¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.
±â¾÷¿¡ ÀÇÇÑ µ¥ÀÌÅÍ Æк긯 µµÀÔ »ç·Ê¸¦ Á¶»çÇßÀ¸¸ç, »ê¾÷°è¿¡¼ÀÇ µ¥ÀÌÅÍ »ý¼º·®ÀÇ ÃßÀÌ¡¤¿¹Ãø, °¢Á¾ ¾÷°èÀÇ ±â¾÷¿¡ ÀÇÇÑ µµÀÔ ¸ñÀû, »ç¿ë »ç·Ê, ¿ä±¸µÇ´Â ±â¼ú ¿ä°Ç µîÀ» Á¤¸®ÇÏ¿© ÀüÇص帳´Ï´Ù.
½Ç¿ëÀûÀÎ ÀÌÁ¡ :
- µ¥ÀÌÅÍ Æк긯 µµÀÔ¿¡ °üÇÑ ´Ù¾çÇÑ ±â¾÷ÀÇ »ç¿ë »ç·Ê¿Í Á¦Ç° °èȹÀ» °ÈÇϱâ À§ÇÑ ±â¼ú ¿ä°Ç¿¡ °üÇÑ Áß¿äÇÑ Àǹ̸¦ »ó¼¼ÇÏ°Ô ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
- °ø±Þ¾÷ü°¡ µ¥ÀÌÅÍ Æк긯 ¼Ö·ç¼Ç¿¡ ÅëÇÕÇÏ´Â µ¥ÀÌÅÍ ¼Ò½ºÀÇ ¿ì¼±¼øÀ§¸¦ °áÁ¤Çϴµ¥ µµ¿òÀÌ µÇ´Â ¼Ò½ºº° »ê¾÷ µ¥ÀÌÅÍ »ý¼º·®À» ¿¹ÃøÇÒ ¼ö ÀÖ½À´Ï´Ù.
- Ÿ±ê ¸Þ½Ã¡°ú ½ÃÀå È°µ¿À» À§ÇÑ µ¥ÀÌÅÍ Æк긯 ±â¾÷¿¡ ÀÇÇÑ ÁÖ¿ä »ç¿ë »ç·Ê¸¦ ÀÌÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
Áß¿äÇÑ Áú¹®¿¡ ´ëÇÑ ´äº¯ :
- ±â¾÷ÀÌ µ¥ÀÌÅÍ Æк긯 µµÀÔÀ¸·Î ½ÇÇöÇÏ°íÀÚ ÇÏ´Â »ç·Ê´Â ¹«¾ùÀΰ¡?
- ¾î¶² »ç·Ê¿¡¼ ¾î¶² ±â¼ú ¿ª·®À» °ø±Þ¾÷ü¿¡ ¿ä±¸ÇÏ°í Àִ°¡?
- °ø±Þ¾÷ü´Â ÀÚ»çÀÇ µ¥ÀÌÅÍ ¼Ö·ç¼ÇÀÌ ±â¾÷ÀÇ µ¥ÀÌÅÍ »ç¿ë¿¡¼ ¿§Áö ÄÄÇ»Æà ¹× ÇÁ¶óÀ̺ø Ŭ¶ó¿ìµåÀÇ ¿ä±¸ »çÇ×À» ÃæÁ·½ÃÅ°±â À§ÇØ ¾î¶² Àü·«À» äÅÃÇØ¾ß Çϴ°¡?
Á¶»ç ÇÏÀ̶óÀÌÆ® :
- 2030³â±îÁö »ê¾÷ µ¥ÀÌÅÍ »ý¼º·® »ó¼¼ ºÐ¼® : µ¥ÀÌÅÍ ¼Ò½ºº°
- Á¦Á¶¾÷¿¡¼ Ä¿³ØƼºñƼ µ¿Çâ »ó¼¼ ºÐ¼® : °íÁ¤È¸¼±°ú ¹«¼± Á¢¼ÓÀÇ µ¿ÇâÀ» Æø³Ð°Ô °ËÁõÇÏ°í, °íÁ¤È¸¼±ÀÇ Áö¹èÀûÀÎ ¿ªÇÒÀ» ¼³¸í
- 3°³ Ä«Å×°í¸®¿¡¼ ±â¾÷ »ç¿ë »ç·ÊÀÇ ±¤¹üÀ§ÇÑ ÁöµµÁ¦ÀÛ
- µ¥ÀÌÅÍ Æк긯 ¼Ö·ç¼ÇÀÇ ÁÖ¿ä±â¾÷ ¿ä°Ç¿¡ °üÇÑ »ó¼¼ ÀλçÀÌÆ®
¸ñÂ÷
Á¦1Àå ÁÖ¿ä Á¶»ç °á°ú
Á¦2Àå ÁÖ¿ä ¿¹Ãø
Á¦3Àå ÁÖ¿ä ±â¾÷°ú ¿¡ÄڽýºÅÛ
Á¦31Àå AMAZON WEB SERVICES
Á¦32Àå DATABRICKS
Á¦33Àå DENODO
Á¦34Àå IBM
Á¦35Àå INFORMATICA
Á¦36Àå ORACLE
Á¦37Àå MICROSOFT
Á¦38Àå QLIK
Á¦39Àå SNOWFLAKE
Á¦4Àå µ¥ÀÌÅÍ Æк긯 µµÀÔ : ±â¾÷ »ç¿ë »ç·Ê
Á¦41Àå »ç¿ë »ç·Ê : ºñÁî´Ï½º ÃÖÀûÈ
Á¦42Àå »ç¿ë »ç·Ê : ÄÄÇöóÀÌ¾ð½º¿Í µ¥ÀÌÅÍ °Å¹ö³Í½º
Á¦43Àå »ç¿ë »ç·Ê : µ¥ÀÌÅÍ ÀÎÅÚ¸®Àü½º¿Í Çù¾÷
Á¦5Àå ±â¾÷ÀÇ ¾÷°è¿Í µ¥ÀÌÅÍ Æк긯 »ç¿ë »ç·ÊÀÇ ÁöµµÁ¦ÀÛ
KSA 24.11.19
Actionable Benefits:
- Detailed understanding of different enterprises use case categories for data fabric deployments and key implications on technology requirements to enhance product planning.
- Forecast of industrial data generation by source to help suppliers prioritize which data sources to integrate into their data fabric solution.
- Understand key enterprise data fabric use cases for targeted messaging and market activities.
Critical Questions Answered:
- What use cases are enterprises looking to realize with data fabric deployments?
- Which use cases require what technology capabilities from suppliers?
- What strategies should suppliers adopt to ensure their data solutions align with the edge computing and private cloud requirements of enterprise data use cases?
Research Highlights:
- Detailed breakdown of industrial data generation by 2030, broken down by different sources of data.
- In-depth analysis of connectivity trends in manufacturing: extensive review of fixed-line versus wireless connectivity trends, outlining the dominant role of fixed-line.
- Extensive map of enterprise use cases in the three main use case categories.
- Detailed discussion on the key enterprise requirements for use case data fabric solutions.
Who Should Read This?
- Product development managers at data fabric and connectivity solution providers responsible for creating offerings that meet future industrial needs.
- Sales and business development executives at technology and cloud infrastructure suppliers, focusing on industrial clients needing robust, scalable, and flexible data integration and connectivity solutions.
- Chief Technology Officers (CTOs) at industrial technology suppliers, looking to align product roadmaps with the evolving data and connectivity needs of large-scale manufacturing clients.
TABLE OF CONTENTS
1 KEY FINDINGS
2 KEY FORECASTS
3 KEY COMPANIES AND ECOSYSTEMS
31 AMAZON WEB SERVICES
32 DATABRICKS
33 DENODO
34 IBM
35 INFORMATICA
36 ORACLE
37 MICROSOFT
38 QLIK
39 SNOWFLAKE
4 ENTERPRISE USE CASES FOR DATA FABRIC DEPLOYMENTS
41 BUSINESS OPTIMIZATION USE CASES
42 COMPLIANCE AND DATA GOVERNANCE USE CASES
43 DATA INTELLIGENCE AND COLLABORATION USE CASES
5 MAPPING ENTERPRISE VERTICALS TO DATA FABRIC USE CASES