Global Information
회사소개 | 문의 | 비교리스트

전류 센서 시장 : 성장, 동향, COVID-19의 영향과 예측(2021-2026년)

Current Sensor Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)

리서치사 Mordor Intelligence Pvt Ltd
발행일 2022년 01월 상품코드 989428
페이지 정보 영문 배송안내 2-3일 (영업일 기준)
가격
US $ 4,750 ₩ 6,364,000 PDF & Excel (Single User License)
US $ 5,250 ₩ 7,033,000 PDF & Excel (Team License: Up to 7 Users)
US $ 6,500 ₩ 8,708,000 PDF & Excel (Site License)
US $ 8,750 ₩ 11,723,000 PDF & Excel (Corporate License)


전류 센서 시장 : 성장, 동향, COVID-19의 영향과 예측(2021-2026년) Current Sensor Market - Growth, Trends, COVID-19 Impact, and Forecasts (2022 - 2027)
발행일 : 2022년 01월 페이지 정보 : 영문

본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

세계의 전류 센서 시장 규모는 2021-2026년의 예측 기간 중 8%의 CAGR로 성장할 것으로 예상되고 있습니다. 저비용이며 정확한 소형 전류 센서 기술의 수요는 과거 10년간 자동차, 상용 및 통신 시스템 등의 산업에서 급성장 했습니다.

  • 배터리 구동 재생에너지 애플리케이션의 사용 증가가 시장을 촉진하고 있습니다. 배터리 잔량을 추정하고, 회로와 Li+ 배터리를 과전류 상태로부터 보호하기 위한 고정도, 초저전력 솔루션에서는 전류 센서가 필요합니다.
  • 또한 에너지에 대한 세계의 수요와 환경의식의 전체적인 확대에 대한 우려가 높아지는 가운데 파워 일렉트로닉스 애플리케이션의 설계자는 효율을 개선하기 위한 끊임없는 압력에 노출되어 있습니다. 또한 이 설계는 태양에너지에 대한 투자에 대해 가능한 한 최고의 투자수익률을 실현하기 위해 와트당 비용을 최소한으로 억제하는 것에 중점을 두고 있습니다. 이 요인에 의해 전류 센서의 수요가 증가합니다.
  • 그러나 COVID-19의 유행에 의해 해운 및 배송 서비스는 큰 영향을 받습니다. 대부분의 자동차 제조업체, 가전제품 제조업체 및 Tier 1 공급업체는 조업을 정지하거나 가동률을 줄이고 있습니다. 이것에 의해 적어도 단기적으로는 자동차 및 가전제품에 사용되는 반도체의 수요가 감소했습니다. 또한 현재의 센서를 제조하는 백엔드 프로세스, 조립 및 테스트는 웨이퍼 제조 및 FEP(front-end processes)보다 훨씬 더 노동 집약적인 것을 생각하면 수요가 확대하기 시작하면 상당한 보틀넥이 될 가능성이 있습니다. 또한 수요가 회복하기 시작하며 공급망의 모든 링크에 그것을 지원하기 위해 필요한 재고와 용량이 있는 경우에도 부품의 목적지로의 시기적절한 운송에는 물류상 과제가 남아 있습니다.

전류 센서 시장을 조사했으며, 시장 개요, 시장 성장요인 및 저해요인 분석, 유형별·지역별 시장 규모의 추이와 예측, 경쟁 구도, 주요 기업의 개요, 시장 기회 등의 정보를 정리하여 전해드립니다.

목차

제1장 서론

제2장 조사 방법

제3장 주요 요약

제4장 시장 역학

  • 시장 개요
  • 시장 촉진요인
    • 배터리 구동 재생에너지 애플리케이션의 사용 증가
    • IoT와 Iiot의 대규모 상품화
  • 시장 억제요인
    • 신규 시장 진출업체에게 영향을 미치는 센서 컴포넌트의 평균 판매 가격 하락
    • Covid-19 팬데믹에 의한 공급망 분포에 대한 영향
  • 업계의 밸류체인 분석
  • 업계의 매력 - Porter's Five Forces 분석
    • 신규 진출업체의 위협
    • 구매자의 교섭력/소비자의 교섭력
    • 공급 기업의 교섭력
    • 대체품의 위협
    • 경쟁 기업간 경쟁 관계

제5장 시장 세분화

  • 유형별
    • 홀 효과 센서
    • 광섬유 전류 센서
    • 유도 전류 센서
  • 최종사용자별
    • 자동차
    • 가전
    • 통신 및 네트워킹,
    • 의료
    • 에너지와 전력
    • 산업
    • 기타 최종사용자
  • 지역별
    • 북미
    • 유럽
    • 아시아태평양
    • 기타 지역

제6장 경쟁 구도

  • 기업 개요
    • Allegro MicroSystems, LLC
    • TDK Corporation(TDK-Micronas GmbH)
    • Infineon Technologies AG
    • Melexis NV
    • Honeywell International Inc.
    • Asahi Kasei Microdevices Corporation
    • ABB Group
    • NK Technologies
    • Tamura Corporation
    • Vacuumschmelze GmbH & Co KG

제7장 투자 분석

제8장 시장 기회 및 향후 전망

KSA 21.02.23

The current sensor market is anticipated to grow at a CAGR of 8% during the forecast period of 2021 to 2026. The demand for low-cost, accurate, and small-size current sensor solutions has grown rapidly during the last decade, in industrial, automotive, commercial, and communications systems. New design concepts and the systematic utilization of advanced BiCMOS technology have entitled further improvements in the IC performance. It has also opened the path to new product approaches by supporting the integration of additional functions, such as power protection, in the same current sensor IC. If further implemented by the manufacturing players to manufacture current sensors by a focus towards Improving IC Performance, this can become a trend towards the next generation of fully integrated low-cost current sensor devices.

Key Highlights

  • Increasing the use of battery-powered and renewable energy applications drives the market. Smartphones, tablets, and other portable devices are requiring increasingly smaller form factors and lower rates of power consumption. A highly accurate, ultra-low-power solution for estimating remaining battery life and for protecting the circuitry and Li+ battery from overcurrent conditions, the requirement of current sensors is a necessity. Open-loop sensors are typically used in battery-powered applications. They require less power than closed-loop sensors and are better able to withstand overloads. According to Leftronic Inc., 2.71 billion people in the world own a smartphone in 2019, and by 2020, the number of smartphone users is projected to reach 2.87 billion. This further drives more demand for current sensors.
  • Further, with increasing concerns about the global demand for energy and the overall expansion of environmental awareness, designers for power electronics applications are under constant pressure to improve efficiency. The advent of the smart grid, grid-tied photovoltaic (PV), and some other grid-tied renewable energy systems require the growth of high-efficiency power inverters. The signal should be compliant with the utility system's requirements for which current sensors are needed in the systems' control loops to ensure proper connection to the grid. The sensors must not only accurately measure both AC and DC current they must have high dynamic performance. Also, the design is also focused on minimizing the cost per watt in an effort to deliver the best possible return on investment in solar energy. This factor drives the demand for the current sensor.
  • Large scale commercialization of IoT and IIoT is driving the current sensor market. According to Ericsson, the number of cellular IoT connections is expected to reach 3.5 billion in 2023. Condition-based monitoring (CBM) programs are undergoing an extreme makeover as part of the Industrial Internet of Things (IIoT) concept integrating through the factory automation world. The eddy current indusctive sensors hinder fatal failure by controlling the current flow through CBM in the equipment. Sensors inducing eddy currents operates through high frequency electro-magnetic field, and its applications are found in the nuclear power industry, which uses eddy current sensors in CBM systems that monitor shafts and pumps that are running at high temperatures and high pressure. Other CBM applications include the gas turbine blade gap and turbine blade tip timing measurements. These factors drive the demand for the current sensor market.
  • However, due to the COVID-19 situation, shipping and delivery services are highly affected. Most car manufacturers, consumer electronic manufacturers, and tier-1 suppliers have had to suspend operations or are functioning at reduced capacity. This has resulted in a reduction in demand for the semiconductors used in cars and consumer electronics, at least in the short term. Further, considering the backend process of making current sensors, the assembly, and testing being far more labor-intensive than wafer fabrication and the front-end processes, there could potentially be a substantial bottleneck once demand starts to grow. Also, when demand starts picking up, and every link in the supply chain has the required inventory and capacity to support it, there will still be a logistics challenge in transporting parts to their destinations in a timely manner.
  • Currently, companies such as Pololu Corporation are further shipping the sensors for critical requirements instead of current sensors, including fighting the coronavirus. Also, as of March 2020, in India, as the COVID-19 virus outbreak disrupts supply chains, automakers and manufacturers of electronic goods in India were paying excessive rates to fly down spares and components from China and South Korea, but now the shipment rate has fallen down currently.

Key Market Trends

Hall Effect Sensors in Automotive Sector to Witness a Significant Growth

  • With increase advancement technology in automotive, the trends towards electric vehicle production are highly being recommended in various countries. A complex architectural diagram of an electric car generally incorporates 15-20 current sensors. Other than this, 2-3 current sensors are needed for brushless (BLDC) electric motor control. The EVs of companies like BMW, Volkswagen, etc. use this kind of motor-control-current device.
  • Typically, current sensors are found battery current monitoring, solar power inverters, and power inverters that drive traction motors in mid and full hybrid electric vehicles. CMOS Hall-effect based magnetic sensors integrate advanced features and provide high-level output signals functionality. Sophisticated magnetic sensors hold programmable memory and even microcontroller logic allowing for a fully custom calibrated output. Also, it is possible to implement standard interfaces that simplify communication with other circuits in EV.
  • Further, the hybrid electric vehicle (HEV) is quickly becoming the most popular green car and employ complex power electronic circuitry to control the flow of electric energy through the vehicle. In a single motor HEV, the motor acts as a drive motor in parallel with the internal combustion engine, or as a generator to charge the battery during regenerative braking. A typical HEV contains various systems that require electrical current sensors for maximally efficient operation, including AC motor and DC-DC converter applications.
  • Players such as Allegro has developed a broad family of Hall-effect current sensor integrated circuits (ICs) that are ideally suited for HEV applications. The features include signal processing and package design innovations enabling 120 kHz output bandwidth, highest current resolution, lowest noise spectral density Hall sensor ICs in the marketplace, reduced power loss through-hole compliant, and low-resistance integrated conductor packages.
  • Further, in March 2019, Allegro MicroSystems launched its latest Hall effect current sensor IC, which delivers its highest speed and accuracy in 400A sensing applications to date. It is suited for hybrid and electric vehicle inverter applications that need high accuracy sensing to 1000Amps or more, the ACS70310 offers diagnostic functions that can help improve functional safety and reliability.
  • Further, in North America, with a high estimated production of electric vehicles of all power types, the demand for the current sensor will increase significantly. In April 2020, Audi announced to manufacture 30 electrified models for sale till 2025, with 20 of those vehicles will be fully electric. In the United States, Audi has already introduced five production models, which are Audi Q5 TFSI e, A7 TFSI e, and A8 TFSI e plug-in hybrid electric vehicles (PHEV) as well as the e-tron all-electric SUV and upcoming e-tron Sportback. The instances preferably consider the demand for the current sensor during the present and forecasted future.

Asia-Pacific Accounts For Significant Market Growth

  • Asia-Pacific is anticipated to account for significant growth. The population growth and rapid urbanization in developing economies, such as China, India, and Japan, have prompted the speedy development in the region, which will boost the demand for the current sensor from end-users such as energy, automotive, telecom and networking, industrial, and healthcare.
  • According to the Consumer Electronics and Appliances Manufacturers Association, in India, the appliances and consumer electronics industry is projected to double to Rs 1.48 lakh crore by 2024-25. As players are manufacturing fully integrated and programmable current sensors based on BiCMOS or CMOS technology, with increasing production of consumer electronics, the demand for these current sensors will increase effectively.
  • In robots, there are hundreds of sensors made today to sense virtually anything. Current sensors output an analog voltage between 0V to 5V, which can be processed further using a microcontroller in the robots. According to Chinese Academy of Sciences, Chinese robot market has achieved a scale of USD 4.25 billion in the first half of 2019, Also, according to Chinese Robotic Industry Development, by 2021, due to rapid development of robots designed for new application scenarios, including parking robots and supermarket robots, the service-robot market of China will hopefully approach USD 4 billion. This will further hold the demand of current sensors.
  • Aceinna, Inc. has its manufacturing operations in China. In December 2019, the company announced that its industry-leading MCx1101 family of current sensors also now supports 3.3-volt applications. The highly accurate and wide bandwidth AMR-based current sensors are now available for a wide range of ADC and microprocessor-based power systems and its applications. The high bandwidth of the MCx1101 is also ideal for fast switching SiC and GaN-based power stages enabling power system designers to make use of the higher speeds and smaller components enabled by wide band-gap switches. Its main applications are mostly in Industrial Robots and Manufacturing Systems, Automotive EV Charging Stations, etc.
  • Further Asian players are introducing new current sensor products to focus on precision. In Japan, Koshin Electric Corporation, Japan announced to introduce open-loop HP-PN series current sensor in May 2020. It features 5V single power supply, voltage output specifications, and attributes high precision for industrial devices by digital adjustment (output, offset, temperature correction). Its main applications where it is anticipated to be implied are Inverters, Servo drivers, NC machine tools, and Power supply equipment.
  • Further, players are focused on manufacturing a current sensor that can have the features of overcurrent detection. In November 2019, Asahi Kasei Microdevices Corporation (AKM), Japan, developed the CZ-3AGx series coreless current sensors (5V input and 3V output) in addition to the CZ-3A0x series in production (3.3V input, 3.3V output, and corresponding to the UL safety standard UL61800-5-1 for industrial equipment). It has two overcurrent detection circuits, and this new series can be used for many applications, including AC motors and general-purpose inverters that require a sensor input to 3V A/D converters with usage in UPSes, Power Conditioners, and DC motors.

Competitive Landscape

The current sensor market is highly fragmented, with several companies operating in the segment. Leading players are currently focusing on providing cost-competitive products to the customers, which caters to an intense rivalry in the market. Key players are Allegro MicroSystems, LLC, Infineon Technologies AG, etc. Recent developments in the market are -

  • December 2019 - Purdue University innovators developed a sensing module that works with machine learning (ML) for applications ranging from electric cars to manufacturing and home design. It is a small and noninvasive sensor that monitors electric currents. In applications such as electric vehicles, include using a resistor as a current sensor or using a non-invasive Hall sensor, which cannot measure small currents. The Purdue team uses a machine-learning algorithm with the sensor to help interpret and gather data such as energy usage, problems with the current, and the best approaches to manufacturing.
  • July 2019 - TT Electronics announced an innovative approach for developing customized solutions for the harsh environmental requirements of the aerospace and defense market. Building on the company's existing range of current sensor modules, this new and highly diverse modular technique leverages Hall-Effect and Rogowski sensors, as well as amplifiers and digital converters. Ambient temperature ranges of -55°C to +125°C and a 30A to 2000A AC or DC capability make these current sensor modules ideally suited for electrical systems, generators, and motor drive applications. With a generic single-phase configuration, its TRL5 standard circuit boards can be coated, fully potted, built into a housing, or re-configured into a multi-phase product.

Additional Benefits:

  • The market estimate (ME) sheet in Excel format
  • 3 months of analyst support

TABLE OF CONTENTS

1 INTRODUCTION

  • 1.1 Study Deliverables
  • 1.2 Study Assumptions
  • 1.3 Scope of the Study

2 RESEARCH METHODOLOGY

3 EXECUTIVE SUMMARY

4 MARKET DYNAMICS

  • 4.1 Market Overview
  • 4.2 Market Drivers
    • 4.2.1 Increasing Use of Battery-Powered and Renewable Energy Applications
    • 4.2.2 Large Scale Commercialization of IoT and Iiot
  • 4.3 Market Restraints
    • 4.3.1 Falling Average Selling Prices of Sensor Components Affecting New Market Entrants
    • 4.3.2 Affect in Suuply Chain Distribution Due to Covid-19 Pandemic
  • 4.4 Industry Value Chain Analysis​
  • 4.5 Industry Attractiveness - Porter's Five Forces Analysis​
    • 4.5.1 Threat of New Entrants
    • 4.5.2 Bargaining Power of Buyers/Consumers
    • 4.5.3 Bargaining Power of Suppliers
    • 4.5.4 Threat of Substitute Products
    • 4.5.5 Intensity of Competitive Rivalry

5 MARKET SEGMENTATION

  • 5.1 Type
    • 5.1.1 Hall Effect Sensors
      • 5.1.1.1 Open Loop
      • 5.1.1.2 Closed Loop
      • 5.1.1.3 Others (Split Core Hall Effect Current Sensor)
    • 5.1.2 Fiber Optic Current Sensors
    • 5.1.3 Inductive Current Sensors
  • 5.2 End-User
    • 5.2.1 Automotive
    • 5.2.2 Consumer Electronics
    • 5.2.3 Telecom and Networking,
    • 5.2.4 Medical
    • 5.2.5 Energy and Power
    • 5.2.6 Industrial
    • 5.2.7 Other End-Users
  • 5.3 Geography
    • 5.3.1 North America
      • 5.3.1.1 United States
      • 5.3.1.2 Canada
    • 5.3.2 Europe
      • 5.3.2.1 Germany
      • 5.3.2.2 United Kingdom
      • 5.3.2.3 France
      • 5.3.2.4 Rest of Europe
    • 5.3.3 Asia-Pacific
      • 5.3.3.1 India
      • 5.3.3.2 China
      • 5.3.3.3 Japan
      • 5.3.3.4 Rest of Asia-Pacific
    • 5.3.4 Rest of the World
      • 5.3.4.1 Latin America
      • 5.3.4.2 Middle-East and Africa

6 COMPETITIVE LANDSCAPE

  • 6.1 Company Profiles
    • 6.1.1 Allegro MicroSystems, LLC
    • 6.1.2 TDK Corporation (TDK-Micronas GmbH)
    • 6.1.3 Infineon Technologies AG
    • 6.1.4 Melexis NV
    • 6.1.5 Honeywell International Inc.
    • 6.1.6 Asahi Kasei Microdevices Corporation
    • 6.1.7 ABB Group
    • 6.1.8 NK Technologies
    • 6.1.9 Tamura Corporation
    • 6.1.10 Vacuumschmelze GmbH & Co KG

7 INVESTMENT ANALYSIS

8 MARKET OPPORTUNITIES AND FUTURE TRENDS

Back to Top
전화 문의
F A Q