Global Information
회사소개 | 문의

세계의 엑소스켈레톤(외골격) 웨어러블 로봇 시장 : 시장 점유율, 시장 전략, 시장 예측(2019-2025년)

Wearable Robots, Exoskeletons: Market Shares, Market Strategies and Market Forecasts, 2019 to 2025

리서치사 WinterGreen Research, Inc.
발행일 2019년 02월 상품 코드 344196
페이지 정보 영문 525 Pages; 181 Tables & Figures
가격
US $ 4,400 ₩ 5,002,000 PDF by E-mail (Single User License)
US $ 8,800 ₩ 10,004,000 PDF by E-mail (Web Posting License)


세계의 엑소스켈레톤(외골격) 웨어러블 로봇 시장 : 시장 점유율, 시장 전략, 시장 예측(2019-2025년) Wearable Robots, Exoskeletons: Market Shares, Market Strategies and Market Forecasts, 2019 to 2025
발행일 : 2019년 02월 페이지 정보 : 영문 525 Pages; 181 Tables & Figures

이 페이지에 게재되어 있는 내용은 최신판과 약간 차이가 있을 수 있으므로 영문목차를 함께 참조하여 주시기 바랍니다. 기타 자세한 사항은 문의 바랍니다.

엑소스켈레톤(외골격) 웨어러블 로봇 시장은 2018년의 1억 3000만 달러에서 2025년까지 52억 달러로 확대될 것으로 예측됩니다.

세계의 엑소스켈레톤(외골격) 웨어러블 로봇 시장에 대해 조사분석했으며, 시장의 정의와 시장 역학, 시장 점유율과 시장 예측, 제품 개요, 기술, 주요 기업 등에 관한 정보를 정리하여 전해드립니다.

제1장 엑소스켈레톤 웨어러블 로봇 시장의 설명과 시장 역학

  • 엑소스켈레톤 웨어러블 로봇 시장의 정의
  • 시장 성장 촉진요인
  • 뇌졸중 재활치료
  • 산업용 액티브/패시브 엑소스켈레톤 웨어러블
  • 마비 환자는 통증 자극기의 도움으로 다시 걷고 있다.
  • 인간 증강

제2장 엑소스켈레톤 시장 점유율과 시장 예측

  • 엑소스켈레톤 시장 성장 촉진요인
  • 엑소스켈레톤 웨어러블 시장 점유율과 예측
  • 의료용 엑소스켈레톤 웨어러블 시장 점유율
  • 의료용 엑소스켈레톤 시장 예측
  • 의료용 엑소스켈레톤 웨어러블 시장 예측
  • 군용 엑소스켈레톤 웨어러블 시장 점유율
  • 군용 엑소스켈레톤 웨어러블 시장 예측
  • 법집행기관·퍼스트 리스폰더용 엑소스켈레톤 웨어러블 시장 예측
  • 산업용 엑소스켈레톤 웨어러블 시장 점유율
  • 상업용 엑소스켈레톤 웨어러블 시장 예측
  • 엑소스켈레톤 로봇의 지역별 분석

제3장 엑소스켈레톤 웨어러블 로봇 제품

  • Ekso
  • Rewalk
  • Lockheed Martin 엑소스켈레톤 설계
  • Berkeley Robotics Laboratory 엑소스켈레톤
  • Bionic
  • Reha-Stim Harness
  • CAR 설계에 의한 엑소스켈레톤
  • Sarcos
  • Cyberdyne
  • Berkley Robotics Laboratory 엑소스켈레톤
  • Rex Bionics
  • US Bionics
  • Noonee
  • Hocoma
  • AlterG : PK100 PowerKnee
  • Catholic University of America : 팔치료 로봇 ARMin III
  • 미 특수전사령부의 웨어러블 엑소스켈레톤
  • Revision Military : 키네틱 조작 슈트(Kinetic Operations Suit)
  • HEXORR : 외골격 손 재활치료 로봇
  • Honda
  • Revision Military : 외골격 통합 병사 보호 시스템
  • Mira Lopes 보행 재활치료 디바이스
  • China North Industries Group Corporation(NORINCO)
  • 러시아군 : 2020년까지 전투용 엑소스켈레톤을 계획
  • 영국의 엑소스켈레톤
  • University of Texas(오스틴) : 상체 재활치료용 엑소스켈레톤 로봇
  • Daewoo가 한국의 조선 근로자용 엑소스켈레톤 로봇의 시험을 개시
  • Panasonic

제4장 엑소스켈레톤 기술

제5장 엑소스켈레톤 기업 개요

  • AlterG
  • Berkeley Robotics Laboratory
  • CAR
  • Bionik Laboratories / Interactive Motion Technologies(IMT)
  • CAREX
  • Catholic University of America
  • China North Industries Group Corporation(NORINCO)
  • Cyberdyne
  • Ekso Bionics
  • Fanuc
  • Focal Meditech
  • HEXORR
  • Homoca
  • Honda Motor
  • Interaxon
  • KDM
  • Levitate Technologies
  • Lockheed Martin
  • Lopes
  • MRISAR
  • Myomo
  • Noonee
  • Orthocare Innovations
  • Panasonic
  • Parker Hannifin
  • Reha Technology
  • Revision Military
  • ReWalk Robotics
  • RexBionics
  • Robotdalen
  • Rostec
  • RU Robots
  • Sarcos
  • Shepherd Center
  • Socom
  • SuitX
  • Trek Aerospace
  • University of Twente
  • United Instrument Manufacturing Corporation
  • 기타
KSA 19.02.13

Wearable Robots leverage better technology, they support high quality, lightweight materials and long life batteries. Wearable robots, exoskeletons are used for permitting workers to lift 250 pounds and not get hurt while lifting, this is as close to superhuman powers as the comic books have imagined. The exoskeletons are used to assist patients with disabilities and war fighters with enormous excess baggage. Exoskeletons are as easy to use as getting dressed in the morning: Designs with multiple useful features are available.

Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable aerospace workers to work more efficiently when building or repairing airplanes. Industrial robots are very effective for ship building where heavy lifting can injure workers.

Exoskeleton devices have the potential to be adapted further for expanded use in every aspect of medical rehabilitation, industry, the military, and for first responders. Workers benefit from powered human augmentation technology because they can offload some of the dangerous part of lifting and supporting heavy tools. Robots assist wearers with lifting activities, improving the way that a job is performed and decreasing the quantity of disability. For this reason, it is anticipated that industrial exoskeleton robots will have very rapid adoption once they are fully tested and proven to work effectively for a particular task.

Exoskeletons are being developed in the U.S., China, Korea, Japan, and Europe. They are generally intended for medical, logistical and engineering purposes, due to their short range and short battery life. Most exoskeletons can operate independently for several hours. Chinese manufacturers express hope that upgrades to exoskeletons extending the battery life could make them suitable for frontline infantry in difficult environments, including mountainous terrain.

Exoskeletons are capable of transferring the weight of heavy loads to the ground through powered legs without loss of human mobility. This can increase the distance that soldiers can cover in a day, or increase the load that they can carry though difficult terrain. Exoskeletons can significantly reduce operator fatigue and exposure to injury. Industrial robots help with lifting, walking, and sitting Exoskeletons can be used to access efficiency of movement and improve efficiency.

Medical and military uses have driven initial exoskeleton development. Industrial workers and warfighters can perform at a higher level when wearing an exoskeleton. Exoskeletons can enable aerospace workers to work more efficiently when building or repairing airplanes. Industrial robots are very effective for ship building where heavy lifting can injure workers. New market opportunities of building and repair in the infrastructure, aerospace, and shipping industries offer large opportunity for growth of the exoskeleton markets.

Wearable robots, exoskeletons units are evolving additional functionality rapidly. Wearable robots functionality is used to assist to personal mobility via exoskeleton robots. They promote upright walking and relearning of lost functions for stroke victims and people who are paralyzed. Exoskeletons are helping people relearn to move after a stroke by creating new muscle memory. Exoskeleton s deliver higher quality rehabilitation, provide the base for a growth strategy for clinical facilities.

In the able-bodied field, Ekso, Lockheed Martin, Sarcos / Raytheon, BAE Systems, Panasonic, Honda, Daewoo, Noonee, Revision Military, and Cyberdyne are each developing some form of exoskeleton for military and industrial applications. The field of robotic exoskeleton technology remains in its infancy.

Exoskeleton Wearable Robots markets at $130 million in 2018 are anticipated to reach $5.2 billion by 2025. Most of the measurable revenue in 2018 is from medical exoskeletons. New technology from a range of vendors provides multiple designs that actually work and will be on the market soon. This bodes well for market development.

Key Topics:

  • Medical Exoskeleton
  • Warfighter Exoskeleton
  • First Responder Exoskeleton
  • Industrial Exoskeleton
  • Exoskeletons
  • Robotic Technologies Leverage Neuroplasticity
  • Wearable Robotics
  • Strengthen The Upper Extremity
  • Wearable Robots
  • Strengthen The Lower Extremity
  • Hand Assembly Exoskeleton
  • Warehouse Exoskeleton
  • Shipbuilding Exoskeleton
  • Aerospace Exoskeleton
  • Walking Assist Exoskeleton
  • Work Efficiency Exoskeleton
  • Measurement
  • Physical Automation
  • Hip Work Exoskeleton
  • Wrist Work Exoskeleton
  • Exoskeleton Software
  • Anti-Gravity Exoskeleton
  • Wearable Robot Manufacturing
  • Wearable Robot Shipbuilding,
  • Wearable Robot Warehouse
  • Wearable Robot Construction

Companies Profiled:

  • Ekso Bionics
  • Sarcos / Raytheon
  • Lockheed Martin
  • BAE Systems
  • Panasonic
  • Honda
  • Daewoo
  • Noonee
  • Revision Military
  • China North Industries Group Corporation (NORINCO)
  • Rex Bionics
  • Parker Hannifin
  • Cyberdyne
  • Sarcos
Market Participants
  • AlterG
  • Ekso Bionics
  • Hocoma
  • Parker Hannifin
  • Revision Military
  • ReWalk Robotics
  • RexBionics
  • Rostec
  • Sarcos
  • University of Twente
  • Catholic University of America
  • United Instrument Manufacturing Corporation
  • Bionik Laboratories / Interactive Motion Technologies (IMT)
  • Catholic University of America
  • Fanuc
  • Interaxon
  • KDM
  • Lopes Gait Rehabilitation Device
  • MRISAR
  • Myomo
  • Orthocare Innovations
  • Reha Technology
  • Robotdalen
  • Sarcos
  • Shepherd Center
  • Socom (U.S. Special Operations Command)
  • Trek Aerospace
  • United Instrument Manufacturing Corporation

The study has 525 pages and 181 tables and figures.

Table of Contents

WEARABLE ROBOTS, EXOSKELETONS: MARKET SHARES, MARKET STRATEGY, AND MARKET FORECASTS, 2019 TO 2025

  • WEARABLE ROBOT EXOSKELETON EXECUTIVE SUMMARY
  • Wearable Robot Exoskeleton Market Driving Forces
    • Industrial Exoskeleton Devices Positioned to Serve Commercial Wearable Purposes
    • Transition from Military Markets to Commercial Exoskeleton Markets
  • Wearable Exoskeleton Market Shares

1. WEARABLE ROBOT EXOSKELETON MARKET DESCRIPTION AND MARKET DYNAMICS

  • 1.1. Wearable Robot Exoskeleton Market Definition
  • 1.2. Market Growth Drivers For Exoskeletons
    • 1.1.1. Exoskeleton Suit
    • 1.1.2. Running with Robots
    • 1.1.3. Use of Video Game Technology In PT
    • 1.1.4. Telemedicine Growing Trend In The Physical Therapy
  • 1.2. Stroke Rehabilitation
    • 1.2.1. Home Mobility Exoskeletons
    • 1.2.2. Exoskeleton Able-Bodied Industrial Applications
  • 1.3. Industrial Active and Passive Wearable Exoskeletons
  • 1.4. Paralyzed Patients Are Walking Again With Help From Pain Stimulator
  • 1.5. Human Augmentation

2. EXOSKELETON MARKET SHARES AND MARKET FORECASTS

  • 2.1. Exoskeleton Market Driving Forces
    • 2.1.1. Industrial Exoskeleton Devices Positioned to Serve Commercial Wearable Purposes
    • 2.1.2. Military Exoskeleton Markets Shift
  • 2.2. Wearable Exoskeleton Market Shares and Forecasts
  • 2.3. Wearable Medical Exoskeleton Market Shares
  • 2.4. Medical Market Forecasts for Exoskeletons
    • 2.4.1. Able-Bodied Exoskeletons
    • 2.4.2. Ekso Rehabilitation Robotics
    • 2.4.3. Ekso GT
    • 2.4.4. Parker-Hannifin's Indego
    • 2.4.5. Hocoma
    • 2.4.6. AlterG® Anti-Gravity Treadmill in Action
    • 2.4.7. Medical Rehabilitation Robot Market Analysis
    • 2.4.8. Paralyzed Patient Medical Exoskeleton Market
  • 2.5. Wearable Medical Exoskeleton Market Forecasts
  • 2.6. Wearable Military Exoskeleton Market Shares
    • 2.6.1. UK Armed Police Super-Light Graphene Vests from US Army
    • 2.6.2. Honda Builds Unique Transportation Exoskeleton Device Market
    • 2.6.3. Lockheed
    • 2.6.4. Military Exoskeleton Robots Market Shares, Units and Dollars
  • 2.7. Wearable Military Exoskeleton Market Forecasts
  • 2.8. Wearable Law Enforcement and First Responder Exoskeleton Market Forecasts
  • 2.9. Wearable Industrial Exoskeleton Market Shares
  • 2.10. Wearable Commercial Exoskeleton Market Forecasts
    • 2.10.1. Commercial Exoskeleton Market Segments
    • 2.10.2. US Infrastructure: Bridges
    • 2.10.3. Aerospace
    • 2.10.4. Exoskeletons Change the Face of Shipbuilding
    • 2.10.5. Industrial Wearable Robot Shipyard Exoskeleton
    • 2.10.6. Industrial Wearable Robots, Exoskeleton Robot Market Segments
    • 2.10.7. Save Lives and Prevent Injury
    • 2.10.8. Korea
  • 2.11. Exoskeleton Robots Regional Analysis
    • 2.11.1. US
    • 2.11.2. Europe

3. WEARABLE ROBOT EXOSKELETON PRODUCTS

  • 3.1. Ekso
    • 3.1.1. Ekso Exoskeletons and Body Armor for U.S. Special Operations Command (SOCOM)
    • 3.1.2. Ekso TALOS Suit
    • 3.1.3. Ekso SOCOM Collaborative Design of the Project
    • 3.1.4. Ekso Quiet Power Sources
    • 3.1.5. Esko Technology
    • 3.1.6. Ekso Bionics
    • 3.1.7. Esko Exoskeletons
    • 3.1.8. Ekso Builds Muscle Memory
    • 3.1.9. Ekso Bionics Wearable Bionic Suit
    • 3.1.10. Ekso Gait Training Exoskeleton Uses
    • 3.1.11. Ekso Bionics Robotic Suit Helps Paralyzed Man Walk Again
  • 3.2. Rewalk
    • 3.2.1. Rewalk-Robotics-Personal Support
  • 3.3. Lockheed Martin Exoskeleton Design
    • 3.3.1. Lockheed Martin HULC® with Lift Assist Device Exoskeletons
    • 3.3.2. Lockheed Martin Military Exoskeleton Human Universal Load Carrier (HULC) with Lift Assist Device
    • 3.3.3. Lockheed Martin Fortis
    • 3.3.4. Collaboration Between National Center for Manufacturing Sciences, Lockheed Martin, and BAE Systems
    • 3.3.5. Lockheed Martin FORTIS Exoskeleton
  • 3.4. Berkeley Robotics Laboratory Exoskeletons
    • 3.4.1. Berkeley Robotics Austin
    • 3.4.2. Berkley Robotics and Human Engineering Laboratory ExoHiker
    • 3.4.3. Berkley Robotics and Human Engineering Laboratory ExoClimber
    • 3.4.4. Berkeley Lower Extremity Exoskeleton (BLEEX)
    • 3.4.5. Berkley Robotics and Human Engineering Laboratory Exoskeleton
    • 3.4.6. Berkley Robotics and Human Engineering Laboratory
  • 3.5. Bionic
  • 3.6. Reha-Stim Harness
    • 3.6.1. Reha-Stim Bi-Manu-Track Hand and Wrist
  • 3.7. Exoskeleton Designed by CAR
  • 3.8. Sarcos
    • 3.8.1. Sarcos Guardian XO
    • 3.8.2. Sarcos Robot-as-a-Service (RaaS) Model
    • 3.8.3. Sarcos Raytheon XOS 2: Second Generation Exoskeleton
  • 3.9. Cyberdyne
    • 3.9.1. Cyberdyne HAL
    • 3.9.2. Applications of Cyberdyne HAL
  • 3.10. Berkley Robotics Laboratory Exoskeletons
    • 3.10.1. Berkley Robotics and Human Engineering Laboratory ExoHiker
    • 3.10.2. Berkley Robotics and Human Engineering Laboratory ExoClimber
    • 3.10.3. Berkeley Lower Extremity Exoskeleton (BLEEX)
    • 3.10.4. Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • 3.11. Rex Bionics
  • 3.12. US Bionics suitX
  • 3.13. Noonee
    • 3.13.1. Noonee Exoskeletons Chairless Chair
  • 3.14. Hocoma
  • 3.15. AlterG: PK100 PowerKnee
    • 3.15.1. AlterG Bionic Leg
    • 3.15.2. Alterg / Tibion Bionic Leg
    • 3.15.3. AlterG M300
  • 3.16. Catholic University of America Arm Therapy Robot Armin III
  • 3.17. U.S. Special Operations Command SOCOM Wearable Exoskeleton
    • 3.17.1. DARPA Funded Exoskeleton
    • 3.17.2. Darpa Secure, Smartphone Device
    • 3.17.3. Trek Aerospace Springtail/XFV Exo-skeletor Flying Vehicle
  • 3.18. Revision Military Kinetic Operations Suit
  • 3.19. HEXORR: Hand EXOskeleton Rehabilitation Robot
  • 3.20. Honda
    • 3.20.1. Honda Walk Assist
    • 3.20.2. Honda Prototype Stride Management Motorized Assist Device
    • 3.20.3. Honda Builds Unique Transportation Exoskeleton Device Market
  • 3.21. Revision Military - Exoskeleton Integrated Soldier Protection System
    • 3.21.1. Revision Military Armored Exoskeleton
  • 3.22. Mira Lopes Gait Rehabilitation Device
    • 3.22.1. Prototype of University of Twente LOPES with 8 Actuated Degrees of Freedom
  • 3.23. China North Industries Group Corporation (NORINCO)
    • 3.23.1. Chinese Exoskeletons for Combat
  • 3.24. Russian Army: Combat Exoskeletons by 2020
  • 3.25. UK Exoskeleton
    • 3.25.1. UK Exoskeleton Law Enforcement
    • 3.25.2. UK Armed Police Super-Light Graphene Vests
    • 3.25.3. Brain-Machine Interface (BMI) Based Robotic Exoskeleton
  • 3.26. University of Texas in Austin: Robotic Upper-Body Rehab Exoskeleton
  • 3.27. Daewoo Begins Testing Robotic Exoskeletons for Shipyard Workers in South Korea
    • 3.27.1. Daewoo Robotic Suit Gives Shipyard Workers Super Strength
    • 3.27.2. Daewoo Shipbuilding & Marine Engineering
    • 3.27.3. Daewoo Shipbuilding & Marine Engineering (DSME) Wearable Robot Tank Insulation Boxes of LNG Carriers
    • 3.27.4. Daewoo
  • 3.28. Panasonic
    • 3.28.1. Panasonic Activelink

4. EXOSKELETON TECHNOLOGY

  • 4.1. Safety Standards for Exoskeletons in Industry
  • 4.2. Types of Conditions and Rehabilitation Treatment by Condition
  • 4.3. Clinical Evidence and Reimbursement
    • 4.3.1. Stroke
    • 4.3.2. Early Rehab After Stroke
    • 4.3.3. Multiple Sclerosis
    • 4.3.4. Knee-Replacement Surgery
    • 4.3.5. Neuro-Rehabilitation
    • 4.3.6. Prostheses
    • 4.3.7. Exoskeletons
    • 4.3.8. Exoskeleton-Based Rehabilitation
    • 4.3.9. End-effectors
    • 4.3.10. Mobility Training Level Of Distribution
    • 4.3.11. Rehabilitation Robots Cost-Benefit-Considerations
  • 4.4. Disease Incidence and Prevalence Analysis
    • 4.4.1. Aging Of The Population
    • 4.4.2. Chronic Disease Rehabilitation
  • 4.5. Industrial Robot Exoskeleton Standards
  • 4.6. NCMS
  • 4.7. Exoskeleton Standards Use Environment
    • 4.7.1. Sarcos Guardian XOS Industrial Applications
    • 4.7.2. UK Armed Police Super-Light Graphene Vests from US Army
    • 4.7.3. Daewoo Wearable Robot Is Made of Carbon, Aluminum Alloy and Steel
    • 4.7.4. Cyberdyne HAL for Labor Support and HAL for Care Support Meet ISO 13482 Standard 291
  • 4.8. Exoskeleton Technology
  • 4.9. Robotic Actuator Energy
    • 4.9.1. Elastic Actuators
    • 4.9.2. General Atomics Hybrid-Electric Power Unit
  • 4.10. Robotic Modules for Disability Therapy
    • 4.10.1. Wearable Robotics for Disability Therapy
    • 4.10.2. Wearable Robotics for Disability Therapy
  • 4.11. Robotic Risk Mitigation
  • 4.12. Elastic Actuators
  • 4.13. Exoskeleton Multi-Factor Solutions
    • 4.13.1. Biometallic Materials Titanium (Ti) and its Alloys
  • 4.14. Cognitive Science
  • 4.15. Artificial Muscle
  • 4.16. Standards
  • 4.17. Regulations
  • 4.18. Automated Process for Rehabilitation Robots
  • 4.19. Robotic Exoskeletons Empower Patient Rehabilitation Achievements
    • 4.19.1. Rehabilitation Options
    • 4.19.2. Rehabilitation Robots Economies Of Scale
  • 4.20. Seizing the Robotics Opportunity
    • 4.20.1. Modular Self-Reconfiguring Robotic Systems

5. EXOSKELETON COMPANY PROFILES

  • 5.1. AlterG
    • 5.1.1. AlterG: PK100 PowerKnee
    • 5.1.2. AlterG Bionic Leg
    • 5.1.3. AlterG M300 Customers
    • 5.1.4. AlterG M300
    • 5.1.5. AlterG™ Acquires Tibion Bionic Leg
  • 5.2. Berkeley Robotics Laboratory Exoskeletons
  • 5.3. Exoskeleton Designed by CAR
  • 5.4. Bionik Laboratories / Interactive Motion Technologies (IMT)
    • 5.4.1. Bionik Laboratories / Interactive Motion Technologies (IMT)
    • 5.4.2. Bionik Laboratories Acquires Interactive Motion Technologies, Inc. (IMT)
    • 5.4.3. BioNik / InMotion Robots for NHS study in the UK
    • 5.4.4. Bionik / Interactive Motion Technologies (IMT) InMotion Robots
    • 5.4.5. IMT Anklebot Evidence-Based Neurorehabilitation Technology
    • 5.4.6. Bionik Laboratories Fiscal Year 2018 Revenue
    • 5.4.7. Bionik Second Quarter Financial Results
  • 5.5. CAREX Upper Limb Robotic Exoskeleton
  • 5.6. Catholic University of America Arm Therapy Robot ARMin III
    • 5.6.1. Catholic University of America Armin Iii Project Description:
    • 5.6.2. Catholic University of America HandSOME Hand Spring Operated Movement Enhancer 357
  • 5.7. China North Industries Group Corporation (NORINCO)
    • 5.7.1. China North Industries Corporation (NORINCO) Revenue
  • 5.8. Cyberdyne
    • 5.8.1. Cyberdyne Wants to Offer Robot Suit HAL in the U.S.
    • 5.8.2. Robot Exoskeletons at Japan's Airports
    • 5.8.3. To Offset Aging Workforce, Japan Turns to Robot-Worked Airports
  • 5.9. Ekso Bionics
    • 5.9.1. Esko Employees
    • 5.9.2. Ekso Rehabilitation Robotics
    • 5.9.3. Ekso GT
    • 5.9.4. Ekso Bionics Seeks to Lead the Technological Revolutions
    • 5.9.5. Ekso Bionics Customers
    • 5.9.6. Ekso Able-Bodied Industrial Applications
    • 5.9.7. Ekso Rehabilitation Robotics
    • 5.9.8. Ekso Bionics
    • 5.9.9. Ekso Rehabilitation Robotics
    • 5.9.10. Ekso GT
  • 5.10. Fanuc
    • 5.10.1. Fanuc - Industrial Robot Automation Systems and Robodrill Machine Centers
  • 5.11. Focal Meditech
    • 5.11.1. Focal Meditech BV Collaborating Partners:
  • 5.12. HEXORR: Hand EXOskeleton Rehabilitation Robot
  • 5.13. Homoca Helping Patients To Grasp The Initiative And Reach Towards Recovery
  • 5.14. Honda Motor
    • 5.14.1. Honda Automobile Business
    • 5.14.2. Honda Walk Assist
    • 5.14.3. Honda Stride Management Motorized Assist Device
    • 5.14.4. Honda Builds Unique Transportation Exoskeleton Device Market
    • 5.14.5. Honda Stride Management Motorized Assist Device
    • 5.14.6. Honda Builds Transportation Exoskeleton Device Market
  • 5.15. Interaxon
  • 5.16. KDM
  • 5.17. Levitate Technologies
  • 5.18. Lockheed Martin
    • 5.18.1. Lockheed Martin 2018 Revenue
  • 5.19. Lopes Gait Rehabilitation Device
    • 5.19.1. Lopes Gait Rehabilitation Device
  • 5.20. MRISAR
  • 5.21. Myomo
    • 5.21.1. Myomo mPower 1000
  • 5.22. Noonee
  • 5.23. Orthocare Innovations
    • 5.23.1. Orthocare Innovations Adaptive Systems™ For Advanced O&P Solutions.
    • 5.23.2. Orthocare Innovations Company Highlights
  • 5.24. Panasonic
  • 5.25. Parker Hannifin
    • 5.25.1. Parker Revenue for Fiscal 2018
    • 5.25.2. Parker and Freedom Innovations' Partnership
  • 5.26. Reha Technology
  • 5.27. Revision Military
  • 5.28. ReWalk Robotics
    • 5.28.1. Rewalk
    • 5.28.2. ReWalk Robotics
    • 5.28.3. Rewalk Robotics Revenue
    • 5.28.4. ReWalk First Mover Advantage
    • 5.28.5. ReWalk Strategic Alliance with Yaskawa Electric Corporation
    • 5.28.6. ReWalk Scalable Manufacturing Capability
    • 5.28.7. ReWalk Leverages Core Technology Platforms
  • 5.29. RexBionics
  • 5.30. Robotdalen
  • 5.31. Rostec
    • 5.31.1. Rostec Lines of Business
    • 5.31.2. Rostec Corporation Objectives
  • 5.32. RU Robots
  • 5.33. Sarcos
    • 5.33.1. Sarcos LC Acquires Raytheon Sarcos Unit
    • 5.33.2. Sarcos LC Acquires Raytheon Sarcos Unit of Raytheon
  • 5.34. Shepherd Center
  • 5.35. Socom (U.S. Special Operations Command)
  • 5.36. SuitX
  • 5.37. Trek Aerospace
  • 5.38. University of Twente
  • 5.39. United Instrument Manufacturing Corporation
  • 5.40. Other Human Muscle Robotic Companies
    • 5.40.1. Additional Rehabilitation Robots
    • 5.40.2. Selected Rehabilitation Equipment Companies
    • 5.40.3. Spinal Cord Treatment Centers in the US

List of Tables and Figures

  • Figure 1. Industrial Exoskeleton Robot Market Driving Forces
  • Figure 2. Wearable Robot Exoskeleton Market Shares, Dollars, Worldwide, 2018
  • Figure 3. Wearable Robot Medical Exoskeleton Robot Market Shares, Dollars, Worldwide, 2018
  • Figure 4. Exoskeleton Medical Rehabilitation Robot Market Shares, Dollars, Worldwide, 2018
  • Figure 5. Wearable Robot, Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2019- 2025
  • Figure 6. Industrial Wearable Exoskeletons Specific Issues
  • Figure 7. Exoskeleton Robot Market Driving Forces
  • Figure 8. Wearable Robot Exoskeleton Robot Market Shipments Forecasts Dollars, Worldwide, 2019- 2025
  • Figure 9. Wearable Robots, Exoskeleton Robot Markets, Dollars, Worldwide, 2019-2025
  • Figure 10. Wearable Robots, Exoskeleton Robot Markets, Units, Worldwide, 2019-2025
  • Figure 11. Wearable Robots, Exoskeleton Robot Market Segments, High End, Mid-Range, and Low End, Dollars, Worldwide, 2019-2025
  • Figure 12. Wearable Robots, Exoskeleton Robot Market Segments, Medical, Military, and Industrial, Dollars, Worldwide, 2019-2025
  • Figure 13. Wearable Robot Medical Exoskeleton Robot Market Shares, Dollars, Worldwide, 2018
  • Figure 14. Wearable Robot Medical Exoskeleton Robot Market Shares, Dollars, Worldwide, 2018
  • Figure 15. Wearable Medical Robots, Exoskeleton Robot Markets, Dollars, Worldwide, 2019-2025
  • Figure 16. Wearable Robots, Exoskeleton Robot Market Segments, Medical, Quadriplegia, Multiple Sclerosis, Stroke and Cerebral Palsy, Dollars, Worldwide, 2019-2025
  • Figure 17. Wearable Robots, Exoskeleton Robot Market Segments, Medical, Quadriplegia, Multiple Sclerosis, Stroke and Cerebral Palsy, Percent, Worldwide, 2019-2025
  • Figure 18. Wearable Robots, Exoskeleton Robot Market Segments, Medical, Quadriplegia, Multiple Sclerosis, Stroke and Cerebral Palsy, Percent, Worldwide, 2019-2025
  • Figure 19. Alterg Therapy Functions
  • Figure 20. Exoskeleton Medical Rehabilitation Robot Market Shares, Units and Dollars, Worldwide, 2018
  • Figure 21. Paralyzed Patient Medical Exoskeleton Market Shares, Dollars, Worldwide, 2018
  • Figure 22. Spinal Cord Injury Causes, Worldwide, 2018
  • Figure 23. Wearable Medical Exoskeleton Market Forecasts, 2019-2025
  • Figure 24. Military Exoskeleton Robots Market Shares, Dollars, Worldwide, 2018
  • Figure 25. Military Exoskeleton Robots Market Shares, Dollars, Worldwide, 2018
  • Figure 26. Wearable Robots, Military Exoskeleton Robot Markets, Dollars, Worldwide, 2019-2025
  • Figure 27. Wearable Robots, Exoskeleton Robot Market Segments, Military, Warfighter Support, Protective Systems, Dollars, Worldwide, 2019-2025
  • Figure 28. Wearable Robots, Exoskeleton Robot Market Segments, Military Warfighter Support, Protective Systems, Percent, Worldwide, 2019-2025
  • Figure 29. Wearable Robots, Exoskeleton Robot Market Segments, Law Enforcement Protective Systems, Dollars, Worldwide, 2019-2025
  • Figure 30. Commercial Exoskeleton Robots Market Shares, Market Shares, Dollars, Worldwide, 2018
  • Figure 31. Wearable Robots, Industrial Exoskeleton Markets, Worldwide, 2019-2025
  • Figure 32. Wearable Robots, Exoskeleton Robot Market Segments, Industrial, Ship Building, Construction, Warehouse, and Manufacturing, Dollars, Worldwide, 2019-2025
  • Figure 33. Wearable Robots, Exoskeleton Robot Market Segments, Industrial, Ship Building, Construction, Warehouse, and Manufacturing, Percent, Worldwide, 2019-2025
  • Figure 34. Lockheed Martin Exoskeleton Transfers Load Weight
  • Figure 35. Lockheed Martin Fortis Aerospace
  • Figure 36. Lockheed Martin Fortis Hand tools
  • Figure 37. Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
  • Figure 38. Wearable Robots, Exoskeleton Robot Market Segments, Industrial, Ship Building, Construction, Warehouse, and Manufacturing, Dollars, Worldwide, 2019-2025
  • Figure 39. Number US Workers Needing Exoskeletons by Occupation
  • Figure 40. Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
  • Figure 41. Exoskeleton Robot Regional Market Segments, Dollars, 2018
  • Figure 42. Ekso Bionics
  • Figure 43. Esko Technology Battery-Powered Motors
  • Figure 44. Esko Technology
  • Figure 45. Ekso Bionics Gait Training
  • Figure 46. Ekso Bionics Gait Training Functions
  • Figure 47. Ekso Gait Training Exoskeleton Functions
  • Figure 48. Ekso Gait Training Exoskeleton Functions
  • Figure 49. Ekso Bionics Beep Bop: Rethink Robotics' Baxter Model
  • Figure 50. Ekso Bionics Bionic Suit
  • Figure 51. Rewalk-Robotics-Personal Support
  • Figure 52. Lockheed Martin Human Universal Load Carrier (HULC) Features
  • Figure 53. Lockheed Martin Human Universal Load Carrier (HULC) Specifications
  • Figure 54. Lockheed HULC Exoskeleton
  • Figure 55. US Navy Lockheed Martin Shipyard Exoskeleton
  • Figure 56. Lockheed HULC Lifting Device Exoskeleton
  • Figure 57. Lockheed Martin Fortis Exoskeleton Conforms to Different Body Types
  • Figure 58. Lockheed Martin Fortis Use in Aerospace Industry
  • Figure 59. Lockheed Martin Fortis
  • Figure 60. Lockheed Martin Fortis Exoskeleton
  • Figure 61. Lockheed Martin FORTIS Exoskeleton Welding
  • Figure 62. Lockheed Martin FORTIS Exoskeleton Supporting
  • Figure 63. Berkeley Robotics Austin
  • Figure 64. Berkley Robotics and Human Engineering Laboratory ExoHiker
  • Figure 65. Berkley Robotics and Human Engineering Laboratory ExoClimber
  • Figure 66. Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • Figure 67. Berkley Robotics and Human Engineering Laboratory Research Work
  • Figure 68. Berkley Robotics and Human Engineering Laboratory Research Work
  • Figure 69. Reha-Stim Bi-Manu-Track Hand and Wrist Rehabilitation Device
  • Figure 70. Reha-Stim Gait Trainer GT I Harness
  • Figure 71. Sarcos Exoskeleton Human Support
  • Figure 72. Sarcos XOS Exoframe
  • Figure 73. Sarcos Guardian XO Capabilities
  • Figure 74. Sarcos Guardian XOS
  • Figure 75. Sarcos Guardian XOS Capabilities
  • Figure 76. Sarcos Robot-as-a-Service (RaaS) Model
  • Figure 77. Sarcos Exoskeleton Developed by Raytheon
  • Figure 78. Sarcos Raytheon XOS Exoskeleton
  • Figure 79. Raytheon XOS 2: Second Generation Exoskeleton
  • Figure 80. Applications of Cyberdyne HAL
  • Figure 81. Applications of Cyberdyne HAL
  • Figure 82. Berkley Robotics and Human Engineering Laboratory ExoHiker
  • Figure 83. Berkley Robotics and Human Engineering Laboratory ExoClimber
  • Figure 84. Berkley Robotics and Human Engineering Laboratory Exoskeleton
  • Figure 85. Rex Bionics Exoskeleton
  • Figure 86. Rex Bionics
  • Figure 87. Noonee Assembly Line Manufacturing Exoskeleton
  • Figure 88. AlterG: PK100 PowerKnee
  • Figure 89. AlterG Bionic Neurologic And Orthopedic Therapy Leg
  • Figure 90. Tibion Bionic Leg
  • Figure 91. AlterG Anti-Gravity Treadmill Precise Unweighting Technology Patient Rehabilitation Functions
  • Figure 92. ARMin III Robot For Movement Therapy Following Stroke
  • Figure 93. U.S. Special Operations Command Socom First-Generation TALOS Wearable Exoskeleton Suit
  • Figure 94. Trek AEROSPACE SPRINGTAIL/XFV Exo-Skeletor Flying Vehicle
  • Figure 95. HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Benefits
  • Figure 96. HEXORR: Hand EXOskeleton Rehabilitation Robot Treatment Benefits
  • Figure 97. HEXORR: Hand EXOskeleton Rehabilitation Robot Technology Force and Motion Sensor Benefits
  • Figure 98. Honda Walk Assist
  • Figure 99. Honda Walk Assist
  • Figure 100. Honda Motors Prototype Stride Management Motorized Assist Device
  • Figure 101. Revision Military - Exoskeleton Integrated Soldier Protection Vision System
  • Figure 102. Revision Military - Exoskeleton Integrated Soldier Protection System
  • Figure 103. Prototype of University to Twente in the Netherlands LOPES with 8 actuated Degrees of Freedom by Means Of Series Elastic Actuation
  • Figure 104. Prototype of University to Twente in the Netherlands LOPES with 8 actuated Degrees of Freedom by Means Of Series Elastic Actuation
  • Figure 105. China North Industries Group Assisted Lifting
  • Figure 106. Chinese Future Exoskeleton Warrior
  • Figure 107. Russian Army: Combat Exoskeleton Features
  • Figure 108. Russian Exoskeleton Prototype
  • Figure 109. UK Equipping Police Officers With Technology
  • Figure 110. UK Police Officer Exoskeleton
  • Figure 111. UK Exoskeleton Provides Compelling Law Enforcement Presence
  • Figure 112. University of Texas in Austin Robotic Upper Arm Exoskeleton
  • Figure 113. Daewoo Robotic Exoskeletons for Shipyard Workers in South Korea
  • Figure 114. Daewoo Exoskeleton 28-Kilogram Frame Weight.
  • Figure 115. Daewoo Exoskeleton Lifting
  • Figure 116. Daewoo Shipbuilding Wearable Robot Box Carrying Applications
  • Figure 117. Daewoo Shipbuilding & Marine Engineering (DSME) Wearable Robot Tank Insulation
  • Figure 118. Daewoo Insulation Boxes Used To Line The Tanks of LNG Carriers
  • Figure 119. Daewoo Shipbuilding Wearable Robot Applications
  • Figure 120. US Navy Lockheed Martin Exoskeleton
  • Figure 121. Panasonic Consumer-Grade Robotic Exoskeleton Suit ActiveLink
  • Figure 122. Panasonic Activelink Industrial Exoskeleton
  • Figure 123. U.S. Rehab Patient Demographics
  • Figure 124. Market Metrics for Rehab Patients
  • Figure 125. Spinal Cord Injuries Causes, Number, Worldwide, 2018
  • Figure 126. US Stroke Incidence Numbers
  • Figure 127. Industrial Exoskeleton Standards Benefits
  • Figure 128. Industrial Exoskeleton Standards Functions
  • Figure 129. Industrial Robot Exoskeleton Standards
  • Figure 130. Sarcos Guardian XO Capabilities
  • Figure 131. Sarcos Guardian XOS Work Augmentation
  • Figure 132. Stroke Rehabilitation Guidelines For Interactive Robotic Therapy
  • Figure 133. Extremity Rehabilitation Robot Technology
  • Figure 134. Health Care Conditions Treated With Rehabilitation Wearable Robotics
  • Figure 135. Extremity Rehabilitation Robot Technology
  • Figure 136. Exoskeleton System Concerns Addressed During System Design
  • Figure 137. Rehabilitation Systems Initiate Active Movements
  • Figure 138. Methods of Active Initiation of Movements In Robotic Rehabilitation
  • Figure 139. Users Find Robots Preferable and More Versatile than Inadequate Human Trainers
  • Figure 140. Rehabilitation Robots Software Functions
  • Figure 141. Robotic Rehabilitation Devices Automated Process Benefits
  • Figure 142. AlterG Anti-Gravity Treadmillsr Features, Built on differential air pressure technology
  • Figure 143. AlterG: PK100 PowerKnee
  • Figure 144. AlterG Bionic Neurologic And Orthopedic Therapy Leg
  • Figure 145. AlterG Anti-Gravity Treadmillsr Target Markets
  • Figure 146. AlterG Product Positioning
  • Figure 147. Selected US Regional AlterG M300 Customer Clusters
  • Figure 148. AlterG / Tibion Bionic Leg
  • Figure 149. Berkeley Robotics Austin
  • Figure 150. Interactive Motor Technologies Anklebot Exoskeletal Robotic System Design Principals
  • Figure 151. BIONIK milestones during second half fiscal year 2019:
  • Figure 152. ARMin III Robot For Movement Therapy Following Stroke
  • Figure 153. China North Industries Corporation (NORINCO) Enterprise Group Product And Capital Operations Activities
  • Figure 154. Cyberdyne HAL Lower Back Support
  • Figure 155. Ekso Bionics Regional Presence
  • Figure 156. FOCAL Meditech BV Products:
  • Figure 157. Focal Meditech BV Collaborating Partners:
  • Figure 158. Honda's Principal Automobile Products
  • Figure 159. Honda Walk Assist
  • Figure 160. Honda Motors Prototype Stride Management Motorized Assist Device
  • Figure 161. Lockheed Martin Segment Positioning
  • Figure 162. Noonee Chairless Chair
  • Figure 163. Panasonic AWN- 03 Exoskeleton
  • Figure 164. Panasonic PLN- 01 Exoskeleton
  • Figure 165. Panasonic AWN-03 Helps with Lifting And Carrying Heavy Loads
  • Figure 166. Parker Indego Exoskeleton
  • Figure 167. Parker Hannifin Exoskeleton Customer Base
  • Figure 168. Reha G-EO Robotic Rehabilitation Device
  • Figure 169. Reha Technology G-EO System
  • Figure 170. Revision Military On Going Projects
  • Figure 171. ReWalker
  • Figure 172. Rewalk Robotics Revenue
  • Figure 173. Rostec Lines Of Business
  • Figure 174. Rostec Corporation Objectives
  • Figure 175. Principal Functions Of The Corporation
  • Figure 176. RUR Key Market Areas For Robotic Technologies
  • Figure 177. Sarcos Exoskeleton Human Support
  • Figure 178. Sarcos Wear Exoskeleton Timeline
  • Figure 179. Raytheon Tethered Exoskeleton
  • Figure 180. Trek Aerospace Exoskeleton
  • Figure 181. Trek Aerospace Exoskeleton Components
Back to Top
전화 문의
이용안내