Global Information
회사소개 | 문의 | 위시리스트

전기자동차용 리튬 이온 배터리 시장(2020-2030년)

Lithium-Ion Batteries for Electric Vehicles 2020-2030

리서치사 IDTechEx Ltd.
발행일 2019년 07월 상품 코드 881863
페이지 정보 영문 145 Slides
가격
US $ 5,495 ₩ 6,507,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 5,995 ₩ 7,099,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 7,995 ₩ 9,468,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,495 ₩ 10,060,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.


전기자동차용 리튬 이온 배터리 시장(2020-2030년) Lithium-Ion Batteries for Electric Vehicles 2020-2030
발행일 : 2019년 07월 페이지 정보 : 영문 145 Slides

전기자동차(EV)용 리튬 이온 배터리(LIB: Lithium-Ion Batteries) 시장에 대해 조사했으며, 시장 동향, 리튬 기술, 슈퍼커패시터 vs. LIB, EV에서 LIB의 안전성 문제, 주요 기업 등에 대해 상세하게 분석했습니다.

제1장 주요 요약과 결론

제2장 서론

  • 전기자동차의 기본
  • EV 배터리의 기본
  • 세계에서는 LIB 기가팩토리가 건설 : 생산능력 발표
  • Li-ion 시장에서 보조금 정책의 영향
  • 중국의 EV 배터리 국가 계획 : 보다 좋은 LIB 성능이 요구
  • LIB는 복잡성 감소 경향의 일부
  • 현재는 더 튼튼한 버전이 요구된다
  • Li-ion 배터리의 재활용
  • Less Battery/No Battery의 진보

제3장 리튬 이온 기술

  • 배터리의 패밀리 트리 : 리튬 계
  • 전기자동차용 LIB의 화학적 성질
  • 상용 배터리 패키징 기술
  • 상용 배터리 패키징 기술 비교
  • 배터리의 화학적 성질이 충전/방전에 미치는 영향
  • 성능 비교도
  • Li-ion 원재료 전망
  • LIB용 냉각 시스템
  • LIB를 개선하는 방법은?
  • 성능 향상, 비용 감소
  • LIB의 비용
  • 자동차용 LIB의 열관리
  • Tesla 파악 : 자동차 배터리의 형태와 종류
  • 주행중 충전 및 에너지 독립성은 적은 배터리를 의미
  • 구조적 배터리?
  • 배터리 팩의 규격 부재
  • 고에너지 밀도를 위한 건식 공정

제4장 에너지 밀도 증가

  • 에너지 밀도
  • 폭넓은 전압을 이용한 보다 좋은 배터리
  • 보다 높은 전극 용량
  • 에너지 밀도를 낮추는 전기화학적 불활성 재료

제5장 슈퍼커패시터 vs. LIB

  • 슈퍼커패시터와 LIB 하이브리드
  • 더 뛰어난 배터리와 슈퍼커패시터가 실현될 전망 : 향후의 W/kg vs. Wh/kg
  • 자동차 부문에서의 슈퍼커패시터 : 실례
  • 노상 주행 자동차 부문에서의 슈퍼커패시터
  • 성능 강화와 다용도
  • 슈퍼커패시터 버스, 기타

제6장 EV에서 LIB의 안전성 문제

  • 리튬 이온 관련 화재 및 폭발
  • Nissan Leaf, Jaguar I-Pace, Rimac One의 화재
  • 누군가가 Tesla 배터리에 총알을 발사
  • 잘못된 충전 : Porsche, Smart
  • 호버보드 및 스쿠터
  • Li-ion 고장 및 부실에 의한 생산 지연?

제7장 LIB 제조업체

  • 배터리 산업을 차별화시키는 요인
  • 셀, 모듈, 팩의 차이
  • EV 공급망 : 전기화학 뿐만이 아니다
  • LIB 제조 시스템
  • LIB 제조 시스템 : 셀에서 모듈로
  • LIB 제조 시스템 : 모듈에서 팩으로
  • 배터리 파일럿 라인 및 스케일업 문제
  • 드라이룸의 필요성
  • 전극 슬러리 혼합
  • 적층방법(Stacking methods)
  • 세계의 리더 : CATL(중국)
LSH 19.07.12

"Li-ion batteries for EVs will be a market of over $500bn if certain impediments are overcome."

Electric vehicles and their batteries are becoming a far larger business than most realise. Lithium-ion batteries are the clear winner, with only a few percent of their business threatened by alternatives such as other advanced batteries and supercapacitors even in 2030. To understand that, the whole opportunity from land, water and air to hybrid and pure electric vehicles must be reappraised. Enter the 140+ page IDTechEx report, "Energy Storage for Electric Vehicles 2020-2030" which uses detailed new infograms and graphs to present the full picture in an easily assimilated form.

The largest market for lithium-ion batteries LIB is and will remain electric vehicles, mainly cars, from 2020-2030. In these applications they almost always have the best compromise of performance, cost, weight and size. However, there are surprises revealed when a careful, fact-based analysis is carried out. In 2030, the EV market leaps to over $3 billion but with cars losing share and burgeoning demand for much smaller and much larger battery packs than those used in cars. The report calculates LIB demand if supplies are unconstrained and prices competitive, revealing that current commitments to Gigafactory building are woefully inadequate for meeting this in only a few years from now.

Both the cell and the pack demand are forecasted. Indeed, the detail goes down to 100 types of EV by year and the way engineers are working round the excessive percentage of vehicle cost represented by the battery. One conclusion is that, thanks to energy harvesting on-board, top up charging and other factors, the batteries will drop to only 18% of the ex-factory price of the vehicles in 2030. That is still a huge demand, way in excess of battery manufacturing commitments. Squaring the circle will come from new commitments such as Thailand possibly installing nearly 100GWh of production and sadly setbacks reducing demand. For example, the industry is cutting corners in changing every aspect of the battery while scaling up rapidly and IDTechEx appraises that fires and shutdowns will sometimes result. There are potential shortages of materials and other issues identified in the report because this is sober analysis not evangelism for the industry. For example, IDTechEx argues that cell cost cannot continue to drop sharply as more expensive materials are introduced in the pursuance of higher energy density. Voltage, thermal management and other battery trends are appraised.

The Executive Summary and Conclusions of the report includes ten primary conclusions and forecasts for 11 years of pack number, unit kWh and gross GWh for each of 100 categories of hybrid and pure electric vehicle, land, water and air. It is the only analysis available anywhere in the world with this level of detail. For a quick read, the 13 most important sub-categories for 2030 are summarised and cell and pack cost reduction are predicted. 15 issues and remedies for LIB fires are listed. The Introduction then gives basics, background, problems to be addressed, gigafactory commitments, how currently planned capacity may be apportioned between vehicle and other applications and the situation in China, the largest country market. Trends to greater ruggedness, cost reduction and in some cases less or no battery are explained. Chapter 4 concerns increasing energy density. Chapter 5 addresses supercapacitors as competition and as an enhancer of LIB. Chapter 6 is on the vital matter of LIB safety and Chapter 7 reveals LIB manufacture and its issues.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

Table of Contents

1. EXECUTIVE SUMMARY AND CONCLUSIONS

  • 1.1. What is an electric vehicle?
  • 1.2. Purpose of this report and overview
  • 1.3. Primary conclusions: markets
  • 1.4. Primary conclusions: technical
  • 1.5. Matching LIB supply and IDTechEx assessment of demand
  • 1.6. Major EV applicational categories compared
  • 1.7. Factors driving success of pure electric cars: LIB implications
    • 1.7.1. Range drives success: larger batteries demanded
    • 1.7.2. Rigged markets boost sales
  • 1.8. Very large LIB: growth market now
  • 1.9. EV market analysis
    • 1.9.1. Largest EV manufacturers hybrid and pure electric and their future
    • 1.9.2. Largest sectors: eventually, e-bus/truck will be a bigger market than e-cars
    • 1.9.3. All cars will be pure electric
    • 1.9.4. Overall, pure electric EVs are by far the largest in number
  • 1.10. Battery market analysis
    • 1.10.1. Size needed
  • 1.11. Forecast graphs for 100 EV categories
    • 1.11.1. 100 EV categories - Number (thousand) 2020-2030
    • 1.11.2. 100 EV categories - Leading sectors average kWh
    • 1.11.3. 100 EV categories - Gross (GWh) 2020-2030
  • 1.12. 100 EV categories: forecasting assumptions, characteristics, leaders
    • 1.12.1. Forecasts for cars vary greatly
  • 1.13. How to get EV cost down
    • 1.13.1. LIB battery pack cost 2005-2030
    • 1.13.2. IDTechEx LIB cell cost forecast by application
    • 1.13.3. Killer blow is lower up-front price as LIB cost reduces
  • 1.14. LIB fires in EVs and road to improvement

2. INTRODUCTION

  • 2.1. Electric vehicle basics
    • 2.1.1. Overview
    • 2.1.2. How powertrains affect Li-ion battery needs
  • 2.2. EV battery basics
    • 2.2.1. What does 1 kilowatt-hour (kWh) look like?
    • 2.2.2. Lithium-ion batteries are a huge success
    • 2.2.3. Advantages of Li-ion batteries
    • 2.2.4. Problems with LIB
  • 2.3. The world is building LIB gigafactories: capacity announcements
    • 2.3.1. Total LIB production announced to 2028 (GWh/year)
    • 2.3.2. EV LIB production announced to 2028: how it may be used
    • 2.3.3. LIB production so far announced 2018-2028 ($ billion/year)
    • 2.3.4. Chinese EV battery value chain
  • 2.4. Impact of subsidy policies on the Li-ion market
  • 2.5. National Plan for xEV battery in China: much better LIB performance demanded
  • 2.6. LIB are part of the trend to far less complexity
  • 2.7. More rugged versions needed now
    • 2.7.1. New markets
  • 2.8. Li-ion battery recycling
  • 2.9. Progress to less and no battery
    • 2.9.1. Business case Nikola fuel cell truck
    • 2.9.2. For the Class 8 trucks will fuel cell or battery win?

3. LITHIUM-ION TECHNOLOGY

  • 3.1. A family tree of batteries - Lithium-based
  • 3.2. LIB chemistries for electric cars
  • 3.3. Commercial battery packaging technologies
  • 3.4. Comparison of commercial battery packaging technologies
  • 3.5. Battery chemistry influence on charge/ discharge
  • 3.6. Useful charts for performance comparison
  • 3.7. Li-ion raw materials in perspective
  • 3.8. Cooling systems for LIBs
  • 3.9. How can LIBs be improved?
    • 3.9.1. Overview
    • 3.9.2. Push and pull factors in Li-ion research
    • 3.9.3. Appraisal of cathode chemistry changes: nickel up cobalt down
    • 3.9.4. Changing too fast?
  • 3.10. Performance goes up, cost goes down
  • 3.11. LIB cost
    • 3.11.1. General Motors' view on battery prices
  • 3.12. Thermal management for LIB for vehicles
    • 3.12.1. Overview
    • 3.12.2. Cooling systems for LIBs
  • 3.13. Trying to catch Tesla: car battery formats and types
  • 3.14. Charging with vehicle moving and energy independence means less battery
  • 3.15. Structural batteries?
  • 3.16. Lack of standardisation in terms of battery packs
  • 3.17. Dry processes for higher energy density

4. INCREASING ENERGY DENSITY

  • 4.1. Energy density in context
  • 4.2. Better batteries with a wider cell voltage
  • 4.3. Greater electrode capacity
  • 4.4. Electrochemically inactive materials reduce energy density

5. SUPERCAPACITORS VS LIB

  • 5.1. Supercapacitors and LIB hybrids
  • 5.2. Even better batteries and supercapacitors a real prospect: future W/kg vs Wh/kg
  • 5.3. Supercapacitors in the automotive sector: examples
  • 5.4. Supercapacitors in the on-road automotive sector 2010-2030
  • 5.5. Performance enhancement and multi-purposing
  • 5.6. Supercapacitor buses
  • 5.7. Drayage trucks -LIB in USA or supercapacitor in China?
  • 5.8. Structural supercapacitors ZapGo, Lamborghini, Volvo: can LIB follow?

6. LIB SAFETY ISSUES IN EVS

  • 6.1. Ongoing lithium-ion fires and explosions
  • 6.2. Nissan Leaf, Jaguar I-Pace, Rimac One fires
  • 6.3. Someone fired a bullet into the battery of this Tesla
  • 6.4. Wrong charging: Porsche, Smart
  • 6.5. Hoverboards and scooters
  • 6.6. Next Li-ion failures and production delays due to cutting corners?

7. LIB MANUFACTURE

  • 7.1. What sets the battery industry apart
  • 7.2. Differences between cell, module, and pack
  • 7.3. EV supply chain - not just electrochemistry
  • 7.4. LIB manufacturing system
  • 7.5. LIB manufacturing system - from cell to module
  • 7.6. LIB manufacturing system - from module to pack
  • 7.7. Battery pilot line and scale-up issues
  • 7.8. The need for a dry room
  • 7.9. Electrode slurry mixing
  • 7.10. Stacking methods
  • 7.11. World leader: CATL China
Back to Top
전화 문의
F A Q