Global Information
회사소개 | 문의 | 비교리스트

스마트 시티의 기회 : 인프라, 시스템, 재료(2019-2029년)

Smart City Opportunities: Infrastructure, Systems, Materials 2019-2029

리서치사 IDTechEx Ltd.
발행일 2019년 10월 상품 코드 721791
페이지 정보 영문 236 Slides
US $ 5,750 ₩ 6,888,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 6,250 ₩ 7,487,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 8,250 ₩ 9,883,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,750 ₩ 10,482,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.

스마트 시티의 기회 : 인프라, 시스템, 재료(2019-2029년) Smart City Opportunities: Infrastructure, Systems, Materials 2019-2029
발행일 : 2019년 10월 페이지 정보 : 영문 236 Slides

스마트 시티(Smart City)의 기회에 대해 조사했으며, 혁신적 소매 및 운송을 이용해 배기가스나 교통 정체 없이 도시가 물, 식료 및 에너지의 자급/자립을 달성하는 방법에 대한 분석, 상세한 인포그램, 로드맵, 예측 및 프로젝트 비교를 제공합니다.

제1장 주요 요약과 결론

제2장 서론

제3장 에너지 자립 및 인지 인프라

  • 건물은 도시의 에너지 소비에 큰 영향을 미쳐
  • 건물의 액티브 스마트 유리
  • 디지털 전환 및 빌딩 자동화
  • 인지 빌딩을 실현하는 테크놀러지 툴키트
  • 무선, 자가 동력(self-powered) 빌딩 관리 : EnOcean 및 8Power
  • 필요한 때 무공해 전력(zero emission electricity)을 만들어
  • 스마트 로드 및 환경

제4장 사람 및 사물의 라스트 마일 딜리버리 개혁

  • 서론

제5장 스마트 시티의 무선 커넥티비티

  • 스마트 시티 메시 네트워크
  • Wi-Sun 얼라이언스
  • 스마트 시티의 Silver Spring networks
  • 스마트 시티의 LPWAN 동향
  • 스마트 시티의 동향 : 주차 등

제6장 온라인과 물리적 소매의 통합

  • 개요
  • 디지털 전환과 소매
  • amazon의 주요 자동화 계획
  • Walmart의 주요 자동화 계획
  • 소매의 디지털 및 로봇 전환 등

제7장 식료 자급 : 스마트 도시 농장

  • 식료 자급
  • 인구 증가와 식료 수요 확대
  • 주요 작물 수량은 기존 방법을 이용해 정체
  • 변동하는 기술 경로를 통한 초정밀 농업
  • 농업은 디지털화되는 마지막 주요 산업 중 하나 등

제8장 물 자급 : 무공해 담수화 및 수처리

  • 배경
  • 중동
  • 소형 무공해 오프그리드 담수화의 베스트 프랙티스 등

제9장 구현 기술 : 사이버 보안, IoT, 센서, 에너지수확기술

  • 사이버 보안
  • 사물 인터넷 및 관련 기술
  • 스마트 시티용 스마트 센서
  • 에너지수확기술은 마이크로와트에서 메가와트로
KSM 18.10.24

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

The term smart city originally meant little beyond using much more information technology IT. Indeed, statements were made about IT becoming the key enabling technology of a city and sensors on everything: big data. Then there was some extension to incrementally improving facilities from transport to healthcare and education. Wrong. The new IDTechEx report, "Smart City Opportunities: Infrastructure, Systems, Materials 2019-2029" explains that much more dramatic changes are both required and possible. They reflect the strong trends to people living mainly in cities and localism, where caring, empowered communities harness new infrastructure, systems and materials and radically change the way they operate. Examples include "silent city" banning private cars and providing free public transport. The report reveals how cities will even achieve independence in water, food and energy with retailing and transport reinvented and no emissions or traffic congestion. It is full of detailed new infograms, roadmaps, forecasts and project comparisons.

Learn how infrastructure will often vanish, including electric vehicle chargers, power stations and land-grabbing solar and wind farms. Many devices will be used less, including batteries, but many billion dollar businesses will be created. For instance, they will provide cognizant self-powered buildings and smart roads that automatically deice and charge moving vehicles using self-generated electricity. This is a world of nearby wave and tidal power without infrastructure and marine aquaculture, for most of the large cities are on the sea. It embraces aeroponics, hydroponics and other indoor farming. Cities must now defend against cyberattack but independent systems in houses and buildings will make that easier and that empowerment means costs will be better controlled and changing needs met more promptly. The report uniquely covers this big picture and the huge range of new materials and systems required. Surprisingly, the report shows how most of these things are happening somewhere in the world already. There are forecasts and technology roadmaps for many of the materials and systems required including internet of things, sensors and radically new forms of IT.

The Executive Summary and Conclusions addresses definitions, technologies, examples and progress so far including such things as democratisation of Artificial Intelligence, expansion of Mobile Platform Services, Proximity Marketing and Ubiquitous Sensors. Many materials opportunities are identified. The Introduction looks at the cities of the world and how they will be reinvented, explaining the digital transformation and the decline of much infrastructure as such things as self-sufficient buildings and energy independent vehicles arrive. Learn what and when and see the pictures. Chapter 3 details Cognitive and Self-powered Buildings and Roads and Chapter 4 focuses on Reinventing Last Mile Delivery of People and Things. Wireless Connectivity in Smart Cities is covered in Chapter 5. See Chapter 6 for Convergence of On Line and Physical Retailing, Chapter 7 for Smart Urban Farming and Chapter 8 for Water Independence: Zero Emission Desalination and Water Treatment. The report "Smart City Opportunities: Infrastructure, Systems, Materials 2019-2029" ends with an extensive Chapter 9 on Key Enabling Technologies with detailed analysis of materials and systems needed, gaps in the market and routes to many billion dollar opportunities.

Examples of radical smart city advances



Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents


  • 1.1.The smart city concept
    • 1.1.1.Original idea and objective of this report
    • 1.1.2.Localism
    • 1.1.3.Defensive and unquantifiable aspects
    • 1.1.4.Drivers of change
    • 1.1.5.Reinventing the city
    • 1.1.6.Smart city embraces radical advances
    • 1.1.7.Moveable cities
  • 1.2.Examples of radical advances already coming in
  • 1.3.Examples of energy independent cities
    • 1.3.1.Babcock Ranch in Florida
    • 1.3.2.Sustainable city Dubai
  • 1.4.Water independence
  • 1.5.Food independence
  • 1.6.Cognitive responsive infrastructure
  • 1.7.Robotics and reinvented transport
  • 1.8.Ubiquitous sensors and IoT in cities
  • 1.9.Democratisation of AI: back to the future
    • 1.9.1.The three waves of artificial intelligence
    • 1.9.2.Deep neural networks enabling AI advances
    • 1.9.3.Basics of artificial intelligence & democratization of AI
  • 1.10.Who delivers smart city?
  • 1.11.Materials opportunities
  • 1.12.IDTechEx market forecasts for smart city services and networks
    • 1.12.1.Mobile platform services
    • 1.12.2.Proximity marketing
    • 1.12.3.RFID sensor tags and systems ($ million)
  • 1.13.Total connections by year by application 2018-2029
  • 1.14.Total connections by year for NB-IoT, LTE, LoRa and Others 2018-2029
  • 1.15.Total connections by year 2018 - 2029: Unlicensed vs Licensed
  • 1.16.Asset tracking market for low power networks 2018-2029
  • 1.17.Smart home, consumer electronics and home utilities: low power connections 2018-2029
  • 1.18.Smart city low power connections 2018-2029
  • 1.19.IDTechEx forecasts for smart city major hardware
    • 1.19.1.Solar road forecast $ billion
    • 1.19.2.Road sensing, non-solar harvesting, allied harvesting forecast
    • 1.19.3.Smart glass
    • 1.19.4.Off grid harvesting systems of which smart cities are an increasingly important part
  • 1.20.20-year market forecasts (2018 to 2038) for agricultural robots and drones segmented by 16 technologies
    • market forecasts in unit numbers segmented by level of agri-robot function
    • 1.20.2.Rise of small agri-robots 2018-2038: value market forecasts segmented by functionality


  • 2.1.Cities face disruptive major changes
  • 2.2.Radical changes essential
  • 2.3.Smart city driving forces, dreams and threats
    • 2.3.1.Background
    • 2.3.2.Smart city functions
    • 2.3.3.Trend to less or no infrastructure
  • 2.4.Digital Transformation and Exponential Organizations
    • 2.4.1.Overview
    • 2.4.2.Digital transformation: why now?
    • 2.4.3.AI, the IoT & the Digital to Quantum transformation
    • 2.4.4.Self-powered cities: photovoltaics cheaper than large onshore wind in 2020
  • 2.5.The Anatomy of a Smart City


  • 3.1.Buildings have a major impact on city energy consumption
  • 3.2.Active smart glass in buildings
    • 3.2.1.Market drivers
    • 3.2.2.Active and passive glass darkening materials
    • 3.2.3.Samsung OLED window
  • 3.3.Digital transformation and building automation
  • 3.4.Technology toolkits enabling cognitive buildings
    • 3.4.1.Impact
    • 3.4.2.Opportunities
    • 3.4.3.The emerging "building as a service" model
  • 3.5.Wireless, self-powered building controls: EnOcean and 8Power
  • 3.6.Making zero emission electricity where you need it
    • 3.6.1.Overview
    • 3.6.2.Very different Levelised Cost of Electricity LCOE targets
    • 3.6.3."Zero Genset" opportunity: Transportable and available at the touch of a button
    • 3.6.4.Modular, zero emission diesel genset and grid replacement - $100Bn+ "Zero Genset" market
    • 3.6.5.Ground turbine wind power does not downsize well: physics and poorer wind
  • 3.7.Smart roads and surroundings
    • 3.7.1.Overview
    • 3.7.2.Gantry vs road surface
    • 3.7.3.Highway barriers: Eindhoven University of Technology
    • 3.7.4.Solar Roadways and Missouri Department of Transportation
    • 3.7.5.Solar roads, parking, paths, barriers compared
    • 3.7.6.Bouygues Colas France
    • 3.7.7.Solar road Pavenergy China
    • 3.7.8.Integral monitoring, EV charging roads Israel, USA, Europe
    • 3.7.9.Solar road with integral lit markers - concept
    • 3.7.10.Dharan Saudi Arabia solar car park provides total 10.5 MW power for high rise office block


  • 4.1.Introduction
    • 4.1.1.Definitions and issues
    • 4.1.2.Last mile travel for goods and people are closely allied
    • 4.1.3.Last mile vehicle needs and challenges
    • 4.1.4.Electric vehicles have a major part to play
    • 4.1.5.Examples of last mile LM and allied EVs currently in use
    • 4.1.6.EVs carried in or on long range vehicles
    • 4.1.7.Experimental LM EVs
    • 4.1.8.Tightening legal constraints
    • 4.1.9.Main solutions compared
    • 4.1.10.Unmanned autonomous vehicles: operational, technical, ethical challenges
    • 4.1.11.Insurance challenges
    • 4.1.12.Societal impact
    • 4.1.13.Amazon beating Wal-Mart by solving Last Mile?
    • 4.1.14.DHL Germany
    • 4.1.15.First Transit: first commercially operated driverless vehicle? UK, USA
    • 4.1.16.PonyZero technology Italy
    • 4.1.17.Terra Motors Japan
    • 4.1.18.Moby Mart, Japan
    • 4.1.19.Tesco supermarkets UK: one hour EV delivery
    • 4.1.20.Mobility for the disabled


  • 5.1.Smart city mesh networks
  • 5.2.The Wi-Sun alliance
  • 5.3.Silver Spring networks in smart cities
  • 5.4.LPWAN trends in smart cities
  • 5.5.Smart City Trends: Parking
  • 5.6.Car parking assisted by IoT
  • 5.7.Smart City Trends: Waste
  • 5.8.Smart city trends: street lights
  • 5.9.Libelium nodes utilising LPWAN technology
  • 5.10.Case Study: San Diego
  • 5.11.LPWAN deployment across India
  • 5.12.Internet connected fire hydrants
  • 5.13.People as sensor nodes
  • 5.14.LPWAN on a university campus
  • 5.15.Canal systems in the Netherlands make use of LPWAN technology
  • 5.16.LPWAN network coverage in Australia and New Zealand
  • 5.17.LPWAN in contingency planning


  • 6.1.Overview
  • 6.2.Digital transformation and retail
    • 6.2.1.Background & drivers
  •'s key automation initiatives
  • 6.4.Walmart's key automation initiatives
  • 6.5.Digital and robotic transformation in retail
    • 6.5.1.Impact
    • 6.5.2.Electronic shelf labels & proximity marketing
  • 6.6.Smart city retail and restaurants boost certain vehicles


  • 7.1.Food independence
  • 7.2.Growing population and growing demand for food
  • 7.3.Major crop yields are plateauing using conventional approaches
  • 7.4.The young shun farming
  • 7.5.Ultra precision agriculture coming via the variable rate technology route
  • 7.6.Ultra precision farming will cause upheaval
  • 7.7.Agriculture is one the last major industries to digitize
  • 7.8.RaaS or equipment sales
  • 7.9.Transition towards to swarms of small, slow, cheap robots
  • 7.10.Market and technology readiness by agricultural activity
  • 7.11.Autonomous robotics for greenhouses and nurseries


  • 8.1.Background
  • 8.2.Middle East
  • 8.3.Best practice small ZE off grid desalination: MIT USA in Puerto Rico etc.
  • 8.4.A history of last resort, big is beautiful but vulnerable
  • 8.5.Onerous requirements for large desalination plants may force rethink
  • 8.6.Solar RO desalination winning in number of ZE plants
  • 8.7.Roadmap for ZE off grid desalination 2019-2029
  • 8.8.Competing on price is easier than it seems


  • 9.1.Cybersecurity
  • 9.2.Internet of things and allied technologies
    • 9.2.1.Definitions and scope
    • 9.2.2.IoT infrastructure
    • 9.2.3.Smart cities and IoT practicality
    • 9.2.4.IoT value chain and bias vs IoP
    • 9.2.5.IOT and wireless sensor/ actuator applications in future smart cities: examples
    • 9.2.6.Losing privacy, committing crime, solving crime
    • 9.2.7.Wider deployment means compromises and new challenges
    • 9.2.8.Some megatrends favour IoT: others do not
    • 9.2.9.Examples of IoT opportunities and suppliers
  • 9.3.Smart sensors for smart cities
    • 9.3.1.Introduction
    • 9.3.2.Fixed vs mobile sensing networks
    • 9.3.3.Personal vs private networks
    • 9.3.4.Current city wide pollution monitoring programmes
    • 9.3.5.Current smart city air monitoring projects
    • 9.3.6.Calculated air quality measurements
    • 9.3.7.Transport based sensing of environmental pollutants
    • 9.3.8.Airborne pollution sensing
    • 9.3.9.Mobile monitoring: sensors on bicycles
    • 9.3.10.Traffic monitoring with gas sensors
    • 9.3.11.Array of things project - Chicago
    • 9.3.12.Anatomy of an outdoor sensor node
    • 9.3.13.Challenges for smart city monitoring
    • 9.3.14.Future opportunities for environmental sensors in smart cities
    • 9.3.15.Materials for gas sensors
  • 9.4.Energy harvesting microwatt to megawatt
    • 9.4.1.Definition, systems design, future
    • 9.4.2.Market drivers for energy harvesting
    • 9.4.3.Characteristics of energy harvesting
    • 9.4.4.Low power vs high power EH features
    • 9.4.5.EH transducer principles and materials
    • 9.4.6.EH technologies progressing very rapidly in performance and potential applications
    • 9.4.7.New examples of low power harvesting by power level
    • 9.4.8.Energy independent cities: US, Canada, Dubai
Back to Top
전화 문의