymers
  • 2.10. What does "biodegradable" mean?
  • 2.11. The three main families of bioplastics
  • 2.12. Polymer types: thermoplastics, thermosets and elastomers
  • 2.13. The range of available biobased monomers
  • 2.14. Navigating biobased polymers from monosaccharides
  • 2.15. Navigating biobased polymers from vegetable oils
  • 2.16. The four drivers for substitution
  • 2.17. The Green Premium
  • 2.18. Effect of the price of Brent crude on the bioplastics industry
  • 2.19. Out of the valley of death: bioplastics becoming productive
  • 2.20. Bioplastics: technology readiness level
  • 2.21. Rising feedstock prices
  • 2.22. Plastic regulation around the world
  • 2.23. Food, land, and water competition
  • 2.24. Green transition: the chain of custody
  • 2.25. Chain of custody: mass balance (1)
  • 2.26. Chain of custody: mass balance (2)

3. BIOBASED SYNTHETIC POLYMERS: POLYLACTIC ACID (PLA)

  • 3.1. What is polylactic acid?
  • 3.2. Production of PLA
  • 3.3. PLA production process
  • 3.4. Lactic acid: bacterial fermentation or chemical synthesis?
  • 3.5. Optimal lactic acid bacteria strains for fermentation
  • 3.6. Engineering yeast strains for lactic acid fermentation
  • 3.7. Fermentation, recovery and purification
  • 3.8. Polymerization of lactide and microstructures of PLA
  • 3.9. PLA end-of-life options
  • 3.10. Hydrolysis of PLA
  • 3.11. Suppliers of lactide and polylactic acid
  • 3.12. Current and future applications of polylactic acid
  • 3.13. Polylactic acid: a SWOT analysis
  • 3.14. Opportunities in the lifecycle of PLA
  • 3.15. TotalEnergies Corbion
  • 3.16. Natureworks
  • 3.17. BASF: ecovio®
  • 3.18. Conclusions

4. BIOBASED SYNTHETIC POLYMERS: OTHER SYNTHETIC BIOBASED POLYESTERS

  • 4.1. Introduction to polyesters from diacids and diols
  • 4.2. The range of available biobased polyesters
  • 4.3. Biobased polyester suppliers
  • 4.4. Polyethylene terephthalate (PET)
  • 4.5. Biobased MEG and PET: monomer production
  • 4.6. Biobased MEG and PET: industry & applications
  • 4.7. Biobased MEG and PET: SWOT
  • 4.8. Biobased PDO and PTT: monomer production
  • 4.9. Biobased PDO and PTT: polymer applications
  • 4.10. Biobased BDO: monomer production
  • 4.11. Biobased BDO technology is licenced from Genomatica
  • 4.12. Biobased BDO and PBT: polymer applications
  • 4.13. Biobased terephthalic acid (TPA)
  • 4.14. Biobased succinic acid: monomer production
  • 4.15. Biobased succinic acid and PBS: polymer applications
  • 4.16. Polyethylene furanoate (PEF)
  • 4.17. Biobased furfural compounds: 5-HMF
  • 4.18. Biobased FDCA: monomer production
  • 4.19. Biobased FDCA and PEF: polymer applications

5. BIOBASED SYNTHETIC POLYMERS: POLYAMIDES

  • 5.1. Introduction to biobased polyamides
  • 5.2. Biobased synthesis routes to polyamides
  • 5.3. Range of available biobased monomers and polyamides
  • 5.4. Biobased monomer and polyamide suppliers
  • 5.5. C6: adipic acid, hexamethylenediamine and caprolactam
  • 5.6. C10: sebacic acid and decamethylenediamine
  • 5.7. C11: 11-aminoundecanoic acid
  • 5.8. C12: Dodecanedioic acid
  • 5.9. Polyamide properties, applications and opportunities

6. BIOBASED SYNTHETIC POLYMERS: OTHER SYNTHETIC BIOBASED POLYMERS

  • 6.1. Polyester polyols, polyurethanes and polyisocyanates
  • 6.2. Cargill: vegetable oil derived polyols
  • 6.3. Covestro and Reverdia: Impranil eco Succinic acid based polyester polyols
  • 6.4. BASF: Sovermol 830 Castor oil derived polyether-ester polyol
  • 6.5. Covestro: PDI and Desmodur eco polyisocyanurate
  • 6.6. Biobased naphtha
  • 6.7. Biobased polyolefins
  • 6.8. Biobased polyolefins: challenging but in demand
  • 6.9. Biobased polyolefins Landscape
  • 6.10. Braskem: I'm green polyethylene
  • 6.11. Borealis: Bornewables
  • 6.12. Biobased isosorbide as a comonomer
  • 6.13. Roquette: POLYSORB isosorbide
  • 6.14. Mitsubishi Chemical Corporation: Durabio

7. NATURALLY OCCURRING BIOPLASTICS AND BIOBASED POLYMERS: POLYHYDROXYALKANOATES (PHA)

  • 7.1. Introduction to poly(hydroxyalkanoates)
  • 7.2. Key commercial PHAs and microstructures
  • 7.3. Properties of commercial PHAs
  • 7.4. Suppliers of PHAs
  • 7.5. PHB, PHBV, and P(3HB-co-4HB)
  • 7.6. Short and medium chain length PHAs
  • 7.7. Biosynthetic pathways to PHAs
  • 7.8. Fermentation, recovery and purification
  • 7.9. PHAs: a SWOT analysis
  • 7.10. Applications of PHAs
  • 7.11. Opportunities in PHAs
  • 7.12. Reducing the cost of PHA production
  • 7.13. Risks in PHAs
  • 7.14. PHAs are only made in small quantities
  • 7.15. PHA production facilities
  • 7.16. Newlight Technologies
  • 7.17. Danimer Scientific
  • 7.18. Conclusions

8. NATURALLY OCCURRING BIOPLASTICS AND BIOBASED POLYMERS: POLYSACCHARIDES

  • 8.1. Cellulose
  • 8.2. Nanocellulose
  • 8.3. Nanocellulose up close
  • 8.4. Forms of nanocellulose
  • 8.5. Applications of nanocellulose
  • 8.6. Celluforce
  • 8.7. Weidmann Fiber Technology
  • 8.8. Exilva
  • 8.9. Starch
  • 8.10. Manufacturing thermoplastic starch (TPS)
  • 8.11. Composite and modified thermoplastic starches
  • 8.12. Plantic
  • 8.13. Novamont
  • 8.14. Seaweeds
  • 8.15. Seaweed polymers for packaging
  • 8.16. Loliware
  • 8.17. Notpla: Ooho!
  • 8.18. Evoware
  • 8.19. Constraints for polysaccharide bioplastics

9. MARKETS AND FORECASTS

  • 9.1. Global total plastic production continues to grow 2.6% year on year
  • 9.2. Global production capacities of bioplastics by region (2021)
  • 9.3. Bioplastics: processability
  • 9.4. Bioplastics: application in packaging
  • 9.5. Bioplastics: applicability for flexible packaging
  • 9.6. Bioplastics: applicability for rigid packaging
  • 9.7. Bioplastics and automotive applications
  • 9.8. Bioplastics agriculture and textile applications
  • 9.9. Methodology
  • 9.10. Bioplastics global total capacity vs overall plastics capacity forecast 2023-2033
  • 9.11. Bioplastics global total capacity forecast 2023-2033
  • 9.12. Bioplastics global total capacity forecast 2023-2033
  • 9.13. Polylactic acid (PLA) global capacity forecast 2023-2033
  • 9.14. PET and PEF global capacity forecast 2023-2033
  • 9.15. Other polyesters global capacity forecast2023-2033
  • 9.16. Polyamides and other synthetic polymers global capacity forecast 2023-2033
  • 9.17. PHAs global capacity forecast 2023-2033
  • 9.18. Polysaccharides global capacity forecast 2023-2033
Back to Top
전화 문의
F A Q