Global Information
회사소개 | 문의 | 비교리스트

주목 고정형 에너지 저장 기술 : 잠재성 분석

Potential Stationary Energy Storage Technologies to Monitor

리서치사 IDTechEx Ltd.
발행일 2020년 09월 상품 코드 955709
페이지 정보 영문 120 Slides
US $ 5,750 ₩ 6,792,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 6,250 ₩ 7,383,000 PDF Download (1-5 Users) and 1 Hardcopy help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.
US $ 8,250 ₩ 9,745,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,750 ₩ 10,336,000 PDF Download (6-10 Users) and 1 Hardcopy help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다. 컬러 제본(컬러 하드카피본) 1부가 포함됩니다. FedEx를 이용하여 영국에서 3영업일 이내에 발송합니다.

주목 고정형 에너지 저장 기술 : 잠재성 분석 Potential Stationary Energy Storage Technologies to Monitor
발행일 : 2020년 09월 페이지 정보 : 영문 120 Slides

고정형 에너지 저장 신기술 시장 규모는 2030년 17억 달러 규모로 성장할 전망입니다. 전력 시장에서의 탈탄소화 필요성에 의해 재생에너지에 대한 관심이 높아지고, 에너지 저장 장치 도입이 확대되고 있습니다.

고정형 축전지 기술로서 중력 축전지(GES), 압축 공기 축전지(CAES), 액체 공기 축전지(LAES), 열에너지 저장(TES)의 잠재성을 조사했으며, 에너지 저장 기술의 발전 역사, 고정형 축전지의 중요성, 시장 성장 영향요인 분석, 각 기술의 동작 원리, 주요 기업의 대처, 장단점, 제품 및 프로젝트 동향, 시장 규모 예측, 주요 기업 프로파일 등의 정보를 정리했습니다.

제1장 개요

제2장 전력 그리드와 축전지의 중요성

  • 재생에너지 : 생성 에너지 및 비용 동향
  • 고정형 축전지의 중요성 확대
  • 에너지 저장의 필요성
  • 에너지 저장 기기
  • 에너지 저장 분류
  • 고정형 축전지 시장
  • 고정형 축전지 : 새로운 길
  • 축전지 장려책
  • 성장 촉진요인
  • 재생에너지 자가소비
  • ToU 재정거래
  • Feed-in-Tariff의 단계적 폐지
  • Feed-in-Tariff의 단계적 폐지
  • 수요 전력요금 절감
  • 기타 성장요인 등

제3장 중력 축전지(GES)

  • 중력 축전지(GES)
  • 중력 기술을 이용한 계산
  • 피스톤 기반 GES
  • GES 기술 분류
  • GES : 시장 참여 가능성
  • ARES
    • 기술 개요
    • Traction Drive, Ridgeline
    • 기술 비교 : Traction Drive, Ridgeline
    • 역사
    • 시장 및 기술 분석
  • 피스톤식 중력 축전지(PB-GES)
    • 동작 원리
    • Energy Vault
    • Gravitricity
    • Mountain Gravity Energy Storage(MGES)
  • 지하 양수 발전 축전지(U-PHES)
  • 지하 에너지 저장(UWES)

제4장 압축 공기 축전지(CAES)

  • 발전 역사
  • 기술 개요
  • 결점
  • 비단열 압축 공기 축전지(D-CAES)
  • Huntorf
  • McIntosh
  • 단열 압축 공기 축전지(A-CAES)
  • A-CAES 분석
  • 등온 압축 공기 축전지(I-CAES)
  • 주요 기업
  • 주요 기업과 프로젝트

제5장 액체 공기 축전지(LAES)

  • 발전 역사
  • 주요 기업과 프로젝트
  • 애널리스트의 분석 등

제6장 열에너지 저장(TES)

  • TES 기술 : 개요와 분류
  • Diurnal TES Systems
  • 계절적 시스템/장기간 시스템 등

제7장 기업 개요

LSH 20.09.10

Potential Stationary Energy Storage Technologies to Monitor
Emerging technologies for front-of-meter applications: Gravitational Energy Storage, Compressed Air Energy Storage, Liquified Air Energy Storage, and Thermal Energy Storage. Forecast 2020-2030, Technologies, Markets and Players.

"Emerging technologies with a forecasted market value of $ 1.7 billion in 2030. "

Introduction to mechanical energy storage:

When talking about energy storage it is now common to think about Li-ion batteries, due to their success in the automotive sector, portable electronic devices, and stationary applications. In the last few years Li-ion batteries started to be constantly adopted in stationary energy storage with a power output of few kWs up to MWs scale. Although a powerful device, their application can hardly cover the entire range of power and energy demanded by the electricity grid. If one end is dominated by Li-ion batteries, on the other end, pumped hydro energy storage is the reference system to deliver large power output, and store large amounts of energy able to generate electricity for days. Pumped hydro energy storage was the first large power plant built to generate electricity, and still nowadays is the reference technology for large power output.

Between these two main technologies, a number of new technologies with a power output of tens of MWs are currently approaching the market. In the new report released: "Potential Stationary Energy Storage to Monitor", IDTechEx investigated this new group of technologies aiming to address MWs of power output and long storage time.

The technologies defined as mechanical energy storage include different types of technologies, all of them characterised by a large power output from MW size, and a simple mechanical working principles. Among them:

  • Gravitational Energy Storage
  • Compressed Air Energy Storage
  • Liquid Air Energy Storage

These technologies are based on simple mechanical working principles, which allow them to employ well known components, like pumps, ventilators, cranes, and do not employ dangerous materials. A simple working principle implies high round-trip efficiencies, in most cases close to 80%. Finally, differently from electrochemical systems, mechanical energy storage systems are not affected by self-discharge, allowing them to store electricity for an indefinite amount of time.

Large amounts of energy, similarly to mechanical energy storage systems, could also be stored by hydrogen and ammonia. Storing electricity as chemical energy implies the adoption of other technologies like fuel cells, which strongly affect the overall efficiency of the system.

The growing interest in the renewable energies, driven by the necessity to decarbonise the electricity market, is leading to a growing adoption of energy storage devices. While renewable electricity sources allow us to reduce polluting emissions, their variable nature requires extra systems to adjust the timing of energy production and energy consumption. In addition, the adoption of renewable energies is leading to an upgrade of the electricity grid, shifting the power grid from a centralised model, to decentralised energy production. Therefore, the role of energy storage is constantly growing, and with it the technologies involved.

Report content:

Due to growing interest in energy storage devices, in particular for grid application, IDTechEx releases the new report titled: "Potential Stationary Energy Storage to Monitor", introducing an emerging group of technologies.

The report begins with an introduction about the electricity grid, explaining the role of energy storage systems, and the market these devices can address. In the following chapters, the different mechanical energy storage technologies are investigated. For each technology the working principle is initially explained, followed by an analysis of the main companies involved, showing the main advantages and disadvantages of the systems analysed. Moreover, the executive summary provides the reader with a comparison of the different technologies, showing the different TRL (technology readiness level) and MRL (manufacturing readiness level) of the technologies analysed in the report. A comparison of mechanical energy storage with Li-ion batteries and redox flow batteries allows the reader to appreciate the differences between these technologies. In conclusion, a market forecast for the period 2020-2030, in terms of installed power, energy and market size is provided, together with the technology breakdown.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.



  • 1.1. A Growing Energy Storage Market
  • 1.2. High Potential ES Technologies: Overview
  • 1.3. High Potential ES Technologies: Properties
  • 1.4. High Potential ES Technologies: Technology Segmentation
  • 1.5. Which technology will dominate the market?
  • 1.6. High Potential ES Technologies: Properties Comparison
  • 1.7. High Potential ES Technologies analysis
  • 1.8. Technology/Manufacturing Readiness Level: definitions
  • 1.9. Technology/Manufacturing Readiness Level
  • 1.10. Why not Li-ion or Redox Flow batteries?
  • 1.11. Comparison of energy storage devices
  • 1.12. Market Forecast
  • 1.13. Forecast technology breakdown
  • 1.14. Forecast Methodology
  • 1.15. Forecast Assumptions


  • 2.1. Renewable Energies: Energy generated and cost trend
  • 2.2. The increasingly important role of stationary storage
  • 2.3. Stationary energy storage is not new
  • 2.4. Why We Need Energy Storage
  • 2.5. Energy Storage Devices
  • 2.6. Energy Storage Classification
  • 2.7. ESS, BESS, BTM, FTM
  • 2.8. Stationary Energy Storage Markets
  • 2.9. New avenues for stationary storage
  • 2.10. Incentives for energy storage
  • 2.11. Overview of ES drivers
  • 2.12. Renewable energy self-consumption
  • 2.13. ToU Arbitrage
  • 2.14. Feed-in-Tariff phase-outs
  • 2.15. Net metering phase-outs
  • 2.16. Demand Charge Reduction
  • 2.17. Other Drivers
  • 2.18. Values provided at the customer side
  • 2.19. Values provided at the utility side
  • 2.20. Values provided in ancillary services


  • 3.1.1. Gravitational Energy Storage (GES)
  • 3.1.2. Calculation from Gravitricity technology
  • 3.1.3. Piston Based GES - Energy Stored example
  • 3.1.4. GES Technology Classification
  • 3.1.5. Can the GES reach the market?
  • 3.1.6. Chapter 3. Overview
  • 3.2. ARES
    • 3.2.1. ARES LLC Technology Overview
    • 3.2.2. ARES Technologies: Traction Drive, Ridgeline
    • 3.2.3. Technical Comparison: Traction Drive, Ridgeline
    • 3.2.4. A considerable Landscape footprint
    • 3.2.5. ARES Market, and Technology analysis
  • 3.3. Piston Based Gravitational Energy Storage (PB-GES)
    • 3.3.1. Energy Vault - Technology working principle
    • 3.3.2. Energy Vault - Brick Material
    • 3.3.3. Energy Vault Technology and market analysis
    • 3.3.4. Gravitricity - Piston-based Energy storage
    • 3.3.5. Gravitricity technology analysis
    • 3.3.6. Mountain Gravity Energy Storage (MGES): Overview
    • 3.3.7. Mountain Gravity Energy Storage (MGES): Analysis
  • 3.4. Underground - Pumped Hydro Energy Storage (U-PHES)
    • 3.4.1. Underground - PHES:
    • 3.4.2. U-PHES - Gravity Power
    • 3.4.3. U-PHES - Heindl Energy
    • 3.4.4. Detailed description of Heindl Energy technology
    • 3.4.5. U-PHES - Heindl Energy
    • 3.4.6. Underground - PHES: Analysis
    • 3.5. Underwater Energy Storage (UWES)
    • 3.5.1. Under Water Energy Storage (UWES)
    • 3.5.2. Under Water Energy Storage (UWES) - Analysis


  • 4.1. CAES Historical Development
  • 4.2. CAES Technologies overview
  • 4.3. Drawbacks of CAES
  • 4.4. Diabatic Compressed Energy Storage (D-CAES)
  • 4.5. Huntorf D-CAES - North of Germany
  • 4.6. McIntosh D-CAES - US Alabama
  • 4.7. Adiabatic - Compressed Air Energy Storage (A-CAES)
  • 4.8. A - CAES analysis
  • 4.9. Isothermal - Compressed Air Energy Storage (I - CAES)
  • 4.10. Main players in CAES technologies
  • 4.11. CAES Players and Project


  • 5.1. Liquid Air Energy Storage
  • 5.2. The Dawn of Liquid Air in the Energy Storage Market
  • 5.3. Sumitomo Industries invests in Highview Energy
  • 5.4. Hot and Cold Storage Materials:
  • 5.5. Industrial Processes to Liquify Air
  • 5.6. LAES Historical Evolution
  • 5.7. LAES Companies and Projects
  • 5.8. LAES Players
  • 5.9. LAES Analyst analysis


  • 6.1. TES Technology Overview and Classification
  • 6.2. Diurnal TES Systems - Domestic application
  • 6.3. Diurnal TES Systems - Solar Thermal Power Plants (CSP)
  • 6.4. Seasonal and long-duration TES Systems
  • 6.5. Seasonal TES Systems - Underground TES
  • 6.6. Seasonal TES Systems - Solar Ponds


Back to Top
전화 문의