Global Information
회사소개 | 문의

헬스케어용 압전 수확 및 센싱(2019-2029년)

Piezoelectric Harvesting and Sensing for Healthcare 2019-2029

리서치사 IDTechEx Ltd.
발행일 2018년 12월 상품 코드 759135
페이지 정보 영문 109 Pages
가격
US $ 5,495 ₩ 6,250,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,995 ₩ 6,818,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,995 ₩ 9,093,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,495 ₩ 9,662,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


헬스케어용 압전 수확 및 센싱(2019-2029년) Piezoelectric Harvesting and Sensing for Healthcare 2019-2029
발행일 : 2018년 12월 페이지 정보 : 영문 109 Pages

압전 센싱 시스템 시장 규모는 2029년에 10억 4,000만 달러에 달할 전망입니다.

헬스케어용 압전 수확 및 센싱(Piezoelectric Harvesting and Sensing) 시장에 대해 조사했으며, 세계의 헬스케어 상황과 특히 센서에서 에너지수확기술의 필요성, 작동 형태·논리·화학·일렉트로닉스 등의 기본 원리, 주요 실례 및 연구·제품 판매 등에 관련된 조직의 개요 등을 분석했습니다.

제1장 주요 요약과 결론

제2장 서론

제3장 기본 원리

  • 배경과 정의
  • 압전 효과 - 직접
  • 기본 방정식
  • 설계 옵션
  • 분자 모델
  • 디바이스 작성 및 작동 원리
  • 무연(lead-free) 및 새로운 형태의 탐구 : 산화아연
  • 진동 압전 에너지수확장치
  • 에너지수확시스템 설계
  • Piezotronics
  • 압전성 고분자
  • 생분해성 압전 센서 및 수확장치 : 몇개의 옵션이 등장

제4장 헬스케어용 압전성 수확 및 센싱 : 실례와 교훈

  • 헬스케어에서의 저수준 기계적 변형 센싱
  • 인체상, 인체내 및 인체에 의한 압전 수확장치
  • 삽입형 제세동기 및 페이스메이커
  • 내이
  • 리스트밴드 헬스 모니터
  • 환자 행동 모니터링
  • 일회용, 임플란트, 웨어러블용 콜라겐 압전
  • 핸드 컨트롤러
  • 무선 센서, IoT
  • MEMS 수확의 실례 등

제5장 헬스케어용 압전에 관심을 가지는 기업

  • Algra (스위스)
  • Arveni (프랑스)
  • Fraunhofer IKTS (독일)
  • Georgia Institute of Technology (미국)
  • Holst Centre/TNO (네덜란드)
  • IMEC (벨기에)
  • Imperial College London (영국)
  • Meggitt (미국)
  • Piezo.com (미국)
  • SILEX (스웨덴)
  • Tyndall National Institute (아일랜드)
  • University of Princeton (미국)
KSM 19.01.07

Title:
Piezoelectric Harvesting and Sensing for Healthcare 2019-2029
Harvesting & sensing: new research, applications, potential.

"In healthcare beyond imaging, expect a piezoelectric sensing systems market of $1.04 billion in 2029."

Healthcare Sensors: Piezoelectrics the New Gymnasts

Healthcare electronics is rapidly deploying for wellness, electroceuticals, intrusive medical procedures and more, powered by new technologies. Much of it is trending to diagnostics and treatment on the move and removing the need for the patient to perform procedures on time. Instruments become wearables including electronic skin patches and implants. The new IDTechEx report, "Piezoelectric Harvesting and Sensing for Healthcare 2019-2029" notes that preferably sensors should be self-powered, non-poisonous even on disposal and many need to be biocompatible and even biodegradable. We need to detect biology, vibration, force, acceleration, stress and linear movement and do imaging. Devices must reject bacteria and be useful in wearables and Internet of Things nodes. Preferably we must move to one device performing multiple tasks.

The report explains how new forms of piezoelectric will sense all those parameters and harvest creating electricity for sensors and more. That includes biosensors where the piezo senses the swelling of a biomolecule recognizing a target analyte. The most important form of self-powered (one material, two functions) piezo sensing is ultrasound imaging. The IDTechEx report, "Piezoelectric Harvesting and Sensing for Healthcare 2019-2029" looks at what comes next based on global travel and interviewing by its PhD level analysts in 2018 with continuous updates. IDTechEx has long staged conferences on these subjects and it shares privileged information in the report.

Piezo is already sold as a variety of self-powered sensors but there is more to come. Learn how it is reinvented as paint, print, layers on integrated circuits and in microelectromechanical systems MEMS chips. New applications for lead-based ceramics in new formats are revealed but polymer film and device layers come center stage. New piezotronics means piezoelectric doubles as semiconductor. Piezo-phototronics takes that up a notch. Light modulation enhances performance of photocells, sensitivity of photodetectors, efficiency of an LED, even strain-controlled LED emission directly images force/pressure distribution on the device with micrometer-resolution. The resulting piezopotential gated diodes, strain sensors, force/flow sensors and more revealed in the report promise to be invaluable in healthcare as will mapping pressure distribution on a surface. Integrate with photonic technologies for fast data transmission, processing and recording? Enable the development of highly intelligent human-machine interfaces? A major step towards on-chip recording of mechanical signals by optical means, yet another case of multi-functionality? Hospital pad, pillow and bolt sensors using piezos revealed in 2018 look promising but so do harvesters implanted on the heart and many other emerging capabilities discussed.

The IDTechEx report, "Piezoelectric Harvesting and Sensing for Healthcare 2019-2029" starts with an Executive Summary and Conclusions sufficient for those with limited time to grasp the emerging capabilities, issues and dreams with market forecasts for the piezoelectric harvesting and sensing systems, transducers and materials. Chapter 2 is the introduction giving the global healthcare situation and how energy harvesting and particularly sensors are increasingly vital. Piezoelectrics are at the heart of that. Chapter 4 Fundamentals goes deeper into the operating modes, theory, chemistry and electronics involved even embracing routes to biodegradability.

Chapter 4 reveals many examples of present and future piezoelectric harvesting and sensing in healthcare. It draws lessons from this. Finally Chapter 5 profiles 13 interesting organisations involved in researching, integrating and selling healthcare harvesting and sensor piezoelectric devices and materials

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. Definition and scope
  • 1.2. Primary conclusions
  • 1.3. Prospective healthcare applications for piezotronics
  • 1.4. Piezoelectric harvesting and sensing systems
  • 1.5. Routes to success in piezoelectric energy harvesting
  • 1.6. Battery elimination
  • 1.7. Piezo devices applicational market split 2029
  • 1.8. Global medical sensors market size - 2019 & 2029
  • 1.9. Piezoelectric harvesters and sensors global market value $ billion 2019-2029
  • 1.10. Piezoelectric value chain, energy harvesting and sensing 2029 $ billion by segment
  • 1.11. Piezoelectric EH&S Systems, Transducers, Materials 2019- 2029 $ billion

2. INTRODUCTION

  • 2.1. Scope
  • 2.2. Global healthcare trend
  • 2.3. Global healthcare trend: disease, spend, regional differences
  • 2.4. Two major needs addressed in this report
  • 2.5. What is piezoelectric harvesting and sensing?
  • 2.6. Piezoelectric Advantages
  • 2.7. Manufacture: typical processes
  • 2.8. Printable gallium phosphate
  • 2.9. Modes of operation and standards
    • 2.9.1. Function
    • 2.9.2. Force
    • 2.9.3. Pressure
    • 2.9.4. Standards
  • 2.10. Benefits and challenges of piezoelectric harvesting
  • 2.11. Multifunctional piezoelectric devices: Novasentis Arkema Piezotech
  • 2.12. Some of the main areas of research in piezoelectrics for healthcare

3. FUNDAMENTALS

  • 3.1. Background and Definitions
  • 3.2. Piezo effect - direct
  • 3.3. Basic equations
  • 3.4. Design options
  • 3.5. Molecular models
  • 3.6. Principle of device creation and operation
  • 3.7. Quest for lead-free and new morphologies: zinc oxide
  • 3.8. Vibrational Piezoelectric Energy Harvesters
    • 3.8.1. Overview
    • 3.8.2. Challenges: the quest for power and acoustic bandwidth
    • 3.8.3. Research base: wide acoustic bandwidth piezo harvesting
    • 3.8.4. Parameters of piezoelectrics for vibration harvesting
  • 3.9. Energy harvesting system design
  • 3.10. Piezotronics
    • 3.10.1. Overview
    • 3.10.2. Mechanisms and devices
  • 3.11. Quest for lead-free and new morphologies: zinc oxide
  • 3.12. Piezoelectric polymers
    • 3.12.1. Overview
  • 3.13. Biodegradable piezoelectric sensors and harvester: several options emerging
    • 3.13.1. PLLA biodegradable sensors
    • 3.13.2. PVDF-DNA biodegradable harvesters

4. PIEZOELECTRIC HARVESTING AND SENSING IN HEALTHCARE: EXAMPLES AND LESSONS

  • 4.1. Sensing low level mechanical strain in healthcare
  • 4.2. Piezo harvesters on, in and by the human body
  • 4.3. Implanted defibrillators and pacemakers
  • 4.4. Inner ear
  • 4.5. Wrist health monitor
  • 4.6. Patient behaviour monitoring
  • 4.7. Collagen piezoelectric for disposables, implants, wearables
  • 4.8. Hand controllers
  • 4.9. Wireless sensors, IOT
  • 4.10. Examples of MEMS harvesting
  • 4.11. Progression of integration
  • 4.12. Piezoelectric, pyroelectric, triboelectric combined
  • 4.13. Piezoelectric with triboelectric
  • 4.14. Sensor definition and function
  • 4.15. Sensor requirements by power level
  • 4.16. Signal processing
  • 4.17. Relative advantages
  • 4.18. Multifunctional sensors
  • 4.19. Piezoelectric sensor limitations
  • 4.20. Static sensing
  • 4.21. Temperature effects
  • 4.22. Sensors of biological functions using piezotronics
  • 4.23. Piezoelectric pressure sensing
  • 4.24. Sensor switches
  • 4.25. Point of care biosensors for infectious diseases
    • 4.25.1. Needs
    • 4.25.2. Piezoelectrics in context for bioreceptor biosensors
    • 4.25.3. Piezoelectric bioreceptor biosensors in action
  • 4.26. Microphones Vesper
  • 4.27. Internet of Things healthcare market map

5. INTERESTING ORGANISATIONS IN HEALTHCARE PIEZOELECTRICS

  • 5.1. Algra Switzerland
  • 5.2. Arveni France
  • 5.3. Fraunhofer IKTS Germany
  • 5.4. Georgia Institute of Technology USA
  • 5.5. Holst Centre/TNO Netherlands
  • 5.6. IMEC Belgium
  • 5.7. Imperial College London UK
  • 5.8. Meggitt USA
  • 5.9. Piezo.com USA
  • 5.10. SILEX Sweden
  • 5.11. Tyndall National Institute Ireland
  • 5.12. University of Princeton USA
Back to Top
전화 문의
F A Q