¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.
AI¿¡ °ü·ÃµÈ ¼¼°èÀÇ ÁÖ¿ä µ¿ÇâÀ» Á¶»çÇßÀ¸¸ç, ¿§Áö AI, ¿ÀǼҽº & Ŭ·ÎÁîµå ¼Ò½º, ±â¹Ý ¸ðµ¨ ÆÄ¶ó¸ÞÆ®¸¯ »çÀÌÁî µîÀÇ Àü¸Á¡¤¿¹Ãø, ÁÖ¿ä À̳뺣ÀÌÅÍ, »ý¼º AI °³¹ß Àü·«ÀÇ ºÐ¼® µîÀ» Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.
¸®Æ÷Æ®ÀÇ ÀÌÁ¡ :
- ÁÖ¿ä Çϵå¿þ¾î ¹× ¼ÒÇÁÆ®¿þ¾îÀÇ µ¿Çâ¿¡ ±â¹ÝÇÑ »ç³»¿Ü ½ÃÀå Àü·«À» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.
- »ç³» ´É·Â°ú ¸Þ½Ã¡À» ½ÃÀå Ȱµ¿°ú ºñ±³ÇÏ¿© º¥Ä¡¸¶Å·ÇÒ ¼ö ÀÖ½À´Ï´Ù.
- ÁÖ¿ä ½ÃÀå ¸®´õ¸¦ °í·ÁÇÑ À¯±âÀû ¹× ¹«±âÀûÀÎ AI ¼ºÀå Àü·«À» ±¸ÃàÇÒ ¼ö ÀÖ½À´Ï´Ù.
- ÁÖ¿ä ½ÃÀå µ¿ÇâÀ» ¹Ý¿µÇÑ ´Ü±â, Áß±â, Àå±â ¸Þ½Ã¡ Àü·«À» Ã¥Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù.
ÁÖ¿ä Áú¹®¿¡ ´ëÇÑ ´äº¯ :
- ¿§Áö ¹× µð¹ÙÀ̽º¿¡¼ »ý¼º AI¸¦ °¡¼Ó½ÃŰ´Â ÁÖ¿ä À̳뺣ÀÌÅÍ´Â ´©±¸Àΰ¡?
- MLOps(±â°èÇнÀ ¿ÀÆÛ·¹À̼Ç) ¹ë·ùüÀÎ Àüü¿¡¼ ´ëÇü ±â¼ú »ç¾÷ÀÚ´Â ¾î¶»°Ô AI ´É·ÂÀ» °³¹ßÇϰí Àִ°¡?
- ¿Âµð¹ÙÀ̽º AI´Â ¾î¶»°Ô ¹ßÀüÇϰí Àִ°¡? ´©°¡ ÁÖµµ±ÇÀ» Àâ°í Àִ°¡?
- ÇÏÀÌÆÛ½ºÄÉÀÏ·¯´Â Çϵå¿þ¾î °ø±Þ¸ÁÀÇ °úÁ¦¸¦ ¾î¶»°Ô ÇÇÇϰí Àִ°¡?
- AI ±ÔÁ¦ »óȲÀº ¾î¶² °ÍÀ̸ç, ÀÌÇØ°ü°èÀÚ¿¡°Ô ¾î¶² Àǹ̰¡ Àִ°¡?
Á¶»ç ÇÏÀ̶óÀÌÆ® :
- ¼ÒÇÁÆ®¿þ¾î, Çϵå¿þ¾î, ¼öÁ÷ µµÀÔ¿¡ °ÉÄ£ 13°³ÀÇ ÁÖ¿ä AI µ¿Çâ
- ¿§Áö AI, ¿ÀǼҽº & Ŭ·ÎÁîµå ¼Ò½º, ±â¹Ý ¸ðµ¨ ÆÄ¶ó¸ÞÆ®¸¯ »çÀÌÁî µî º¹¼öÀÇ ¿¹Ãø
- ÁÖ¿ä µ¿ÇâÀÌ ÀÌÇØ°ü°èÀÚ¿¡°Ô ¹ÌÄ¡´Â ¿µÇâ Æò°¡
- Åë½Å»ç¾÷ÀÚ »ý¼º AI °³¹ß Àü·«ÀÇ »ó¼¼ ³»¿ª
¸ñÂ÷
- ¿ÀǼҽº¿Í Ŭ·ÎÁîµå ¼Ò½º
- ´ëÇü ±â¼ú »ç¾÷ÀÚ¿¡ ÀÇÇÑ '¸ÂÃãÇü' ¸ðµ¨ÀÇ µµÀÔ
- ¹ÌÁß Ä¨ ÀüÀï
- ¿§Áö AIÀÇ ±âȸ
- »ý¼º AI »ç¿ë »ç·Ê
- Ĩ º¥´õ : ¼ÒÇÁÆ®¿þ¾î ÆÄÆ®³ÊÀÇ Å½±¸
- ´ëÇü ±â¼ú »ç¾÷ÀÚ¿¡ ÀÇÇÑ µ¶ÀÚÀûÀÎ AI ĨÀÇ °³¹ß
- ±¹Á¦ ±ÔÁ¦
- AI µ¥ÀÌÅÍ ¼ºñ½º
- Åë½Å»ç¾÷ÀÚÀÇ AI Ȱµ¿
- Åë½Å ¿¡ÄڽýºÅÛ Áö¿ø
- ±â¾÷ AIÀÇ ½ÃÀå Âü¿© Àü·«
- Ĩ º¥´õ ÁÖµµ ¿Âµð¹ÙÀ̽º AI ¾×ƼºñƼ
KSA 23.12.07
Actionable Benefits:
- Build internal and external market strategy that builds on key hardware and software trends.
- Benchmark internal capabilities and messaging against market activity.
- Build organic and inorganic Artificial Intelligence (AI) growth strategy that considers key market leaders.
- Develop short, medium, and long-term messaging strategies to reflect key market trends.
Critical Questions Answered:
- Who are the key innovators accelerating generative AI at the edge and device?
- How is "big tech" developing AI capabilities across the Machine Learning Operations (MLOps) value chain?
- How is on-device AI developing and who is leading the charge?
- How are hyperscalers circumventing the hardware supply chain challenge?
- What does the AI regulatory landscape look like and what does it mean for stakeholders?
Research Highlights:
- 13 key AI trends spanning software, hardware, and vertical deployment.
- Multiple forecasts, including edge AI, open versus closed source, and foundation model parametric size.
- Evaluation of the impact key trends will have on stakeholders.
- In-depth breakdown of telco generative AI deployment strategies.
Who Should Read This?
- IT decision makers looking to build vertical AI deployment strategies.
- AI supply side strategy executives developing long-term product, marketing, and sales roadmaps, including Original Equipment Manufacturers (OEMs), chip vendors, hyperscalers, and Independent Software Vendors (ISVs).
- Marketing leaders looking to position their AI messaging effectively to build partnerships and align with customers.
- Telco strategists looking to identify opportunities and understand how their ecosystem is building on AI.
Table of Contents
- Open versus Closed Source
- Big Tech Introduces "Tailored" Models
- U.S.-China Chip War
- Edge AI Opportunities
- Generate AI Use Cases
- Chip Vendors Find Software Partners
- Big Tech Building Their Own AI Chips
- International Regulation
- AI Data Services
- Telecoms Industry AI Activity
- Telco Ecosystem Support
- Enterprise AI Go-to-Market Strategy
- Chip Vendor-Led On-Device AI Activity