½ÃÀ庸°í¼­
»óǰÄÚµå
1675055

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : ¼ºÀå, Àü¸Á, °æÀï ºÐ¼®(2025-2033³â)

Nano Radiation Sensors Market - Growth, Future Prospects and Competitive Analysis, 2025 - 2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Acute Market Reports | ÆäÀÌÁö Á¤º¸: ¿µ¹® 171 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀ̶õ ¹æ»ç¼±·®À» Á¤¹ÐÇÏ°Ô °¨ÁöÇϰí ÃøÁ¤ÇÒ ¼ö ÀÖ´Â ¼ÒÇü ¼¾¼­ÀÇ °³¹ß ¹× ÆÇ¸Å¿¡ ÁßÁ¡À» µÐ ¼¾¼­ »ê¾÷ ºÎ¹®À» ¸»ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ³ª³ë ±â¼úÀ» Ȱ¿ëÇÏ¿© ±âÁ¸ ¼¾¼­°¡ ³Ê¹« Å©°Å³ª È¿°ú°¡ ¾ø´Â ȯ°æ¿¡¼­µµ °¨µµ¿Í Á¤È®µµ¸¦ Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­´Â ÀÇ·á ¿µ»ó, ȯ°æ ¸ð´ÏÅ͸µ, ¿øÀÚ·Â ¹ßÀü °ü¸®, ±¹Åä ¾Èº¸ µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ Áß¿äÇÑ ¿ªÇÒÀ» ÇÏ¸ç ¹æ»ç¼± ÇÇÆøÀ» Æò°¡ÇÏ°í ¾ÈÀü ±âÁØÀ» ÁؼöÇÏ´Â µ¥ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀº CAGR 4.3%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀ» ÁÖµµÇÏ´Â °ÍÀº ´Ù¾çÇÑ »ê¾÷ ºÐ¾ß¿¡¼­ º¸´Ù Á¤È®Çϰí È¿À²ÀûÀÎ ¹æ»ç¼± ¸ð´ÏÅ͸µ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß¿¡¼­ ³ª³ë ¹æ»ç¼± ¼¾¼­´Â ¹æ»ç¼± ±â¹Ý Ä¡·á ¹× Áø´ÜÀÇ Á¤È®¼º°ú ¾ÈÀü¼ºÀ» Çâ»ó½ÃŰ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ȯ°æ ºÐ¾ß¿¡¼­´Â ¹æ»ç´É ¿À¿° ¼öÁØÀ» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇÏ¿© Àç³­ ´ëÀÀ ¹× ȯ°æ º¸È£¿¡ µµ¿òÀ» ÁÖ°í ÀÖ½À´Ï´Ù.

ÇコÄÉ¾î ¿ëµµ ¼ö¿ä Áõ°¡

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀÇ Áß¿äÇÑ ÃËÁø¿äÀÎÀº ÇコÄÉ¾î ºÐ¾ß ¼ö¿ä Áõ°¡ÀÔ´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­´Â ¿¢½º·¹ÀÌ ¹× CT ½ºÄµ°ú °°Àº ¹æ»ç¼± Ä¡·á ¹× ¿µ»ó Áø´Ü ±â¼úÀÇ ¾ÈÀü¼º°ú À¯È¿¼ºÀ» ³ôÀÌ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ¼¾¼­´Â ȯÀÚ°¡ ¹Þ´Â ¹æ»ç¼±·®À» Á¤È®ÇÏ°Ô ÃøÁ¤ÇÏ¿© °ú´Ù ÇÇÆøÀÇ À§ÇèÀ» ÃÖ¼ÒÈ­Çϰí ÃÖÀûÀÇ Ä¡·á °á°ú¸¦ º¸ÀåÇÕ´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­ÀÇ °í°¨µµÈ­´Â °í¼±·® ¹æ»ç¼± Ä¡·á¿¡¼­ ¸Å¿ì Áß¿äÇÑ ´õ ³ªÀº ¸ð´ÏÅ͸µ°ú °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÕ´Ï´Ù. ÀÇ·á ±â¼úÀÇ ¹ßÀüÀ¸·Î ÀÎÇØ ȯÀÚÀÇ ¾ÈÀü°ú Áø´ÜÀÇ Á¤È®¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ±â±â°¡ Áö¼ÓÀûÀ¸·Î ¿ä±¸µÇ°í ÀÖ´Â °Íµµ ³ª³ë ¹æ»ç¼± ¼¾¼­ÀÇ Ã¤ÅÃÀ» ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ¹× ÀÇ·á ½Ã¼³¿¡¼­´Â ¾ö°ÝÇÑ ÀÇ·á ±ÔÁ¦¸¦ ÁؼöÇϰí ȯÀÚÀÇ Ä¡·á °á°ú¸¦ Çâ»ó½Ã۱â À§ÇØ ÀÌ·¯ÇÑ Ã·´Ü ¼¾¼­¸¦ ¹æ»ç¼± Áø·á¿¡ ÅëÇÕÇÏ´Â »ç·Ê°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ȯ°æ ¸ð´ÏÅ͸µ È®´ë

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀº ȯ°æ ¸ð´ÏÅ͸µ ºÐ¾ß¿¡¼­ Å« ¼ºÀå ±âȸ°¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼¾¼­´Â ȯ°æ³» ³·Àº ¼öÁØÀÇ ¹æ»ç¼±À» °¨ÁöÇϰí ÃøÁ¤ÇÏ´Â µ¥ ¸Å¿ì È¿°úÀûÀ̸ç, ¹æ»ç´É ¿À¿°¿¡ Ãë¾àÇÑ Áö¿ªÀÇ °ø±â, ¹°, Åä¾çÀÇ ¾ÈÀü¼ºÀ» Æò°¡ÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù. ÀÌ ±â´ÉÀº ¿øÀÚ·Â »ç°í³ª ¹æ»ç¼º ¹°ÁúÀÇ ºÎÀûÀýÇÑ Æó±â ¹ß»ý½Ã Á¶±â ¹ß°ß ¹× ´ëÀÀ¿¡ ƯÈ÷ Áß¿äÇÕ´Ï´Ù. ȯ°æ ¿µÇâ¿¡ ´ëÇÑ ¿ì·Á¿Í Áö¼Ó°¡´ÉÇÑ °üÇà¿¡ ´ëÇÑ Àü ¼¼°èÀûÀÎ °ü½ÉÀ¸·Î ÀÎÇØ °¢±¹ Á¤ºÎ¿Í Á¶Á÷Àº ÷´Ü ¸ð´ÏÅ͸µ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ È®´ëÇϰí ÀÖ½À´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­´Â ¹Î°¨µµ°¡ Çâ»óµÇ°í Å©±â°¡ ÀÛ¾ÆÁ® ¿ø°ÝÁö³ª ¿µÇâÀ» ¹Þ±â ½¬¿î »ýŰ迡 µµÀÔÇϱ⿡ ÀÌ»óÀûÀ̸ç, ´ë±Ô¸ð ¼³Ä¡³ª ȯ°æ ÆÄ±« ¾øÀÌ ÇöÀå¿¡¼­ ½Ç½Ã°£ ¹æ»ç¼± ¸ð´ÏÅ͸µÀ» ÇÒ ¼ö ÀÖ½À´Ï´Ù.

³ôÀº °³¹ß ºñ¿ë

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä ¾ïÁ¦¿äÀÎÀº ÀÌ·¯ÇÑ Ã·´Ü ÀåºñÀÇ °³¹ß ¹× Á¦Á¶¿¡ µå´Â ³ôÀº ºñ¿ëÀÔ´Ï´Ù. ³ª³ë ½ºÄÉÀÏ ¼¾¼­ Á¦Á¶¿¡ ÇÊ¿äÇÑ Á¤¹Ð ¿£Áö´Ï¾î¸µÀº ¿¬±¸, ¼³°è ¹× Å×½ºÆ®¿¡ ¸·´ëÇÑ ÅõÀÚ°¡ ÇÊ¿äÇϸç, ƯÈ÷ ½Å»ý ±â¾÷À̳ª ¼Ò±Ô¸ð ±â¾÷¿¡°Ô´Â ¾öû³­ ºñ¿ëÀÌ ¼Ò¿äµÉ ¼ö ÀÖ½À´Ï´Ù. ³ª³ë ¹æ»ç¼± ¼¾¼­¿¡ »ç¿ëµÇ´Â Àç·á¿Í ±â¼úÀº ÃÖ÷´ÜÀÌ¸ç °í°¡À̱⠶§¹®¿¡ Á¦Á¶ ºñ¿ëÀ» ´õ¿í Áõ°¡½Ãŵ´Ï´Ù. ÀÌ·¯ÇÑ °æÁ¦Àû À庮Àº ƯÈ÷ ±ÝÀ¶ À¯¿¬¼ºÀÌ ³·Àº ½ÃÀåÀ̳ª ÷´Ü ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Á¦ÇÑÀûÀÏ ¼ö ÀÖ´Â ½ÅÈï ±¹°¡¿¡¼­ ±â¼ú Çõ½Å°ú äÅà ¼Óµµ¸¦ ´ÊÃâ ¼ö ÀÖ½À´Ï´Ù.

¼ÒÇüÈ­ÀÇ ±â¼úÀû °úÁ¦

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀÇ ÁÖ¿ä °úÁ¦ Áß Çϳª´Â ±â±â ¼ÒÇüÈ­¿¡ µû¸¥ ±â¼úÀû ¾î·Á¿òÀÔ´Ï´Ù. ¹æ»ç¼± ¼¾¼­ÀÇ Å©±â¸¦ ³ª³ë ½ºÄÉÀϱîÁö ÀÛ°Ô ¸¸µå´Â °ÍÀº º¹ÀâÇÑ Á¦Á¶ °øÁ¤À» ¼ö¹ÝÇÏ´Â °æ¿ì°¡ ¸¹À¸¸ç, °¨µµ ¹× Á¤È®µµ °ü·Ã ¹®Á¦°¡ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù. ¼ÒÇüÈ­µÈ ¼¾¼­°¡ ´ëÇü ¼¾¼­¿Í µ¿µî ÀÌ»óÀÇ ¼º´ÉÀ» ¹ßÈÖÇϱâ À§Çؼ­´Â ÷´Ü Àç·á°úÇаú ¹Ì¼¼ °¡°ø ±â¼úÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¼ÒÇü Àåºñ¿¡¼­ ³ôÀº ¼º´É ±âÁØÀ» À¯ÁöÇϱâ À§Çؼ­´Â ¾ö°ÝÇÑ Å×½ºÆ®¿Í ǰÁú º¸ÁõÀÌ ÇÊ¿äÇϸç, ÀÌ´Â ¶Ç ´Ù¸¥ º¹ÀâÇÑ °èÃþ°ú ºñ¿ëÀ» Ãß°¡ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Àå¾Ö¹°À» ±Øº¹ÇÏ´Â °ÍÀº ³ª³ë ¹æ»ç¼± ¼¾¼­ÀÇ ¼ÒÇüÈ­ ¹× °íÁ¤¹Ðµµ°¡ Å« ÀÌÁ¡À» Á¦°øÇÏ´Â ´õ ³ÐÀº ¿ëµµ¿¡ ¼º°øÀûÀ¸·Î ÅëÇÕÇϱâ À§ÇØ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

À¯Çüº° ½ÃÀå ¼¼ºÐÈ­

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀº ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â¿Í °íü °ËÃâ±â·Î ±¸ºÐµË´Ï´Ù. ¼¶±¤ °ËÃâ±â´Â ȯ°æ ¸ð´ÏÅ͸µ, º¸¾È ½Ã½ºÅÛ µî °í°¨µµ¸¦ ÇÊ¿ä·Î ÇÏ´Â ´Ù¾çÇÑ ¿ëµµ¿¡ ³Î¸® »ç¿ëµÇ°í ÀÖÀ¸¸ç, ÀüÅëÀûÀ¸·Î °¡Àå ³ôÀº ¸ÅÃâÀ» âÃâÇϰí ÀÖ½À´Ï´Ù. ÀÌµé °ËÃâ±â´Â ¹æ»ç¼±À» ºûÀ¸·Î º¯È¯ÇÏ¿© ÃøÁ¤ ¹× ºÐ¼®ÇÏ´Â ¹æ½ÄÀ¸·Î ÀÛµ¿ÇϹǷΠ±¤¹üÀ§ÇÑ ½ºÆåÆ®·³¿¡ °ÉÄ£ ³·Àº ¼öÁØÀÇ ¹æ»ç¼±À» °ËÃâ ¹× ÃøÁ¤ÇÏ´Â µ¥ ¸Å¿ì È¿°úÀûÀÔ´Ï´Ù. ÇÑÆí, °íü °ËÃâ±â´Â 2024-2032³â ¿¬Æò±Õ ¼ºÀå·ü(CAGR)ÀÌ °¡Àå ³ôÀ» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ÄÄÆÑÆ®ÇÑ Å©±â, ³ôÀº ³»±¸¼º, ³·Àº Àü·Â ¿ä±¸ »çÇ×À¸·Î ÀÎÇØ ÈÞ´ë¿ë ¹× ¿þ¾î·¯ºí ±â¼ú¿¡ ÅëÇÕÇϱ⿡ ÀûÇÕÇϱ⠶§¹®ÀÔ´Ï´Ù. Àç·á °úÇаú ¹Ì¼¼ °¡°ø ±â¼úÀÇ ¹ßÀüÀ¸·Î °íü °ËÃâ±âÀÇ ¼º´ÉÀÌ Çâ»óµÇ¾î Á¤È®ÇÏ°í ½Å·ÚÇÒ ¼ö ÀÖ´Â ¹æ»ç¼± ÃøÁ¤ÀÌ Áß¿äÇÑ ÀÇ·á ¿µ»ó Áø´Ü, °³ÀÎ ¼±·® ÃøÁ¤, ¿øÀÚ·Â ¿ëµµ¿¡¼­ äÅÃÀÌ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÃÖÁ¾ »ç¿ë »ê¾÷º° ½ÃÀå ¼¼ºÐÈ­

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀº ÃÖÁ¾ ¿ëµµ »ê¾÷º°·Î Ç×°ø¿ìÁÖ ¹× ¹æÀ§, ¿¡³ÊÁö ¹× Àü·Â, ÇコÄɾî, »ê¾÷, ¼®À¯ ¹× °¡½º, ±âŸ(ÀÚµ¿Â÷, °¡Àü µî)·Î ±¸ºÐµË´Ï´Ù. ÇコÄÉ¾î ºÐ¾ß´Â ÀÇ·á Áø´Ü ¹× Ä¡·á¿¡ ÀÖÀ¸¸ç, Á¤È®ÇÑ ¹æ»ç¼± ÃøÁ¤¿¡ ´ëÇÑ Áß¿äÇÑ ¿ä±¸·Î ÀÎÇØ 2023³â °¡Àå ³ôÀº ¸ÅÃâÀ» Â÷ÁöÇß½À´Ï´Ù. ƯÈ÷ ¹æ»ç¼± ÀÇÇÐ, Á¾¾çÇÐ, ÇÙÀÇÇÐ Ä¡·á¿¡¼­ ³ª³ë ¹æ»ç¼± ¼¾¼­ÀÇ Ã·´Ü ±â´ÉÀº ȯÀÚÀÇ ¾ÈÀü°ú Ä¡·á È¿°ú¸¦ º¸ÀåÇÏ´Â µ¥ µµ¿òÀÌ µÇ°í ÀÖ½À´Ï´Ù. ÇâÈÄ Ç×°ø¿ìÁÖ ¹× ¹æÀ§»ê¾÷ÀÌ 2024-2032³â °¡Àå ³ôÀº CAGRÀ» ³ªÅ¸³¾ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ¹æ»ç¼± °¨Áö°¡ Àΰ£ÀÇ ¾ÈÀü°ú ÀåºñÀÇ ±â´É¼º¿¡ ¸Å¿ì Áß¿äÇÑ ¹æÀ§ ±â´É ¹× ¿ìÁÖ Å½»ç ÀÓ¹«¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí Àֱ⠶§¹®ÀÔ´Ï´Ù. °¡È¤ÇÏ°í ¿¹ÃøÇÒ ¼ö ¾ø´Â ȯ°æ¿¡¼­ ¹æ»ç¼± ³ëÃâÀ» ¸ð´ÏÅ͸µÇϱâ À§ÇØ ¿ìÁÖ¼±, À§¼º, ±º Àåºñ¿¡ ³ª³ë ¹æ»ç¼± ¼¾¼­°¡ µµÀԵǸ鼭 ÀÌ·¯ÇÑ Ãß¼¼¸¦ ÁÖµµÇϰí ÀÖÀ¸¸ç, ¼¾¼­ ±â¼úÀÇ Ãß°¡ÀûÀÎ ¹ßÀüÀÌ ÀÌ ºÐ¾ß ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå Áö¿ªº° µ¿Çâ

¼¼°è ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀåÀº ¼ºÀå°ú ¸ÅÃâ âÃâ¿¡ ÀÖÀ¸¸ç, Áö¿ªÀû ´Ù¾ç¼ºÀ» Ư¡À¸·Î Çϸç, 2023³â ºÏ¹Ì´Â ¹æ»ç¼± ¸ð´ÏÅ͸µ ±â¼úÀ» ±¤¹üÀ§ÇÏ°Ô È°¿ëÇÏ´Â ÇコÄɾî, ±¹¹æ ¹× ¿¡³ÊÁö ºÐ¾ß¿¡ ´ëÇÑ È°¹ßÇÑ ÅõÀÚ¿¡ ÈûÀÔ¾î ¸ÅÃâ Ãø¸é¿¡¼­ ½ÃÀåÀ» ÁÖµµÇß½À´Ï´Ù. Àß ±¸ÃàµÈ ±â¼ú ÀÎÇÁ¶ó¿Í ¹æ»ç¼± ¾ÈÀü¿¡ ´ëÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ ±âÁØÀÇ Á¸Àç°¡ ÀÌ·¯ÇÑ ¿ìÀ§¿¡ ±â¿©Çϰí ÀÖÀ¸¸ç, 2024-2032³â ¾Æ½Ã¾ÆÅÂÆò¾çÀÌ °¡Àå ³ôÀº CAGRÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀº ÁÖ·Î Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼­ ±Þ¼ÓÇÑ »ê¾÷È­, ÀÇ·áºñ ÁöÃâ Áõ°¡, ¿øÀÚ·Â ±¸»óÀÇ È®´ë¿¡ ±âÀÎÇÕ´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â °ø°ø¾ÈÀü ´ëÃ¥°ú ȯ°æ ¸ð´ÏÅ͸µ ±â´É °­È­¿¡ ÃÊÁ¡À» ¸ÂÃß°í ÀÖ´Â °Íµµ ÷´Ü ¹æ»ç¼± ¼¾¼­ÀÇ Ã¤Åÿ¡ ¹ÚÂ÷¸¦ °¡Çϰí ÀÖ½À´Ï´Ù.

ÁÖ¿ä ±â¾÷ °æÀï µ¿Çâ ¹× ÁÖ¿ä Àü·«

³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå¿¡¼­ Hamamatsu Photonics K.K., First Sensor AG, Fluke, Kromek Group plc, Nihon Kessho Kogaku Co. Ltd., Thermo Fisher Scientific Inc. µîÀÇ ÁÖ¿ä ±â¾÷ÀÌ °æÀï ȯ°æÀ» Å©°Ô Çü¼ºÇϰí ÀÖ½À´Ï´Ù. 2023³â, ÀÌµé ±â¾÷Àº °¨Áö Á¤È®µµ¸¦ ³ôÀ̰í, ¼¾¼­ Å©±â¸¦ ÁÙÀ̸ç, ´Ù¾çÇÑ ¿ëµµ¿¡ ÅëÇÕÇÒ ¼ö ÀÖ´Â Àåºñ¸¦ º¸´Ù ½Ç¿ëÀûÀ¸·Î ¸¸µé±â À§ÇØ ¼¾¼­ ±â¼ú ¹ßÀü¿¡ ÁýÁßÇß½À´Ï´Ù. Àü·«Àû ÆÄÆ®³Ê½Ê°ú Àμö´Â ½Å±â¼ú¿¡ ´ëÇÑ Á¢±Ù°ú ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ È®´ëÇϱâ À§ÇØ Ã¤ÅÃµÈ ÁÖ¿ä Àü·«ÀÔ´Ï´Ù. ¿¹¸¦ µé¾î ´ëÇÐ ¹× ¿¬±¸ ±â°ü°úÀÇ Çù¾÷À» ÅëÇØ ±â¾÷Àº ÃÖ÷´Ü ¿¬±¸¸¦ Ȱ¿ëÇÏ¿© Á¦Ç° Á¦°øÀ» °³¼±ÇÒ ¼ö ÀÖ¾úÀ¸¸ç, 2024-2032³â ÀÌµé ±â¾÷Àº ¼¾¼­ÀÇ ¼º´ÉÀ» ´õ¿í Çâ»ó½Ãų ¼ö ÀÖ´Â »õ·Î¿î Àç·á¿Í ±â¼úÀ» Ž»öÇϱâ À§ÇØ ¿¬±¸°³¹ß ³ë·ÂÀ» °­È­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. °­È­ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÅÈï Áö¿ª, ƯÈ÷ ¾Æ½Ã¾ÆÅÂÆò¾çÀ¸·Î ½ÃÀå È®´ë°¡ ÃÊÁ¡ÀÌ µÉ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ÀÌ Áö¿ªÀº ¾ÈÀü°ú ȯ°æ ¸ð´ÏÅ͸µ¿¡ ´ëÇÑ ±ÔÁ¦°¡ °­È­µÇ¸é¼­ ½ÃÀå ±âȸ°¡ È®´ëµÇ°í Àֱ⠶§¹®ÀÔ´Ï´Ù. ¶ÇÇÑ Ç×°ø¿ìÁÖ ¹× ±¹¹æ ºÐ¾ßÀÇ ±ØÇÑ È¯°æ¿ë ¼¾¼­ Ä¿½ºÅ͸¶ÀÌ¡°ú °°ÀÌ Æ¯Á¤ »ê¾÷ ¼ö¿ä¿¡ ¸Â°Ô Á¦Ç°À» Á¶Á¤ÇÏ´Â °ÍÀº °æÀï ¿ìÀ§¸¦ À¯ÁöÇÏ°í ½ÃÀå ¼ºÀåÀ» °¡¼ÓÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­¹®

  • ¸®Æ÷Æ® ³»¿ë
    • ¸®Æ÷Æ®ÀÇ ¸ñÀû
    • ´ë»óÀÚ
    • ÁÖ¿ä Á¦°ø
  • ½ÃÀå ¼¼ºÐÈ­
  • Á¶»ç ¹æ¹ý
    • ´Ü°è I - 2Â÷ Á¶»ç
    • ´Ü°è II - 1Â÷ Á¶»ç
    • ´Ü°è III - Àü¹®°¡ ÆÐ³Î ¸®ºä
    • ÀüÁ¦Á¶°Ç
    • äÅÃÇÑ ¾îÇÁ·ÎÄ¡

Á¦2Àå °³¿ä

Á¦3Àå ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : °æÀï ºÐ¼®

  • ÁÖ¿ä º¥´õÀÇ ½ÃÀå Æ÷Áö¼Å´×
  • º¥´õ°¡ äÅÃÇÑ Àü·«
  • ÁÖ¿ä »ê¾÷ Àü·«

Á¦4Àå ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : °Å½Ã ºÐ¼®°ú ½ÃÀå ¿ªÇÐ

  • ¼­·Ð
  • ¼¼°èÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå ±Ý¾× 2023-2033³â
  • ½ÃÀå ¿ªÇÐ
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ÁÖ¿ä °úÁ¦
    • ÁÖ¿ä ±âȸ
  • ÃËÁø¿äÀΰú ¾ïÁ¦¿äÀÎÀÇ ¿µÇ⠺м®
  • ½Ã¼Ò ºÐ¼®
  • Porter's Five Forces ¸ðµ¨
    • °ø±Þ¾÷ü ÆÄ¿ö
    • ¹ÙÀÌ¾î ÆÄ¿ö
    • ´ëüǰÀÇ À§Çù
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • °æÀï ±â¾÷ °£ °æÀï °ü°è
  • PESTEL ºÐ¼®
    • Á¤Ä¡Á¤¼¼
    • °æÁ¦Á¤¼¼
    • ±â¼ú »óȲ
    • ¹ýÀû »óȲ
    • »çȸ »óȲ

Á¦5Àå ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : À¯Çüº° 2023-2033³â

  • ½ÃÀå °³¿ä
  • ¼ºÀ塤¸ÅÃ⠺м® : 2024³â°ú 2033³â
  • ½ÃÀå ¼¼ºÐÈ­
    • ½ÅÆ¿·¹ÀÌ¼Ç °ËÃâ±â
    • °íü °ËÃâ±â

Á¦6Àå ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : ÃÖÁ¾ ¿ëµµ »ê¾÷º° 2023-2033³â

  • ½ÃÀå °³¿ä
  • ¼ºÀ塤¸ÅÃ⠺м® : 2024³â°ú 2033³â
  • ½ÃÀå ¼¼ºÐÈ­
    • Ç×°ø¿ìÁÖ¡¤¹æÀ§
    • ¿¡³ÊÁö¡¤Àü·Â
    • ÇコÄɾî
    • »ê¾÷
    • ¼®À¯ ¹× °¡½º
    • ±âŸ(ÀÚµ¿Â÷¡¤°¡Àü µî)

Á¦7Àå ºÏ¹ÌÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå 2023-2033³â

  • ½ÃÀå °³¿ä
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : À¯Çüº° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : ÃÖÁ¾ ¿ëµµ »ê¾÷º° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : Áö¿ªº° 2023-2033³â
    • ºÏ¹Ì
      • ¹Ì±¹
      • ij³ª´Ù
      • ±âŸ ºÏ¹Ì Áö¿ª

Á¦8Àå ¿µ±¹°ú À¯·´¿¬ÇÕÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå 2023-2033³â

  • ½ÃÀå °³¿ä
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : À¯Çüº° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : ÃÖÁ¾ ¿ëµµ »ê¾÷º° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : Áö¿ªº° 2023-2033³â
    • ¿µ±¹°ú À¯·´¿¬ÇÕ
      • ¿µ±¹
      • µ¶ÀÏ
      • ½ºÆäÀÎ
      • ÀÌÅ»¸®¾Æ
      • ÇÁ¶û½º
      • ±âŸ À¯·´ Áö¿ª

Á¦9Àå ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå 2023-2033³â

  • ½ÃÀå °³¿ä
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : À¯Çüº° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : ÃÖÁ¾ ¿ëµµ »ê¾÷º° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : Áö¿ªº° 2023-2033³â
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
      • Áß±¹
      • ÀϺ»
      • Àεµ
      • È£ÁÖ
      • Çѱ¹
      • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç

Á¦10Àå ¶óÆ¾¾Æ¸Þ¸®Ä«ÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå 2023-2033³â

  • ½ÃÀå °³¿ä
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : À¯Çüº° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : ÃÖÁ¾ ¿ëµµ »ê¾÷º° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : Áö¿ªº° 2023-2033³â
    • ¶óƾ¾Æ¸Þ¸®Ä«
      • ºê¶óÁú
      • ¸ß½ÃÄÚ
      • ±âŸ ¶óƾ¾Æ¸Þ¸®Ä« Áö¿ª

Á¦11Àå Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÇ ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå 2023-2033³â

  • ½ÃÀå °³¿ä
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : À¯Çüº° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : ÃÖÁ¾ ¿ëµµ »ê¾÷º° 2023-2033³â
  • ³ª³ë ¹æ»ç¼± ¼¾¼­ ½ÃÀå : Áö¿ªº° 2023-2033³â
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
      • GCC
      • ¾ÆÇÁ¸®Ä«
      • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« Áö¿ª

Á¦12Àå ±â¾÷ °³¿ä

  • Hamamatsu Photonics K.K.
  • First Sensor AG
  • Fluke
  • Kromek Group plc
  • Nihon Kessho Kogaku Co. Ltd.
  • Thermo Fisher Scientific Inc.
KSA 25.03.21

The nano radiation sensors market refers to the segment of the sensor industry that focuses on the development and distribution of miniature sensors capable of detecting and measuring radiation levels with high precision. These sensors utilize nanotechnology to enhance sensitivity and accuracy in environments where traditional sensors may be too large or ineffective. Nano radiation sensors are critical in a variety of applications, including medical imaging, environmental monitoring, nuclear power management, and homeland security, where they help in assessing radiation exposure and ensuring safety standards are met. The nano radiation sensors market is projected to grow at a compound annual growth rate (CAGR) of 4.3%. This growth is driven by the increasing demand for more precise and efficient radiation monitoring systems across various industries. In healthcare, nano radiation sensors are crucial for improving the accuracy and safety of radiation-based treatments and diagnostics. In the environmental sector, these sensors are used to monitor radioactive contamination levels in real-time, aiding in disaster response and environmental protection.

Increasing Demand in Healthcare Applications

A significant driver for the nano radiation sensors market is the increasing demand for these devices in healthcare applications. Nano radiation sensors are integral to enhancing the safety and efficacy of radiation therapies and imaging techniques, such as X-rays and CT scans. These sensors provide precise measurements of radiation doses received by patients, minimizing the risk of overexposure and ensuring optimal treatment outcomes. The heightened sensitivity of nano radiation sensors allows for better monitoring and control, which is crucial in treatments that involve high radiation doses. Their adoption is further supported by the ongoing advancements in medical technology, where there is a continual push for equipment that increases patient safety and improves diagnostic accuracy. Hospitals and medical facilities are increasingly integrating these advanced sensors into their radiological practices to comply with stringent healthcare regulations and to foster better patient care outcomes.

Expansion in Environmental Monitoring

The nano radiation sensors market has a substantial opportunity for growth in the field of environmental monitoring. These sensors are highly effective in detecting and measuring low levels of radiation in the environment, which is essential for assessing the safety of air, water, and soil in areas prone to radioactive contamination. This capability is particularly important for early detection and response in the event of nuclear accidents or the improper disposal of radioactive materials. The ongoing environmental impact concerns and the global emphasis on sustainable practices are driving governments and organizations to invest in advanced monitoring technologies. Nano radiation sensors, with their enhanced sensitivity and reduced size, are ideal for deployment in remote and sensitive ecological zones, facilitating real-time, on-site radiation monitoring without extensive setup or disruption to the environment.

High Development Costs

A major restraint in the nano radiation sensors market is the high cost associated with the development and manufacturing of these advanced devices. The precision engineering required to produce nano-scale sensors involves significant investment in research, design, and testing, which can be prohibitive, especially for startups and smaller enterprises. The materials and technologies used in nano radiation sensors are often cutting-edge and expensive, further driving up production costs. This economic barrier can slow down the rate of innovation and adoption, particularly in markets with lower financial flexibility or in developing countries where investment in such advanced technologies may be limited.

Technical Challenges in Miniaturization

One of the principal challenges in the nano radiation sensors market is the technical difficulty associated with the miniaturization of these devices. Reducing the size of radiation sensors to the nano-scale often entails complex manufacturing processes and can introduce issues related to sensitivity and accuracy. Ensuring that these miniaturized sensors perform at or above the level of their larger counterparts requires advanced materials science and microfabrication techniques. The need for rigorous testing and quality assurance to maintain high performance standards in such small devices adds additional layers of complexity and cost. Overcoming these technical hurdles is crucial for the successful integration of nano radiation sensors into wider applications, where their small size and high precision can provide significant benefits.

Market Segmentation by Type

The nano radiation sensors market is segmented into scintillation detectors and solid-state detectors. Scintillation detectors have traditionally generated the highest revenue due to their widespread use in various applications requiring high sensitivity, such as environmental monitoring and security systems. These detectors work by converting radiation into light, which is then measured and analyzed, making them highly effective for detecting and measuring low levels of radiation across a broad spectrum. On the other hand, solid-state detectors are projected to experience the highest compound annual growth rate (CAGR) from 2024 to 2032. This growth is attributed to their compact size, higher durability, and lower power requirements, making them more suitable for integration into portable and wearable technologies. Advances in materials science and microfabrication techniques are enhancing the performance of solid-state detectors, increasing their adoption in medical imaging, personal dosimetry, and nuclear power applications where precise and reliable radiation measurement is critical.

Market Segmentation by End-use Industry

In terms of end-use industries, the nano radiation sensors market is segmented into aerospace & defense, energy & power, healthcare, industrial, oil & gas, and others, which include automotive and consumer electronics. The healthcare sector accounted for the highest revenue in 2023, driven by the critical need for precise radiation measurement in medical diagnostics and treatment. Applications in radiology, oncology, and nuclear medicine particularly benefit from the advanced capabilities of nano radiation sensors to ensure patient safety and treatment efficacy. Moving forward, the aerospace & defense industry is expected to register the highest CAGR from 2024 to 2032. This growth can be attributed to increasing investments in defense capabilities and space exploration missions, where radiation detection is crucial for both human safety and equipment functionality. The deployment of nano radiation sensors in spacecraft, satellites, and military equipment to monitor radiation exposure in harsh and unpredictable environments is driving this trend, with further advancements in sensor technology anticipated to boost market growth in this segment.

Geographic Trends in the Nano Radiation Sensors Market

The global nano radiation sensors market is characterized by significant geographic diversity in growth and revenue generation. In 2023, North America led the market in terms of revenue, driven by robust investment in healthcare, defense, and energy sectors, which extensively utilize radiation monitoring technologies. The presence of a well-established technological infrastructure and stringent regulatory standards governing radiation safety contributed to this dominance. Looking forward from 2024 to 2032, Asia-Pacific is expected to exhibit the highest compound annual growth rate (CAGR). This growth is primarily due to rapid industrialization, increasing healthcare expenditure, and expanding nuclear energy initiatives in countries like China, Japan, and South Korea. The region's focus on enhancing public safety measures and environmental monitoring capabilities is also fueling the adoption of advanced radiation sensors.

Competitive Trends and Key Strategies among Top Players

In the nano radiation sensors market, top players such as Hamamatsu Photonics K.K., First Sensor AG, Fluke, Kromek Group plc, Nihon Kessho Kogaku Co. Ltd., and Thermo Fisher Scientific Inc. have prominently shaped the competitive landscape. In 2023, these companies focused on advancing sensor technology to enhance detection accuracy and reduce sensor size, making devices more practical for integration into various applications. Strategic partnerships and acquisitions were key strategies employed to access new technologies and expand market presence. For instance, collaborations with universities and research institutions enabled companies to leverage cutting-edge research to improve product offerings. From 2024 to 2032, these players are expected to intensify their research and development efforts to explore new materials and technologies that can further improve sensor performance. Market expansion into emerging regions, particularly in Asia-Pacific, will likely be a focus, as these areas present growing opportunities due to increasing regulatory emphasis on safety and environmental monitoring. Additionally, adapting products to specific industry needs, such as customizing sensors for extreme environments in aerospace and defense, will be crucial in maintaining competitive advantage and fostering market growth.

Historical & Forecast Period

This study report represents an analysis of each segment from 2023 to 2033 considering 2024 as the base year. Compounded Annual Growth Rate (CAGR) for each of the respective segments estimated for the forecast period of 2025 to 2033.

The current report comprises quantitative market estimations for each micro market for every geographical region and qualitative market analysis such as micro and macro environment analysis, market trends, competitive intelligence, segment analysis, porters five force model, top winning strategies, top investment markets, emerging trends & technological analysis, case studies, strategic conclusions and recommendations and other key market insights.

Research Methodology

The complete research study was conducted in three phases, namely: secondary research, primary research, and expert panel review. The key data points that enable the estimation of Nano Radiation Sensors market are as follows:

Research and development budgets of manufacturers and government spending

Revenues of key companies in the market segment

Number of end users & consumption volume, price, and value.

Geographical revenues generated by countries considered in the report

Micro and macro environment factors that are currently influencing the Nano Radiation Sensors market and their expected impact during the forecast period.

Market forecast was performed through proprietary software that analyzes various qualitative and quantitative factors. Growth rate and CAGR were estimated through intensive secondary and primary research. Data triangulation across various data points provides accuracy across various analyzed market segments in the report. Application of both top-down and bottom-up approach for validation of market estimation assures logical, methodical, and mathematical consistency of the quantitative data.

  • Market Segmentation
    • Type
  • Scintillation Detectors
  • Solid-state Detectors
    • End-use Industry
  • Aerospace & Defense
  • Energy & Power
  • Healthcare
  • Industrial
  • Oil & Gas
  • Others (Automotive, Consumer Electronics, etc.)
  • Region Segment (2023-2033; US$ Million)
  • North America
  • U.S.
  • Canada
  • Rest of North America
  • UK and European Union
  • UK
  • Germany
  • Spain
  • Italy
  • France
  • Rest of Europe
  • Asia Pacific
  • China
  • Japan
  • India
  • Australia
  • South Korea
  • Rest of Asia Pacific
  • Latin America
  • Brazil
  • Mexico
  • Rest of Latin America
  • Middle East and Africa
  • GCC
  • Africa
  • Rest of Middle East and Africa

Key questions answered in this report

  • What are the key micro and macro environmental factors that are impacting the growth of Nano Radiation Sensors market?
  • What are the key investment pockets concerning product segments and geographies currently and during the forecast period?
  • Estimated forecast and market projections up to 2033.
  • Which segment accounts for the fastest CAGR during the forecast period?
  • Which market segment holds a larger market share and why?
  • Are low and middle-income economies investing in the Nano Radiation Sensors market?
  • Which is the largest regional market for Nano Radiation Sensors market?
  • What are the market trends and dynamics in emerging markets such as Asia Pacific, Latin America, and Middle East & Africa?
  • Which are the key trends driving Nano Radiation Sensors market growth?
  • Who are the key competitors and what are their key strategies to enhance their market presence in the Nano Radiation Sensors market worldwide?

Table of Contents

1. Preface

  • 1.1. Report Description
    • 1.1.1. Purpose of the Report
    • 1.1.2. Target Audience
    • 1.1.3. Key Offerings
  • 1.2. Market Segmentation
  • 1.3. Research Methodology
    • 1.3.1. Phase I - Secondary Research
    • 1.3.2. Phase II - Primary Research
    • 1.3.3. Phase III - Expert Panel Review
    • 1.3.4. Assumptions
    • 1.3.5. Approach Adopted

2. Executive Summary

  • 2.1. Market Snapshot: Global Nano Radiation Sensors Market
  • 2.2. Global Nano Radiation Sensors Market, By Type, 2024 (US$ Million)
  • 2.3. Global Nano Radiation Sensors Market, By End-use Industry, 2024 (US$ Million)
  • 2.4. Global Nano Radiation Sensors Market, By Geography, 2024 (US$ Million)
  • 2.5. Attractive Investment Proposition by Geography, 2024

3. Nano Radiation Sensors Market: Competitive Analysis

  • 3.1. Market Positioning of Key Nano Radiation Sensors Market Vendors
  • 3.2. Strategies Adopted by Nano Radiation Sensors Market Vendors
  • 3.3. Key Industry Strategies

4. Nano Radiation Sensors Market: Macro Analysis & Market Dynamics

  • 4.1. Introduction
  • 4.2. Global Nano Radiation Sensors Market Value, 2023 - 2033, (US$ Million)
  • 4.3. Market Dynamics
    • 4.3.1. Market Drivers
    • 4.3.2. Market Restraints
    • 4.3.3. Key Challenges
    • 4.3.4. Key Opportunities
  • 4.4. Impact Analysis of Drivers and Restraints
  • 4.5. See-Saw Analysis
  • 4.6. Porter's Five Force Model
    • 4.6.1. Supplier Power
    • 4.6.2. Buyer Power
    • 4.6.3. Threat Of Substitutes
    • 4.6.4. Threat Of New Entrants
    • 4.6.5. Competitive Rivalry
  • 4.7. PESTEL Analysis
    • 4.7.1. Political Landscape
    • 4.7.2. Economic Landscape
    • 4.7.3. Technology Landscape
    • 4.7.4. Legal Landscape
    • 4.7.5. Social Landscape

5. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)

  • 5.1. Market Overview
  • 5.2. Growth & Revenue Analysis: 2024 Versus 2033
  • 5.3. Market Segmentation
    • 5.3.1. Scintillation Detectors
    • 5.3.2. Solid-state Detectors

6. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)

  • 6.1. Market Overview
  • 6.2. Growth & Revenue Analysis: 2024 Versus 2033
  • 6.3. Market Segmentation
    • 6.3.1. Aerospace & Defense
    • 6.3.2. Energy & Power
    • 6.3.3. Healthcare
    • 6.3.4. Industrial
    • 6.3.5. Oil & Gas
    • 6.3.6. Others (Automotive, Consumer Electronics, etc.)

7. North America Nano Radiation Sensors Market, 2023-2033, USD (Million)

  • 7.1. Market Overview
  • 7.2. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
  • 7.3. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
  • 7.4.Nano Radiation Sensors Market: By Region, 2023-2033, USD (Million)
    • 7.4.1.North America
      • 7.4.1.1. U.S.
        • 7.4.1.1.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 7.4.1.1.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 7.4.1.2. Canada
        • 7.4.1.2.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 7.4.1.2.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 7.4.1.3. Rest of North America
        • 7.4.1.3.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 7.4.1.3.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)

8. UK and European Union Nano Radiation Sensors Market, 2023-2033, USD (Million)

  • 8.1. Market Overview
  • 8.2. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
  • 8.3. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
  • 8.4.Nano Radiation Sensors Market: By Region, 2023-2033, USD (Million)
    • 8.4.1.UK and European Union
      • 8.4.1.1. UK
        • 8.4.1.1.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 8.4.1.1.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 8.4.1.2. Germany
        • 8.4.1.2.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 8.4.1.2.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 8.4.1.3. Spain
        • 8.4.1.3.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 8.4.1.3.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 8.4.1.4. Italy
        • 8.4.1.4.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 8.4.1.4.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 8.4.1.5. France
        • 8.4.1.5.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 8.4.1.5.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 8.4.1.6. Rest of Europe
        • 8.4.1.6.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 8.4.1.6.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)

9. Asia Pacific Nano Radiation Sensors Market, 2023-2033, USD (Million)

  • 9.1. Market Overview
  • 9.2. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
  • 9.3. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
  • 9.4.Nano Radiation Sensors Market: By Region, 2023-2033, USD (Million)
    • 9.4.1.Asia Pacific
      • 9.4.1.1. China
        • 9.4.1.1.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 9.4.1.1.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 9.4.1.2. Japan
        • 9.4.1.2.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 9.4.1.2.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 9.4.1.3. India
        • 9.4.1.3.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 9.4.1.3.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 9.4.1.4. Australia
        • 9.4.1.4.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 9.4.1.4.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 9.4.1.5. South Korea
        • 9.4.1.5.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 9.4.1.5.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 9.4.1.6. Rest of Asia Pacific
        • 9.4.1.6.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 9.4.1.6.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)

10. Latin America Nano Radiation Sensors Market, 2023-2033, USD (Million)

  • 10.1. Market Overview
  • 10.2. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
  • 10.3. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
  • 10.4.Nano Radiation Sensors Market: By Region, 2023-2033, USD (Million)
    • 10.4.1.Latin America
      • 10.4.1.1. Brazil
        • 10.4.1.1.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 10.4.1.1.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 10.4.1.2. Mexico
        • 10.4.1.2.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 10.4.1.2.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 10.4.1.3. Rest of Latin America
        • 10.4.1.3.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 10.4.1.3.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)

11. Middle East and Africa Nano Radiation Sensors Market, 2023-2033, USD (Million)

  • 11.1. Market Overview
  • 11.2. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
  • 11.3. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
  • 11.4.Nano Radiation Sensors Market: By Region, 2023-2033, USD (Million)
    • 11.4.1.Middle East and Africa
      • 11.4.1.1. GCC
        • 11.4.1.1.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 11.4.1.1.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 11.4.1.2. Africa
        • 11.4.1.2.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 11.4.1.2.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)
      • 11.4.1.3. Rest of Middle East and Africa
        • 11.4.1.3.1. Nano Radiation Sensors Market: By Type, 2023-2033, USD (Million)
        • 11.4.1.3.2. Nano Radiation Sensors Market: By End-use Industry, 2023-2033, USD (Million)

12. Company Profile

  • 12.1. Hamamatsu Photonics K.K.
    • 12.1.1. Company Overview
    • 12.1.2. Financial Performance
    • 12.1.3. Product Portfolio
    • 12.1.4. Strategic Initiatives
  • 12.2. First Sensor AG
    • 12.2.1. Company Overview
    • 12.2.2. Financial Performance
    • 12.2.3. Product Portfolio
    • 12.2.4. Strategic Initiatives
  • 12.3. Fluke
    • 12.3.1. Company Overview
    • 12.3.2. Financial Performance
    • 12.3.3. Product Portfolio
    • 12.3.4. Strategic Initiatives
  • 12.4. Kromek Group plc
    • 12.4.1. Company Overview
    • 12.4.2. Financial Performance
    • 12.4.3. Product Portfolio
    • 12.4.4. Strategic Initiatives
  • 12.5. Nihon Kessho Kogaku Co. Ltd.
    • 12.5.1. Company Overview
    • 12.5.2. Financial Performance
    • 12.5.3. Product Portfolio
    • 12.5.4. Strategic Initiatives
  • 12.6. Thermo Fisher Scientific Inc.
    • 12.6.1. Company Overview
    • 12.6.2. Financial Performance
    • 12.6.3. Product Portfolio
    • 12.6.4. Strategic Initiatives
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦