공지 : 도쿄증권거래소 JASDAQ 스탠다드 시장 신규 상장 관련 안내

Global Information
회사소개 | 문의 | 비교리스트

친환경 수소 생성: 전해조 시장(2021-2031년)

Green Hydrogen Production: Electrolyzer Markets 2021-2031

리서치사 IDTechEx Ltd.
발행일 2021년 03월 상품 코드 997383
페이지 정보 영문 166 Slides
가격
US $ 5,995 ₩ 6,755,000 PDF Download (1-5 Users) help
5명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.
US $ 8,495 ₩ 9,572,000 PDF Download (6-10 Users) help
10명까지 액세스 권한이 부여되는 라이선스입니다. 텍스트 등의 PDF 내용 편집은 불가능합니다. 인쇄횟수에 제한은 없으나, 인쇄물의 이용 범위는 PDF 이용 범위에 준합니다.


친환경 수소 생성: 전해조 시장(2021-2031년) Green Hydrogen Production: Electrolyzer Markets 2021-2031
발행일 : 2021년 03월 페이지 정보 : 영문 166 Slides

본 상품은 영문 자료로 한글과 영문목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

수소경제의 도약이 시작된 것으로 보입니다. 수소경제는 2019년과 2020년 수소시스템 설치가 늘면서 개발에 가장 필수적인 기술인 전해조 시스템 도입으로 시작되었습니다.

IDTechEx는 수소 분야에 대한 수십억 달러의 투자 발표와 특히 유럽에서 국가 수소 계획의 채택이 증가함에 따라 수소와 특히 전해 장치 시장을 빠르게 성장하는 시나리오로 파악하고 있습니다.

수소 기술의 필요성에 대해 조사한 이 보고서는 배터리 솔루션과의 비교를 통해 이른바 수소경제의 실제 필요성을 분석하였습니다.

목차

1. 주요 요약

  • 1.1. 경제적 지원이 필요한 새로운 수소 광고
  • 1.2. 주요 수소 사용자 및 미래의 채택 기업
  • 1.3. 전해저 시스템 개요
  • 1.4. 전해조 시스템 비교 - 작동 매개 변수
  • 1.5. PEMEL-AWE 효율성 추세
  • 1.6. AWE 및 PEMEL 시스템의 장단점
  • 1.7. SOEL 시스템: AWE의 대체 시스템인가?
  • 1.8. 전해조 시장 개요
  • 1.9. 세계의 수소 기업
  • 1.10. 글로벌 전해질 플레이어
  • 1.11. 다운스트림 전해조 구성 요소 벤더
  • 1.12. 전해조 시장 예측(2021-2031년)
  • 1.13. 예측 가정
  • 1.14.전해기 시장의 미래 동향

2. 서론

  • 2.1 수소와 전해조 시스템 소개
  • 2.2 수소 경제
  • 2.3 카본 가격
  • 2.4 수소의 최종 이용자

3. 전해조 기술

  • 3.1.1 전해조 소개
  • 3.1.2 AWE와 PEMEL 시스템의 장단점
  • 3.1.3 SOEL 시스템: AWE의 대체 시스템인가?
  • 3.1.4 수소의 색깔
  • 3.1.5 수소 생산 방법
  • 3.1.6 수소 생산 방법: SMR
  • 3.1.7 수소 생산 방법: POX
  • 3.1.8 수소 생산 방법: ATR
  • 3.2 AWE(Alkaline Water Electrolyzer)

4. 전해조 시장 분석

  • 4.1. 전해조 제조사 분석
  • 4.2. 시장 분석
  • 4.3. 동적 작업 속성
  • 4.4. 수소 시장을 주도하는 유럽
  • 4.5. 유럽의 수소 프로젝트
  • 4.6. 수소 관련 프로젝트
  • 4.7. 전해조 시스템의 비교 - 재료
  • 4.6. 수소 관련 프로젝트
  • 4.8. 전해조 시스템의 비교 -작동 매개 변수
  • 4.9. 다운스트림 전해조 부품 업체
  • 4.10. 세계 전해조 플레이어
  • 4.11. EL 제조사에서 다루는 시장
  • 4.12. IDTexhEx의 인터뷰
  • 4.13. 상업화된 전해조 효율성 비교
  • 4.14. 전해장치 효율성 차트
  • 4.15. PEMEL 효율성 동향
  • 4.16. PEMEL-AWE 효율성 동향

5. 사례 연구

  • 5.1. Nel ASA
  • 5.2. Nel 개요
  • 5.3. Nel 2020 분석
  • 5.4. Plug Power
  • 5.5. Plug Power: 개요
  • 5.6. PlugPower - 인수 및 파트너십
  • 5.7. Plug Power이 자체 개발중인 공급망
  • 5.8. ITM Power
  • 5.9. ITM Power: 2020년의 변혁
  • 5.10. 셰필드의 1GW PEM 전해조 공장 (UK)
  • 5.11. ITM: HRS 구축에 대한 강력한 관여
  • 5.12. ITM Power: 가스 및 가스 그리드 전력 공급 프로젝트
  • 5.13. ITM Power의 산업적 응용을 위한 전해조
  • 5.14. ITM Power - 린드 합작 벤처
  • 5.15. ITM Power 프로젝트
  • 5.16. McPhy
  • 5.17. McPhy 개요
  • 5.18. €18M에서 €198M의 자본 증가
  • 5.19. McPhy의 전략적 파트너
JYH 21.04.05

Title:
Green Hydrogen Production: Electrolyzer Markets 2021-2031
Techno-economic analysis of Alkaline (AWE), PEM (PEMEL), and Solid Oxide (SOEL) electrolyzer systems, with major market players and future green hydrogen production trends.

The development of the hydrogen economy seems to have started. With increasing installations of hydrogen systems in 2019 and 2020, the hydrogen economy began with the most essential technology for its development: the adoption of electrolyzer systems.

From the announcement of multi billion investment in the hydrogen sector, and the growing adoption of national hydrogen plans, particularly in Europe, IDTechEx identify hydrogen and particularly the electrolyzers market as a fast-growing scenario.

Beginning with the necessity of hydrogen technologies, in the 'Green Hydrogen Production: Electrolyzer Markets 2021-2031' report, IDTechEx started to analyse the actual necessity of the so-called hydrogen economy, providing a comparison with battery solutions. Following with an explanation of the European EU-ETS carbon pricing method, its effectiveness and comparison with other existing carbon taxes is shown. Although restrictions to CO2 emissions must be fulfilled by different industries, to achieve this target the adoption/integration of green technologies has to be performed.

To understand how the electrolyzer market will evolve, in the report the main end-users of hydrogen have been investigated, and following the trends analysed.

A deep dive into the different electrolyzer systems is then provided, where differences between the three main electrolyzer systems are provided, in terms of working mechanism, employed materials, system performance, and - a key parameter IDTechEx's view - the different degradation processes taking place.

The adopted materials allow the reader to understand which possible OEMs and eventual technical improvements are possible. Coupled with the company profiles performed by IDTechEx, a complete vision of the electrolyzer market is obtained. On the other end, the different degradation processes taking place in the different components of each electrolyzer, show the reader the technical limits and hence future application of the electrolyzer systems.

With the current state of development, the market is populated with three electrolyzers: alkaline water electrolyzer (AWE), proton exchange membrane electrolyzer (PEMEL), and solid oxide electrolyzers (SOEL), although only the first two are actively commercialised. All three devices employ electricity to split the water molecules into H2 and O2, and differences among the three technologies are given by the ions exchanged between the two electrodes (OH-, H+, and O= for AWE, PEMEL, and SOEL respectively) which involve the adoption of different electrolytes and materials. Different mechanisms and materials directly impact the performance and properties of each of the three electrolyzers.

The AWE systems are the older and most adopted at industrial scale, with first installations occurring in the 1920s. PEMEL devices come from the improvement of PEM fuel cells. The first installations of PEMEL systems were recorded in the 2000s.

The latest and youngest technology, SOEL systems are currently approaching the market. Besides the different ion exchange by the device, this system operates at higher temperature (600-850 Celsius) than PEM or AEL device (both ranging between 50 and 90 Celsius). The higher working operation of this system, although requiring resistant materials and expensive fabrication processes, prevent the utilisation of expensive catalysts, facilitating the decomposition of water molecules, but also allowing the adoption of other fuels, such as CO2 and water vapour, obtaining another important industrial gas feedstock: syngas (CO + H2).

The electrolyzer market is currently split between the two older technologies: alkaline and proton exchange membrane. The early stage of the SOEL technology is slowly approaching the market.

In the final part of the report, the efficiency calculation of commercialised systems has been performed, showing the reader a comparison of PEMEL and AWE systems. From the analysis performed, IDTechEx outlined the future trends of adoption of the main electrolyzer types.

In conclusion, given the detailed investigation IDTechEx performed to understand the current evolution of the electrolyzer market, the latest developments regarding the largest electrolyzer manufacturers are provided. These case studies are clear examples of how the electrolyte manufacturers are approaching the market.

The outcome of the techno-economic investigation provided by the report is a market forecast regarding the amount of electrolyzer systems in MW installed, together with an estimation of the market value.

Analyst access from IDTechEx

All report purchases include up to 30 minutes telephone time with an expert analyst who will help you link key findings in the report to the business issues you're addressing. This needs to be used within three months of purchasing the report.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The new hydrogen hype needs economic support
  • 1.2. Main hydrogen users and future adopters
  • 1.3. Electrolyzer Systems Overview
  • 1.4. Electrolyzer systems comparison - Operating parameters
  • 1.5. PEMEL-AWE Efficiency trend
  • 1.6. PROS and CONS of AWE and PEMEL systems
  • 1.7. SOEL systems: a substitute for AWE?
  • 1.8. Electrolyzer Market Overview
  • 1.9. Hydrogen companies in the world
  • 1.10. Global electrolyzer players
  • 1.11. Downstream electrolyzer component vendors
  • 1.12. Electrolyzer Market Forecast 2021-2031
  • 1.13. Forecast Assumption
  • 1.14. Future trend of the electrolyzer market

2. INTRODUCTION

  • 2.1.1. Introduction to hydrogen and electrolyzer systems
  • 2.2. The Hydrogen Economy
    • 2.2.1. What is a Hydrogen Economy?
    • 2.2.2. The Hydrogen Economy: Overview
    • 2.2.3. Have we found the Chicken and the Egg?
    • 2.2.4. How Green H2 production will increase RES installations
    • 2.2.5. Hydrogen Economy Development Issues
    • 2.2.6. Why not a "Battery Economy"?
    • 2.2.7. What about BEV and FCEV?
    • 2.2.8. BEV and FCEV Efficiency Comparison
    • 2.2.9. When we will see the hydrogen economy
  • 2.3. Carbon Pricing
    • 2.3.1. Where will the hydrogen economy begin?
    • 2.3.2. Carbon pricing
    • 2.3.3. Carbon pricing across the world
    • 2.3.4. Challenges with carbon pricing
    • 2.3.5. Carbon pricing in the European Union
    • 2.3.6. Has the EU ETS had an impact?
    • 2.3.7. CO2 cost impact on Steel industry
    • 2.3.8. CO2 emissions comparison
  • 2.4. Hydrogen End Users
    • 2.4.1. Hydrogen End Users Analysis
    • 2.4.2. IDTechEx Hydrogen consumption forecast: Ammonia
    • 2.4.3. IDTechEx Hydrogen consumption forecast: Refinery
    • 2.4.4. IDTechEx Hydrogen consumption forecast: Methanol
    • 2.4.5. IDTechEx Hydrogen consumption forecast: Steel
    • 2.4.6. Hydrogen adoption in steel production: Overview
    • 2.4.7. Steel production processes
    • 2.4.8. Green hydrogen for steel making industry
    • 2.4.9. CO2 emissions comparison
    • 2.4.10. Green Steel Projects:
    • 2.4.11. Hydrogen for ammonia production
    • 2.4.12. Ammonia: 'The dark side of Hydrogen'
    • 2.4.13. Hydrogen application in refinery process
    • 2.4.14. Gas Blending
    • 2.4.15. Hydrogen Applications

3. ELECTROLYZER TECHNOLOGIES

  • 3.1.1. Electrolyzers Introduction
  • 3.1.2. PROS and CONS of AWE and PEMEL systems
  • 3.1.3. SOEL systems: a substitute to AWE?
  • 3.1.4. The colours of Hydrogen
  • 3.1.5. Hydrogen Production Methods
  • 3.1.6. Hydrogen Production Methods: Steam Reforming (SMR)
  • 3.1.7. Hydrogen Production Methods: Partial Oxidation (POX)
  • 3.1.8. Hydrogen Production Methods: Autothermal Reforming (ATR)
  • 3.2. Alkaline Water Electrolyzer (AWE)
    • 3.2.1. Alkaline Electrolyzer: Overview
    • 3.2.2. AWE electrolyzers systems: Materials, Specifics
    • 3.2.3. Alkaline Electrolyzer: Cathode Reaction
    • 3.2.4. Alkaline Electrolyzer: Cathode Materials (HER)
    • 3.2.5. Alkaline Electrolyzer: Anode Reaction (OER)
    • 3.2.6. AWE Anode-Cathode summary
    • 3.2.7. Alkaline and Anion Exchange Membrane Electrolyzers
    • 3.2.8. AWE system - 'Zero-Gap' configuration advantages
    • 3.2.9. AWE Diaphragm Characteristics
    • 3.2.10. AWE: Spacer and Electrolyte
    • 3.2.11. AWE: Membrane Electrode Assembly (MEA)
    • 3.2.12. AEMWE Overview
    • 3.2.13. Commercial AEM electrolyte and cell performances
    • 3.2.14. Large scale AWE system
    • 3.2.15. AEL Supply chain
    • 3.2.16. Proton Exchange Membrane Electrolyzer (PEMEL)
    • 3.2.17. Overview
    • 3.2.18. PEM electrolyzers systems: Materials, Specifics
    • 3.2.19. Proton Exchange Membrane Electrolyzer
    • 3.2.20. Three Phase Boundary and Proton Exchange Membrane
    • 3.2.21. PEMEL Working Mechanism
    • 3.2.22. PEMEL stack and components
    • 3.2.23. Electrolyzer system: BOP and Stack
    • 3.2.24. OER Electrocatalyst
    • 3.2.25. HER Electrocatalyst
    • 3.2.26. Electrocatalyst Degradation Aspects
    • 3.2.27. PEMEL Membrane: Overview
    • 3.2.28. Membrane degradation problems
    • 3.2.29. Membrane degradation processes
    • 3.2.30. Current Collectors (CCs)
    • 3.2.31. Bipolar Plates (BPs)
    • 3.2.32. Bipolar Plates Materials
    • 3.2.33. Titanium BP drawbacks
    • 3.2.34. PEMEL Technical overview
    • 3.2.35. PEMEL cost breakdown
    • 3.2.36. PEMEL Supply chain
    • 3.3. Solid Oxide Electrolyzer (SOEL)
    • 3.3.1. Solid Oxide Electrolyzer (SOEL)
    • 3.3.2. Overview
    • 3.3.3. Solid Oxide Electrolyzer: Overview
    • 3.3.4. Reversible - SOFC
    • 3.3.5. Solid Oxide Electrolyzer: Solid Electrolyte
    • 3.3.6. Solid Oxide Electrolyzer: Electrodes
    • 3.3.7. SOEL Electrolyzers systems: Materials, Specifics
    • 3.3.8. SOEL Market
    • 3.3.9. SOEL Supply Chain

4. ELECTROLYZER MARKET ANALYSIS

  • 4.1. Electrolyzer Manufacturers: Overview
  • 4.2. Market Overview
  • 4.3. Dynamic Operation Property
  • 4.4. Europe is leading the hydrogen market
  • 4.5. Hydrogen projects in Europe
  • 4.6. Hydrogen related projects
  • 4.7. Comparison of electrolyzer systems - Materials
  • 4.8. Electrolyzer systems comparison - Operating parameters
  • 4.9. Downstream electrolyzers component vendors
  • 4.10. Global electrolyzer players
  • 4.11. Market Addressed by EL manufacturer
  • 4.12. Companies Interviewed by IDTechEx
  • 4.13. Commercialised electrolyzer efficiency comparison
  • 4.14. Electrolyzers efficiency charts
  • 4.15. PEMEL Efficiency trend
  • 4.16. PEMEL-AWE efficiency trend

5. CASE STUDIES

  • 5.1. Nel ASA
  • 5.2. Nel Overview
  • 5.3. Nel 2020 analysis
  • 5.4. Plug Power
  • 5.5. Plug Power: Overview
  • 5.6. PlugPower - Acquisitions and Partnerships
  • 5.7. Plug Power developing its own supply chain
  • 5.8. ITM Power
  • 5.9. ITM Power: 'A transformational 2020'
  • 5.10. 1GW PEM electrolyzer factory in Sheffield (UK)
  • 5.11. ITM strong involvement in HRS deployment
  • 5.12. ITM Power: Power-to-Gas and Gas-Grid projects
  • 5.13. ITM Power electrolyzers for industrial applications
  • 5.14. ITM Power - Linde joint venture
  • 5.15. ITM Power Projects
  • 5.16. McPhy
  • 5.17. McPhy Overview
  • 5.18. From €18m to €198m Capital Increase
  • 5.19. McPhy's strategic Partners
Back to Top
전화 문의
F A Q