½ÃÀ庸°í¼­
»óǰÄÚµå
1516021

»ê¾÷¿ë IoT ¸ð´ÏÅ͸µÀ» À§ÇÑ ÀÓº£µðµå ¸Ó½Å·¯´×(ML) : ±â¼úÀÇ ÁøÈ­

Embedded ML for Industrial IoT Monitoring: Technology Evolution

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: ABI Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 13 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÌ º¸°í¼­´Â »ê¾÷¿ë IoT ¸ð´ÏÅ͸µÀ» À§ÇÑ ÀÓº£µðµå ML µ¿ÇâÀ» Á¶»çÇϰí ÀÓº£µðµå ML »ýŰè, ÁÖ¿ä º¥´õ, ÁÖ¿ä ±¸¼º ¿ä¼Ò, ÀÓº£µðµå MLÀ» ´ë±Ô¸ð·Î ±¸ÃàÇÏ´Â µ¥ ÀÖ¾î Àå¾Ö¹°°ú ÇØ°á ¹æ¹ý, Á¶°Ç ±â¹Ý ¸ð´ÏÅ͸µ(CBM) ÀÌ¿ë »ç·Ê µîÀ» Á¤¸®ÇÑ º¸°í¼­ÀÔ´Ï´Ù.

½Ç¿ëÀûÀÎ ÀåÁ¡:

  • »ê¾÷¿ë IoT(IIoT)¿¡¼­ ÀÓº£µðµå ¸Ó½Å·¯´×(ML)ÀÇ ÁÖ¿ä Ȱµ¿ ¿µ¿ªÀ» ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • ¼Ö·ç¼ÇÀ» ½ÃÀå¿¡ Ãâ½ÃÇÏ´Â µ¥ ÇÊ¿äÇÑ ÁÖ¿ä ±¸¼º ¿ä¼Ò¸¦ ½Äº°ÇÒ ¼ö ÀÖ½À´Ï´Ù.
  • Á¦ÇÑÀûÀÎ ¿§Áö ȯ°æ¿¡¼­ÀÇ ¸ðµ¨ ±¸Ãà ¹× ¹èÆ÷¿¡ ´ëÇÑ °úÁ¦¿Í °³¹ß ±âȸ¸¦ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.

ÁÖ¿ä Áú¹®¿¡ ´ëÇÑ ´äº¯ :

  • ÀÓº£µðµå MLÀÇ ÁÖ¿ä °ø±Þ¾÷ü´Â?
  • ÀÓº£µðµå ML °³¹ßÀÚ°¡ Á÷¸éÇÑ ÁÖ¿ä ¹®Á¦´Â ¹«¾ùÀΰ¡?
  • ÀÓº£µðµå MLÀ» ´ë±Ô¸ð·Î ¹èÆ÷ÇÏ´Â µ¥ ÀÖ¾î À庮Àº ¹«¾ùÀ̸ç, ¾î¶»°Ô ±Øº¹ÇÒ ¼ö Àִ°¡?

Á¶»ç ÇÏÀ̶óÀÌÆ®:

  • ÄÁµð¼Ç ±â¹Ý ¸ð´ÏÅ͸µ(CBM) ÀÌ¿ë »ç·Ê¿¡¼­ ÀÓº£µðµå MLÀÇ µµÀÔ °¡´É¼º ¿¹Ãø
  • ÀÓº£µðµå ML ±â¼ú °ø±Þ¾÷ü °£ ÁÖ¿ä µ¿Çâ ¹× ÀïÁ¡ ÆÄ¾Ç
  • ÀÓº£µðµå ML ½ÃÀåÀÇ ÁÖ¿ä ±¸¼º ¿ä¼Ò¿Í º¥´õ¸¦ º¸¿©ÁÖ´Â ¿¡ÄڽýºÅÛ ¸ÅÇÎ

¸ñÂ÷

Á¦1Àå ÁÖ¿ä Á¶»ç °á°ú

Á¦2Àå ÁÖ¿ä ¿¹Ãø

Á¦3Àå ÁÖ¿ä ±â¾÷°ú ¿¡ÄڽýºÅÛ

Á¦4Àå IIoT¿ë ÀÓº£µðµå ML ¿¡ÄڽýºÅÛ

Á¦5Àå IIoT ÀÓº£µðµå MLÀÇ ÁøÈ­

  • °³¹ßÀÚ¿ë Åø ¼¼Æ®
  • µµÀÔ Á߽à ¼­ºñ½º
LSH 24.08.01

Actionable Benefits:

  • Understand the key areas of activity for embedded Machine Learning (ML) in the Industrial Internet of Things (IIoT).
  • Identify the key components required to bring a solution to market.
  • Understand the challenges and development opportunities for building and deploying models in constrained edge environments.

Critical Questions Answered:

  • Who are some of the key vendors in embedded ML?
  • What are the key issues facing embedded ML developers?
  • What are the barriers to deploying embedded ML at scale, and how can these be overcome?

Research Highlights:

  • Forecasts on the addressable opportunity for deploying embedded ML in Condition-Based Monitoring (CBM) use cases.
  • Identification of key trends and discussion points among embedded ML technology suppliers.
  • Mapping the ecosystem to demonstrate the key components and vendors in the embedded ML market.

Who Should Read This?

  • Strategy and development teams at embedded ML companies looking to understand where they should focus on developing their products.
  • Software leaders at embedded hardware companies looking to understand how to build their ecosystem and ML product strategy.
  • Application providers and System Integrators (SIs) looking to understand the key discussion topics around embedded ML, and how they fit into the picture.

TABLE OF CONTENTS

1. KEY FINDINGS

2. KEY FORECASTS

3. KEY COMPANIES AND ECOSYSTEMS

4. EMBEDDED ML ECOSYSTEM FOR THE IIOT

5. EVOLUTION OF EMBEDDED ML IN THE IIOT

  • 5.1. DEVELOPER-FOCUSED TOOLSETS
  • 5.2. DEPLOYMENT-FOCUSED OFFERINGS
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦