![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1344493
¼¼°èÀÇ Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â ½ÃÀå : À¯Çüº°, ¿ëµµº° - ±âȸ ºÐ¼® ¹× »ê¾÷ ¿¹Ãø(2023-2032³â)Orthopedic 3D Printing Devices Market By Type (Plastics, Biomaterials, Nylon, Wax, Ceramics, others), By Application (Orthopedic implants, Surgical planning, Surgical instruments): Global Opportunity Analysis and Industry Forecast, 2023-2032 |
Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â(Orthopedic 3D Printing Devices) ½ÃÀåÀº 2022³â 20¾ï ´Þ·¯¿´À¸¸ç, 2023³âºÎÅÍ 2032³â±îÁö CAGR 11.2%·Î ÃßÀÌÇÏ¸ç ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2032³â¿¡´Â 53¾ï ´Þ·¯¿¡ µµ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
'Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â'´Â Á¤Çü¿Ü°ú ºÐ¾ß¿¡¼ »ç¿ëµÇ´Â ÀÇ·á µµ±¸ ¹× ±â±â¸¦ ÀǹÌÇÕ´Ï´Ù. »À, °üÀý, Àδë, ÈûÁÙ, ±ÙÀ°À¸·Î ±¸¼ºµÈ ±Ù°ñ°Ý°è¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â Áúº´°ú ºÎ»óÀº Á¤Çü¿Ü°ú¿¡¼ È®ÀÎ, Ä¡·á ¹× ¿¹¹æÇÕ´Ï´Ù. Á¤Çü¿Ü°ú 3D ÇÁ¸°ÆÃ ±â¼úÀº ÀûÃþ Á¦Á¶ °øÁ¤À» »ç¿ëÇÏ¿© µðÁöÅÐ ¸ðµ¨À̳ª û»çÁø¿¡¼ 3Â÷¿øÀÇ ¾ÆÀÌÅÛÀ̳ª ±¸Á¶¹°À» ÇÑ Ãþ¾¿ ½×¾Æ ¿Ã¸³´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ÇØºÎÇÐ ¸ðµ¨, ¼ö¼ú ±â±â, º¸Ã¶¹°, º¸Á¶±â, ÀÓÇöõÆ®¸¦ ȯÀÚº°·Î °³º°ÀûÀ¸·Î Á¦ÀÛÇÏ´Â µ¥ »ç¿ëµË´Ï´Ù.
°ñ´Ù°øÁõ ¹× °ñ°üÀý¿° ¹ßº´·ü Áõ°¡, °í·ÉÈ Àα¸ Áõ°¡, ÀÚµ¿Â÷ »ç°í ¹× ½ºÆ÷Ã÷ ºÎ»óÀ¸·Î ÀÎÇÑ ¿Ü»ó »ç·Ê Áõ°¡, ¶óÀÌÇÁ½ºÅ¸ÀÏ º¯È µî ´Ù¾çÇÑ ¿äÀÎÀ¸·Î ÀÎÇØ ½ÃÀåÀÌ Å©°Ô ¹ßÀüÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. Á¤Çü¿Ü°ú ±â±â »ç¿ë Áõ°¡, °ñ¹Ðµµ ÀúÇÏ ¹®Á¦, »ýºÐÇØ¼º ÀÓÇöõÆ® ¹× ³»ºÎ °íÁ¤ ½Ã½ºÅÛÀÇ °³¹ß, Áß³â±â¿¡ Á¤Çü¿Ü°ú ÀÓÇöõÆ®¸¦ ¼±ÅÃÇϴ ȯÀÚ ¼ö Áõ°¡ µîÀÌ ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ´Ù¸¥ ¿äÀÎÀ¸·Î ²ÅÈü´Ï´Ù. Á¤Çü¿Ü°ú¿ë ÀÓÇöõÆ® °³¹ßÀÚµéÀº ÀÌ·¯ÇÑ ¿ä±¸¿¡ µû¶ó »õ·Î¿î »ýü Àç·á¸¦ °³¹ßÇÏ°í ±âÁ¸ Àç·áÀÇ ³»½Ä¼º, »ýü ÀûÇÕ¼º, ³»¸¶¸ð¼ºÀ» Çâ»ó½ÃÄÑ¾ß ÇÏ´Â °úÁ¦¸¦ ¾È°í ÀÖ½À´Ï´Ù.
Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â¸¦ ±¸ÀÔÇÏ´Â µ¥ µå´Â ºñ¿ëÀº »ó´çÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÇ·á¿ë ±â±â¸¦ Á¦ÀÛÇÒ ¼ö ÀÖ´Â °íǰÁú 3D ÇÁ¸°ÅÍ´Â »ó´çÇÑ Ãʱâ ÅõÀÚ ºñ¿ëÀÌ ÇÊ¿äÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Ãʱ⠺ñ¿ëÀº ¼Ò±Ô¸ð Á¤Çü¿Ü°ú ½Ã¼³À̳ª Áø·á¼Ò¿¡´Â À庮ÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ¶ÇÇÑ Æ¯¼ö Æú¸®¸Ó³ª ±Ý¼Ó°ú °°ÀÌ 3D ÇÁ¸°ÆÃ¿¡ »ç¿ëµÇ´Â Àç·á´Â °í°¡ÀÏ ¼ö ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃÀº ±âÁ¸ Á¦Á¶ ¹æ½Ä¿¡ ºñÇØ ÀáÀçÀûÀ¸·Î Àç·á ³¶ºñ¸¦ ÁÙÀÏ ¼ö ÀÖÁö¸¸, 3D ÇÁ¸°ÆÃÀÇ Àç·á ´ÜÀ§´ç ºñ¿ëÀº ¿©ÀüÈ÷ ³ôÀ» ¼ö ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃ ±â±â¸¦ ¿î¿µ ¹× À¯Áö °ü¸®ÇÏ·Á¸é ÀûÃþ Á¦Á¶ ¹× Á¤Çü¿Ü°ú ±â±â ¼³°è¿¡ ´ëÇÑ Àü¹® Áö½ÄÀ» °®Ãá ¼÷·ÃµÈ ÀηÂÀÌ ÇÊ¿äÇÕ´Ï´Ù. ÇÊ¿äÇÑ ÀÚ°ÝÀ» °®Ãá ÀηÂÀ» °í¿ëÇÏ°í ±³À°ÇÏ´Â µ¥ Àüü ºñ¿ëÀÌ Ãß°¡µÉ ¼ö ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃÀ¸·Î Á¦ÀÛµÈ Á¤Çü¿Ü°ú¿ë ±â±â´Â ¹Ì±¹ ½ÄǰÀǾ౹(FDA)¿¡¼ Á¤ÇÑ ¾ö°ÝÇÑ ±ÔÁ¦ ¿ä°ÇÀ» ÁؼöÇØ¾ß ÇÕ´Ï´Ù. ±ÔÁ¤À» ÁؼöÇÏ·Á¸é °ËÁõ ¹× Å×½ºÆ® ÀýÂ÷ µî Ãß°¡ ºñ¿ëÀÌ ¹ß»ýÇÒ ¼ö ÀÖ½À´Ï´Ù.
3D ÇÁ¸°ÆÃ ±â¼úÀ» »ç¿ëÇÏ¸é °³ÀÎÀÇ ÇØºÎÇÐÀû ±¸Á¶¿¡ ¸Â°Ô ¼³°èµÈ ȯÀÚº° ¼ö¼ú °¡À̵带 Á¦ÀÛÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ °¡À̵å´Â ¿Ü°úÀǰ¡ ÀÓÇöõÆ®¸¦ Á¤È®ÇÏ°Ô ½Ä¸³ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇÏ¿© ÃÖÀûÀÇ Á¤·ÄÀ» º¸ÀåÇÏ°í ¿À·ùÀÇ À§ÇèÀ» ÁÙÀÔ´Ï´Ù. ¿Ü°úÀÇ´Â 3D ÇÁ¸°ÆÃ ¼ö¼ú °¡À̵带 »ç¿ëÇÏ¿© Á¤È®µµ¸¦ ³ôÀ̰í Á¤Çü¿Ü°ú ¼ö¼úÀÇ Àü¹ÝÀûÀÎ ¼º°ø·üÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. 3D ÇÁ¸°ÆÃ ¼ö¼ú °¡À̵åÀÇ µµ¿òÀ¸·Î Á¤Çü¿Ü°ú ¼ö¼úÀ» ´õ¿í Á¤¹ÐÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖ½À´Ï´Ù. °¡À̵å´Â ³»ºñ°ÔÀÌ¼Ç µµ±¸ ¿ªÇÒÀ» ÇÏ¿© ¿Ü°úÀǰ¡ ¹Ì¸® Á¤ÇØÁø °æ·Î¸¦ µû¶ó º¸´Ù Á¤È®ÇÏ°Ô Àý°³ÇÒ ¼ö ÀÖµµ·Ï Áö¿øÇϹǷΠÇÕº´Áõ°ú ¼ö¼ú ÈÄ ¹®Á¦°¡ ¹ß»ýÇÒ °¡´É¼ºÀÌ ÁÙ¾îµì´Ï´Ù. ¼ö¼ú °á°ú°¡ °³¼±µÇ¸é ȯÀÚÀÇ È¸º¹ÀÌ »¡¶óÁö°í ÅëÁõÀÌ °¨¼ÒÇϸç Àå±âÀûÀÎ ±â´É °³¼±¿¡ ±â¿©ÇÕ´Ï´Ù. ¼ö¼ú °¡À̵å¿Í ±â±¸¿¡ 3D ÇÁ¸°ÆÃ ±â¼úÀ» Ȱ¿ëÇϸé Á¤Çü¿Ü°ú ¼ö¼úÀ» °³¼±ÇÒ ¼ö ÀÖ´Â ¼ö¸¹Àº ±âȸ¸¦ ¾òÀ» ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±âȸ¿¡´Â Á¤È®ÇÑ ÀÓÇöõÆ® ¹èÄ¡, ¼ö¼ú °á°ú °³¼±, ¸ÂÃãÈ ¹× °³ÀÎÈ, ¼ö¼ú ½Ã°£ ´ÜÃà, ºñ¿ë È¿À²¼º, ÇØ´ç ºÐ¾ßÀÇ Áö¼ÓÀûÀÎ Çõ½Å µîÀÌ Æ÷ÇԵ˴ϴÙ.
COVID-19 ÆÒµ¥¹ÍÀº Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ÀÇ·á ±â±â »ê¾÷À» Æ÷ÇÔÇÑ Àü¼¼°è °ø±Þ¸Á¿¡ Â÷ÁúÀÌ »ý°å½À´Ï´Ù. ÀÌ·Î ÀÎÇØ Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±âÀÇ »ý»ê°ú À¯Åë¿¡ ¹®Á¦°¡ ¹ß»ýÇÏ¿© Á¦Á¶ ¹× ¹è¼ÛÀÌ Áö¿¬µÇ¾ú½À´Ï´Ù. ÆÒµ¥¹ÍÀÌ ÀýÁ¤¿¡ ´ÞÇßÀ» ¶§ ¸¹Àº º´¿ø°ú ÀÇ·á ½Ã¼³¿¡¼ COVID-19 ȯÀÚ Ä¡·á¿¡ ÀÚ¿øÀ» ÁýÁßÇÏ¸é¼ Á¤Çü¿Ü°ú ¼ö¼úÀ» Æ÷ÇÔÇÑ ¼±ÅÃÀû ¼ö¼úÀÌ Å©°Ô °¨¼ÒÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¼ú °¨¼Ò´Â 3D ÇÁ¸°ÆÃ ±â¼ú·Î Á¦Á¶µÈ ÀÓÇöõÆ®¸¦ Æ÷ÇÔÇÑ Á¤Çü¿Ü°ú ÀÓÇöõÆ® ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ´ë¸é »ó´ãÀÌ Á¦Çѵʿ¡ µû¶ó ÀÇ·á ¼ºñ½º Á¦°ø¾÷ü´Â ¿ø°ÝÀ¸·Î ȯÀÚ¸¦ Áø·áÇÏ´Â ¿ø°Ý ÀÇ·á ¼Ö·ç¼Ç¿¡ Á¡Á¡ ´õ ÀÇÁ¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ º¯È´Â Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â ½ÃÀå¿¡ Á÷Á¢ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡Áö´Â ¾Ê¾ÒÁö¸¸, Á¤Çü¿Ü°ú ½Ã¼ú¿¡ ´ëÇÑ Àü¹ÝÀûÀÎ ¼ö¿ä¿¡ ¿µÇâÀ» ¹ÌÃÆ°í °á°úÀûÀ¸·Î ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù. ¶ÇÇÑ ¸¹Àº 3D ÇÁ¸°ÆÃ ±â¾÷°ú ½Ã¼³ÀÌ ¾È¸é º¸È£´ë, ¸¶½ºÅ©, ÀΰøÈ£Èí±â ºÎǰ°ú °°Àº °³Àκ¸È£±â±â(PPE)¸¦ ºñ·ÔÇÑ Çʼö ÀÇ·á¿ëǰÀ» »ý»êÇϱâ À§ÇØ Á¦Á¶ ¿ª·®À» ÀüȯÇß½À´Ï´Ù. ÀÌ·¯ÇÑ ¸®¼Ò½ºÀÇ Àüȯ°ú ÁýÁßÀº Á¤Çü¿Ü°ú¿ë 3D ÇÁ¸°ÆÃ ±â±â »ý»ê¿¡ ÀϽÃÀûÀ¸·Î ¿µÇâÀ» ¹ÌÃÆ½À´Ï´Ù.
According to a new report published by Allied Market Research, titled, "Orthopedic 3D Printing Devices Market," The orthopedic 3d printing devices market was valued at $2 billion in 2022, and is estimated to reach $5.3 billion by 2032, growing at a CAGR of 11.2% from 2023 to 2032.
The term 'orthopedic 3D printing devices' refers to medical tools and equipment used in the field of orthopedics. Diseases and injuries affecting the musculoskeletal system-which consists of the bones, joints, ligaments, tendons, and muscles-are identified, treated, and prevented under orthopedics. Orthopedic 3D printing technologies use additive manufacturing processes to layer by layer build three-dimensional items or structures from digital models or blueprints. These tools are used to create anatomical models, surgical equipment, prostheses, orthotics, and implants that are individually produced for each patient.
The market is predicted to develop significantly due to various factors such as rising rates of osteoporosis and osteoarthritis, increasing aging population, increasing trauma cases from auto accidents and sports injuries, as well as shifting lifestyles. Other factors influencing market growth include an increase in the usage of orthopedic devices, problems with poor bone density, the development of biodegradable implants and internal fixation systems, and a rise in the number of patients who choose orthopedic implants in their middle years. Developers of orthopedic implants have been compelled by this demand to create newer biomaterials and enhance the corrosion resistance, biocompatibility, and wear resistance of current materials.
The cost of buying 3D printing equipment for orthopedic manufacturing can be significant. High-quality 3D printers capable of producing medical-grade devices may require a substantial upfront investment. This initial cost can be a barrier for smaller orthopedic facilities or practices. Moreover, the materials used in 3D printing, such as specialized polymers or metals, can be expensive. While 3D printing can potentially reduce material waste compared to traditional manufacturing methods, the cost per unit of material can still be higher for 3D printing. Operating and maintaining 3D printing equipment requires skilled personnel with expertise in additive manufacturing and orthopedic device designing. Hiring and training individuals with the necessary qualifications can add to the overall cost. Orthopedic devices produced using 3D printing must adhere to stringent regulatory requirements, such as those set by the Food and Drug Administration (FDA) in the U.S. Ensuring compliance can involve additional costs, including validation and testing procedures.
The 3D printing technology enables the creation of patient-specific surgical guides that are designed to the individual's anatomy. These guides assist surgeons in precise implant placement, ensuring optimal alignment and reducing the risk of errors. By using 3D-printed surgical guides, surgeons can achieve greater accuracy and improve the overall success of orthopedic procedures. With the help of 3D-printed surgical guides, orthopedic surgeries can be performed with enhanced precision. The guides act as navigational tools, allowing surgeons to follow pre-determined paths and make more accurate incisions, reducing the chances of complications and post-operative issues. Improved surgical outcomes contribute to faster patient recovery, reduced pain, and improved long-term functionality. The utilization of 3D printing technology in surgical guides and instrumentation provides numerous opportunities to improve orthopedic procedures. These opportunities include accurate implant placement, improved surgical outcomes, customization & personalization, reduced surgical time, cost-effectiveness, and ongoing innovation in the field.
The COVID-19 pandemic has had significant impact on the market for orthopedic 3D printing devices. The pandemic led to disruptions in global supply chains, including those in the medical device industry. This resulted in challenges in the production and distribution of orthopedic 3D printing devices, leading to delays in manufacturing and delivery. During the peak of the pandemic, many hospitals and healthcare facilities focused their resources on treating COVID-19 patients, leading to a significant reduction in elective surgeries, including orthopedic procedures. This decline in surgical procedures affected the demand for orthopedic implants, including those manufactured using 3D printing technology. As in-person consultations were limited, healthcare providers increasingly turned to telehealth solutions to provide patient care remotely. While this shift may not have directly impacted the orthopedic 3D printing devices market, it influenced the overall demand for orthopedic procedures and subsequently affected the market. Moreover, many 3D printing companies and facilities shifted their manufacturing capabilities to produce essential medical supplies, including PPE such as face shields, masks, and ventilator components. This diversion of resources and focus temporarily impacted the production of orthopedic 3D printing devices.
The key players profiled in this report include: Stryker, 3D Systems Corp, ENVISIONTEC US LLC, EOS GmbH Electro Optical Systems, General Electric, Smith & Nephew, Johnson & Johnson, Abbott, Zimmer Biomet Holding Inc., and Aspect Biosystems Ltd.