½ÃÀ庸°í¼
»óÇ°ÄÚµå
1271348
Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀå : ¼ºÀå, ¹Ì·¡ Àü¸Á, °æÀï ºÐ¼®(2023-2031³â)Plastic-eating Bacteria Market - Growth, Future Prospects and Competitive Analysis, 2023 - 2031 |
Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀº Çöó½ºÆ½ Æó±â¹° 󸮿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¿ä±¸°¡ ³ô¾ÆÁö¸é¼ Æ´»õ ½ÃÀåÀ¸·Î ÁÖ¸ñ¹Þ°í ÀÖ½À´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ´Â Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET), Æú¸®¿¡Æ¿·» µî ´Ù¾çÇÑ À¯ÇüÀÇ Çöó½ºÆ½À» ºÐÇØÇÒ ¼ö ÀÖ´Â ¹ÚÅ׸®¾ÆÀÇ ÀÏÁ¾ÀÔ´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀº ÁÖ·Î Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ Ä£È¯°æÀûÀÌ°í Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¼ºÀåÇÏ°í ÀÖ½À´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ¼¼°è ½ÃÀåÀº 2023-2031³âÀÇ ¿¹Ãø ±â°£ Áß 9%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Çöó½ºÆ½ ½Ä¿ë °õÆÎÀÌ ½ÃÀåÀº ÁÖ·Î Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¼ºÀåÇÏ°í ÀÖ½À´Ï´Ù. ¼¼°è¿¡¼ ¹ß»ýÇÏ´Â Çöó½ºÆ½ Æó±â¹°Àº ȯ°æ¹®Á¦·Î ´ëµÎµÇ°í ÀÖÀ¸¸ç, ¸Å¸³À̳ª ¼Ò°¢°ú °°Àº ÀüÅëÀûÀÎ Æó±â¹° °ü¸® ¹æ¹ýÀº ºñÈ¿À²ÀûÀÌ°í ȯ°æ¿¡ À¯ÇØÇÑ °ÍÀ¸·Î ÀÔÁõµÇ°í ÀÖ½À´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾ÆÀº Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇÏ°í ģȯ°æÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù.
Çöó½ºÆ½ Æó±â¹°¿¡ ´ëÇÑ È¯°æ¹®Á¦ Áõ°¡´Â Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀ» ÃËÁøÇÏ´Â ÁÖ¿ä ¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¸Å¸³À̳ª ¼Ò°¢°ú °°Àº ÀüÅëÀûÀÎ Çöó½ºÆ½ Æó±â¹° °ü¸® ¹æ¹ýÀº ȯ°æ¿¡ À¯ÇØÇÑ °ÍÀ¸·Î ÀÔÁõµÇ¾ú½À´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾ÆÀº Çöó½ºÆ½ Æó±â¹°À» »ýºÐÇؼº ¼ººÐÀ¸·Î ºÐÇØÇÏ¿© ÀÌ ¹®Á¦¿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇÑ ÇØ°áÃ¥À» Á¦°øÇÕ´Ï´Ù. À̸¦ ÅëÇØ ¸Å¸³Áö¿Í ¹Ù´Ù¿¡ ¹ö·ÁÁö´Â Çöó½ºÆ½ Æó±â¹°ÀÇ ¾çÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. À¯¿£È¯°æ°èȹÀÇ º¸°í¼¿¡ µû¸£¸é ¸Å³â 800¸¸ Åæ ÀÌ»óÀÇ Çöó½ºÆ½ Æó±â¹°ÀÌ ¹Ù´Ù·Î Èê·¯µé¾î°¡ ´Ù¾çÇÑ È¯°æ ¹®Á¦¸¦ ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù.
Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ Á¤ºÎ ±ÔÁ¦´Â Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¼¼°è ¸¹Àº ±¹°¡¿¡¼ ÀÏȸ¿ë Çöó½ºÆ½ »ç¿ëÀ» ÁÙÀÌ°í Çöó½ºÆ½ Æó±â¹° °ü¸®ÀÇ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ÃËÁøÇϱâ À§ÇØ ±ÔÁ¦¸¦ ½ÃÇàÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î À¯·´¿¬ÇÕ(EU)Àº »¡´ë³ª ¼öÀú¿Í °°Àº ÀÏȸ¿ë Çöó½ºÆ½ »ç¿ëÀ» ±ÝÁöÇÏ¿© Áö¼Ó °¡´ÉÇÑ ´ëüǰ¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½ÃÅ°°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±ÔÁ¦´Â Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀÇ ¼ºÀå¿¡ À¯¸®ÇÑ È¯°æÀ» Á¶¼ºÇÏ°í ÀÖ½À´Ï´Ù.
Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â Çöó½ºÆ½ ½Ä¿ë °õÆÎÀÌ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀ¸·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚµéÀº Çöó½ºÆ½ Æó±â¹°ÀÌ È¯°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÀνÄÇÏ°í Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» ã°í ÀÖ½À´Ï´Ù. ±â¾÷µéµµ Áö¼Ó °¡´ÉÇÑ °üÇà°ú Á¦Ç°À» äÅÃÇÔÀ¸·Î½á ÀÌ·¯ÇÑ ¼ö¿ä¿¡ ºÎÀÀÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î Æ÷Àå ¾÷°èÀÇ ¸¹Àº ±â¾÷µéÀÌ »ýºÐÇؼº Æ÷Àå ¼Ö·ç¼ÇÀ¸·Î ÀüȯÇÏ°í ÀÖÀ¸¸ç, ÀÌ·Î ÀÎÇØ Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡´Â ÇâÈÄ Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀÇ ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀÇ ÁÖ¿ä ¾ïÁ¦¿äÀÎ Áß Çϳª´Â ƯÁ¤ À¯ÇüÀÇ Çöó½ºÆ½À» ºÐÇØÇÏ´Â µ¥ ÀÖÀ¸¸ç, ¹ÚÅ׸®¾ÆÀÇ È¿°ú°¡ Á¦ÇÑÀûÀ̶ó´Â Á¡ÀÔ´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ´Â Æú¸®¿¡Æ¿·» Å×·¹ ÇÁÅ»·¹ÀÌÆ®(PET) ¹× Æú¸®¿¡Æ¿·»°ú °°Àº ÀϺΠÇöó½ºÆ½À» ¼º°øÀûÀ¸·Î ºÐÇØÇÏ´Â µ¥ ¼º°øÇßÁö¸¸ Æú¸® ÇÁ·ÎÆÄÀÏ·» ¹× Æú¸®½ºÆ¼·»°ú °°Àº ´Ù¸¥ À¯ÇüÀÇ Çöó½ºÆ½À» ºÐÇØÇÏ´Â µ¥´Â ÇÑ°è°¡ ÀÖ½À´Ï´Ù. µû¶ó¼ Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡¼ Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾ÆÀÇ ÀáÀçÀûÀÎ ¿ëµµ´Â Á¦ÇÑÀûÀÔ´Ï´Ù. ¿¬±¸¿¡ µû¸£¸é Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ°¡ ´Ù¸¥ À¯ÇüÀÇ Çöó½ºÆ½À» ºÐÇØÇÏ´Â µ¥ ÀÖÀ¸¸ç, ±× È¿°ú°¡ Å©°Ô ´Ù¸£´Ù´Â °ÍÀÌ ¹àÇôÁ³½À´Ï´Ù. ¿¹¸¦ µé¾î Journal of Applied Polymer Science¿¡ °ÔÀçµÈ ¿¬±¸¿¡ µû¸£¸é Ideonellasakaiensis¶ó´Â ¹ÚÅ׸®¾Æ ±ÕÁÖ°¡ PET¸¦ È¿°úÀûÀ¸·Î ºÐÇØÇÒ ¼ö ÀÖ´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ±×·¯³ª Æú¸®½ºÆ¼·»°ú °°Àº ´Ù¸¥ À¯ÇüÀÇ Çöó½ºÆ½Àº ÀÌ ±ÕÁÖ°¡ ºÐÇØÇÏÁö ¸øÇß½À´Ï´Ù. ¸¶Âù°¡Áö·Î Environmental Science and Technology Letters¿¡ ½Ç¸° ¶Ç ´Ù¸¥ ¿¬±¸¿¡¼´Â Æú¸®¿¡Æ¿·»À» ºÐÇØÇÒ ¼ö ÀÖ´Â ¹ÚÅ׸®¾Æ ±ÕÁÖ°¡ Æú¸®ÇÁ·ÎÆÄÀÏ·»À» ºÐÇØÇÒ ¼ö ¾ø´Â °ÍÀ¸·Î ³ªÅ¸³µ½À´Ï´Ù. ÀÌó·³ ƯÁ¤ À¯ÇüÀÇ Çöó½ºÆ½À» ºÐÇØÇÏ´Â È¿°ú°¡ Á¦ÇÑÀûÀ̶ó´Â Á¡Àº Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀå¿¡ µµÀüÀÌ µÇ°í ÀÖ½À´Ï´Ù. º¸´Ù ´Ù¾çÇÑ À¯ÇüÀÇ Çöó½ºÆ½À» ºÐÇØÇÒ ¼ö ÀÖ´Â ¹ÚÅ׸®¾Æ ±ÕÁÖ¸¦ ½Äº°ÇÏ°í °³¹ßÇϱâ À§ÇÑ ³ë·ÂÀÌ ÀÌ·ç¾îÁö°í ÀÖÁö¸¸, ÀÌ ºÐ¾ßÀÇ ¹ßÀüÀº ´õµð°Ô ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÀÌ´Â Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡¼ Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾ÆÀÇ ÀáÀçÀû ¿ëµµ¸¦ Á¦ÇÑÇÏ°í ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ ¼ö ÀÖ½À´Ï´Ù.
Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀº Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(PET), Æú¸®¿ì·¹Åº(PUR), ±âŸ(Æú¸®À¯»ê(PLA), Æú¸®ÇÏÀ̵å·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA)) µî Å©°Ô ¼¼ °¡Áö·Î ºÐ·ùµË´Ï´Ù. PET ¼öÁö ºÎ¹®Àº ½ÃÀå¿¡¼ °¡Àå Å©°í °¡Àå ³Î¸® ¾Ë·ÁÁø ºÎ¹®À¸·Î, PET ±â¹Ý Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Çöó½ºÆ½ Æó±â¹°¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß PET ¼öÁö ºÎ¹®ÀÌ °è¼ÓÇؼ ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµÈ´Ù, Çöó½ºÆ½ º´, ¿ë±â ¹× Æ÷ÀåÀç Á¦Á¶¿¡ »ç¿ëµÇ¸ç, PET ±â¹Ý Á¦Ç°¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í Çöó½ºÆ½ Æó±â¹°¿¡ ´ëÇÑ ¿ì·Á Áõ°¡°¡ ÀÌ ºÎ¹®ÀÇ ¼ºÀåÀ» °¡¼ÓÇÏ´Â ÁÖ¿ä ¿äÀÎÀ¸·Î ÀÛ¿ëÇÏ°í ÀÖ½À´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀÇ ¼öÁö ºÎ¹®º°·Î´Â PET ¼öÁö ºÎ¹®ÀÌ °¡Àå Å« ¸ÅÃâ Á¡À¯À²À» Â÷ÁöÇÏ°í ÀÖÁö¸¸, ¿¹Ãø ±â°£ Áß PET, PUR ¹× ±âŸ ¼¼ ºÎ¹® ¸ðµÎ Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
2022³â¿¡´Â ºÏ¹Ì¿Í À¯·´ÀÌ °¡Àå Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾Æ½Ã¾ÆÅÂÆò¾ç°ú ¶óƾ¾Æ¸Þ¸®Ä«°¡ Å« ¼ºÀåÀ» ÀÌ·ê °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ºÏ¹Ì´Â Çöó½ºÆ½ Æó±â¹° °ü¸®¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦°¡ ÀÖÀ¸¸ç, Çöó½ºÆ½ ½Ä¿ë °õÆÎÀÌ ½ÃÀåÀÇ ÁÖ¿ä ±â¾÷µéÀÌ ¸¹ÀÌ °ÅÁÖÇÏ´Â Áö¿ªÀÔ´Ï´Ù. Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¹Ì±¹¿¡¼ °¡Àå ³ôÀº ¸ÅÃâÀÌ ¹ß»ýÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº 2023-2031³âÀÇ ¿¹Ãø ±â°£ Áß Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Áß±¹°ú Àεµ¿Í °°Àº ±¹°¡ÀÇ Àα¸ Áõ°¡¿Í ±Þ¼ÓÇÑ µµ½ÃÈ·Î ÀÎÇØ Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀÇ ¼ºÀåÀÌ ÃËÁøµÇ°í ÀÖ½À´Ï´Ù. Àα¸°¡ ¸¹°í ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ôÀº Áß±¹ÀÌ °¡Àå ³ôÀº ¸ÅÃâÀ» ¿Ã¸± °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ À¯·´Àº ¿¹Ãø ±â°£ Áß Å« ½ÃÀå Á¡À¯À²À» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ Áö¿ªÀº Çöó½ºÆ½ Æó±â¹° °ü¸® ±ÔÁ¦°¡ ¾ö°ÝÇÏ°í ȯ°æ ¹®Á¦¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾Æ Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀÇ ¼ºÀåÀ» °ßÀÎÇÏ°í ÀÖ½À´Ï´Ù. ÷´ÜÀÎ Çöó½ºÆ½ Æó±â¹° °ü¸® ½Ã½ºÅÛÀ» °®Ãá µ¶ÀÏ¿¡¼ °¡Àå ³ôÀº ¸ÅÃâÀ» ¿Ã¸± °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀåÀº °æÀïÀÌ Ä¡¿Çϸç, ¸¹Àº ¼¼°è ¹× Áö¿ª ±â¾÷µéÀÌ ½ÃÀå¿¡¼ È°µ¿ÇÏ°í ÀÖ½À´Ï´Ù. ½ÃÀå ³» ÁÖ¿ä ¾÷ü·Î´Â Carbios, Novozymes, Danimer Scientific, BioLogiQ, Tianjin GreenBio Materials, Full Cycle Bioplastics, Newlight Technologies µîÀÌ ÀÖ½À´Ï´Ù. ½ÃÀå ³» ±â¾÷µéÀº °æÀï·ÂÀ» ³ôÀ̱â À§ÇØ Çõ½ÅÀûÀÎ Á¦Ç°°ú ±â¼ú °³¹ß¿¡ ÁÖ·ÂÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2021³â 4¿ù Ä®ºñ¿À½º´Â µ¶ÀÚÀûÀÎ È¿¼Ò ±â¼úÀ» ÅëÇØ 100% ÀçÈ°¿ë Çöó½ºÆ½ Æó±â¹°·Î ¸¸µç ¼¼°è ÃÖÃÊÀÇ ½ÄÇ°¿ë PET Çöó½ºÆ½ º´À» »ý»êÇϴµ¥ ¼º°øÇß´Ù°í ¹ßÇ¥Çß½À´Ï´Ù. ¶ÇÇÑ Æé½ÃÄݶó»ç¿Í ÀÚ»çÀÇ ±â¼úÀ» È°¿ëÇÑ Áö¼Ó °¡´ÉÇÑ Æ÷Àå ¼Ö·ç¼Ç °³¹ß¿¡ ´ëÇÑ °è¾àÀ» ü°áÇϱ⵵ Çß½À´Ï´Ù. Çöó½ºÆ½ ¸Ô´Â ¹ÚÅ׸®¾Æ ½ÃÀå¿¡¼µµ M& A°¡ ÀÚÁÖ ÀϾ°í Àִµ¥, 2021³â 3¿ù Danimer ScientificÀº »ýºÐÇؼº Çöó½ºÆ½ Á¦Á¶, PHA Á¦Á¶ ¹× ÆǸŠ¾÷üÀÎ Novomer¸¦ ÀμöÇß½À´Ï´Ù. À̹ø Àμö·Î ´Ù´Ï¸Ó »çÀ̾ðƼÇÈÀº Á¦Ç° Æ÷Æ®Æú¸®¿À¸¦ È®ÀåÇÏ°í ½ÃÀå ÀÔÁö¸¦ °ÈÇß½À´Ï´Ù. ¶ÇÇÑ ¾ç»ç´Â Àü·«Àû ÆÄÆ®³Ê½Ê°ú Çù¾÷À» ÅëÇØ Áö¿ªÀû ÀÔÁö¸¦ È®´ëÇÏ´Â µ¥ ÁÖ·ÂÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î 2021³â 2¿ù BioLogiQ´Â Çöó½ºÆ½ Æ÷Àå »ê¾÷À» À§ÇÑ Áö¼Ó °¡´ÉÇÑ ¼Ö·ç¼ÇÀ» °³¹ßÇϱâ À§ÇØ »ê¾÷¿ë ±¤¹° Á¦Á¶¾÷üÀÎ ¿È¾ß(Omya)¿ÍÀÇ Á¦ÈÞ¸¦ ¹ßÇ¥Çß½À´Ï´Ù.
The plastic-eating bacteria market is a niche market that is gaining traction due to the growing need for sustainable solutions to plastic waste management. Plastic-eating bacteria are a type of bacteria that can degrade various types of plastic, including polyethylene terephthalate (PET) and polyethylene. The market for plastic-eating bacteria is primarily driven by the increasing focus on eco-friendly and sustainable solutions to plastic waste management. The global plastic-eating bacteria market is expected to grow at a CAGR of 9% during the forecast period of 2023 to 2031. The market for plastic-eating bacteria is primarily driven by the increasing adoption of sustainable solutions to plastic waste management. The plastic waste generated globally has become a major environmental concern, and the traditional methods of waste management, such as landfill and incineration, have proven to be inefficient and harmful to the environment. Plastic-eating bacteria offer a sustainable and eco-friendly solution to plastic waste management.
The growing environmental concerns regarding plastic waste have been a major driver for the plastic-eating bacteria market. The traditional methods of plastic waste management such as landfill and incineration have proven to be harmful to the environment. Plastic-eating bacteria provide a sustainable solution to this problem by breaking down plastic waste into biodegradable components. This helps reduce the amount of plastic waste that ends up in landfills or oceans. According to a report by the United Nations Environment Programme, over 8 million tonnes of plastic waste end up in the oceans every year, which has led to various environmental problems.
Government regulations regarding plastic waste management have been a major driver for the plastic-eating bacteria market. Many countries around the world have implemented regulations to reduce the use of single-use plastics and promote sustainable solutions to plastic waste management. For instance, the European Union has implemented a ban on single-use plastics such as straws and cutlery, which has increased the demand for sustainable alternatives. These regulations have created a favorable environment for the growth of the plastic-eating bacteria market.
The increasing demand for sustainable solutions to plastic waste management has been a major driver for the plastic-eating bacteria market. Consumers are becoming more aware of the environmental impact of plastic waste and are demanding sustainable solutions. Companies are also responding to this demand by adopting sustainable practices and products. For instance, many companies in the packaging industry are switching to biodegradable packaging solutions, which has increased the demand for plastic-eating bacteria. The growing demand for sustainable solutions is expected to continue to drive the growth of the plastic-eating bacteria market in the coming years.
One of the key restraints for the plastic-eating bacteria market is the limited effectiveness of these bacteria in degrading certain types of plastics. While plastic-eating bacteria have been successful in degrading some types of plastics such as polyethylene terephthalate (PET) and polyethylene, they have limited effectiveness in degrading other types of plastics such as polypropylene and polystyrene. This limits the potential applications of plastic-eating bacteria in plastic waste management. Studies have shown that the effectiveness of plastic-eating bacteria in degrading different types of plastics varies widely. For instance, a study published in the Journal of Applied Polymer Science found that a bacterial strain called Ideonellasakaiensis was able to degrade PET effectively. However, other types of plastics such as polystyrene were not degraded by this strain. Similarly, another study published in Environmental Science and Technology Letters found that bacterial strains capable of degrading polyethylene were unable to degrade polypropylene. This limited effectiveness in degrading certain types of plastics presents a challenge for the plastic-eating bacteria market. While efforts are being made to identify and develop bacterial strains that can degrade a wider range of plastics, the progress in this area has been slow. This may limit the potential applications of plastic-eating bacteria in plastic waste management and hinder the growth of the market.
The plastic-eating bacteria market by resin segment can be divided into three main categories: Polyethylene Terephthalate (PET), Polyurethane (PUR), and Others (Polylactic Acid [PLA], Polyhydroxyalkanoate [PHA]). The PET resin segment remained the largest and most widely recognized segment in the plastic-eating bacteria market by resin segment in 2022. The PET resin segment is expected to continue to dominate the market during the forecast period due to the increasing demand for PET-based products and growing concerns regarding plastic waste. PET is used in the production of plastic bottles, containers, and packaging materials. The increasing demand for PET-based products and the growing concerns regarding plastic waste have been major drivers for the growth of this segment. While the PET resin segment accounts for the largest revenue share in the plastic-eating bacteria market by resin segment, all three segments - PET, PUR, and Other - are expected to grow at a significant rate during the forecast period.
North America and Europe held the largest share in 2022, while Asia Pacific and Latin America are expected to grow at a significant rate. North America has stringent regulations for plastic waste management and is also home to many prominent players in the plastic-eating bacteria market. The highest revenue is expected to be generated from the United States due to the high adoption of sustainable solutions. Asia Pacific is expected to grow at a significant rate during the forecast period of 2023 to 2031, due to the increasing adoption of sustainable solutions in the region. The rising population and rapid urbanization in countries like China and India are driving the growth of the plastic-eating bacteria market. The highest revenue is expected to be generated from China due to its large population and increasing awareness about environmental issues. Europe is also expected to hold a significant market share during the forecast period. The region has strict regulations for plastic waste management and high awareness of environmental issues, which are driving the growth of the plastic-eating bacteria market. The highest revenue is expected to be generated from Germany due to its advanced plastic waste management systems.
The plastic-eating bacteria market is highly competitive, with many global and regional players operating in the market. Some of the prominent players in the market are Carbios, Novozymes, Danimer Scientific, BioLogiQ, Tianjin GreenBio Materials, Full Cycle Bioplastics, and Newlight Technologies. The companies in the market are focusing on developing innovative products and technologies to gain a competitive edge. For instance, in April 2021, Carbios announced the successful production of the world's first food-grade PET plastic bottles made from 100% recycled plastic waste using its proprietary enzyme technology. The company also signed an agreement with PepsiCo to develop sustainable packaging solutions using its technology. Mergers and acquisitions are also common in the plastic-eating bacteria market. In March 2021, Danimer Scientific acquired the biodegradable plastic manufacturer, PHA producer, and marketer, Novomer. The acquisition helped Danimer Scientific expand its product portfolio and strengthen its position in the market. The companies are also focusing on expanding their geographical presence by entering into strategic partnerships and collaborations. For instance, in February 2021, BioLogiQ announced a partnership with Omya, a leading producer of industrial minerals, to develop sustainable solutions for the plastic packaging industry.
This study report represents analysis of each segment from 2021 to 2031 considering 2022 as the base year. Compounded Annual Growth Rate (CAGR) for each of the respective segments estimated for the forecast period of 2022 to 2031.
The current report comprises of quantitative market estimations for each micro market for every geographical region and qualitative market analysis such as micro and macro environment analysis, market trends, competitive intelligence, segment analysis, porters five force model, top winning strategies, top investment markets, emerging trends and technological analysis, case studies, strategic conclusions and recommendations and other key market insights.
The complete research study was conducted in three phases, namely: secondary research, primary research, and expert panel review. key data point that enables the estimation of Plastic-eating Bacteria market are as follows:
Micro and macro environment factors that are currently influencing the Plastic-eating Bacteria market and their expected impact during the forecast period.
Market forecast was performed through proprietary software that analyzes various qualitative and quantitative factors. Growth rate and CAGR were estimated through intensive secondary and primary research. Data triangulation across various data points provides accuracy across various analyzed market segments in the report. Application of both top down and bottom-up approach for validation of market estimation assures logical, methodical and mathematical consistency of the quantitative data.