½ÃÀ庸°í¼­
»óǰÄÚµå
1344542

¼¼°èÀÇ ÇÕ¼º ¸Þź ½ÃÀå : ¿ø·áº°, ¿ëµµº° - ±âȸ ºÐ¼® ¹× »ê¾÷ ¿¹Ãø(2023-2032³â)

Synthetic Methane Market By Source (Direct air capture, Hydrogen and carbon dioxide), By Application (Fuel, Hydrogen Transport Carrier, Industrial, Others): Global Opportunity Analysis and Industry Forecast, 2023-2032

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Allied Market Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® 434 Pages | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÇÕ¼º ¸Þź(Synthetic Methane) ½ÃÀåÀº 2022³â¿¡ 8,970¸¸ ´Þ·¯·Î Æò°¡µÇ¾úÀ¸¸ç, 2023³âºÎÅÍ 2032³â±îÁöÀÇ CAGRÀº 14.1%·Î ¼ºÀåÇÏ¿© 2032³â¿¡´Â 3¾ï 3,450¸¸ ´Þ·¯¿¡ À̸¦ °ÍÀ¸·Î ÃßÁ¤µË´Ï´Ù.

Synthetic Methane Market-IMG1

ÇÕ¼º ¸ÞźÀº È­ÇÐÀû ±¸¼º°ú ¼ºÁúÀÌ Ãµ¿¬ °¡½º¿Í ¸Å¿ì À¯»çÇÑ ÀΰøÀûÀ¸·Î »ý»êµÈ ÇüÅÂÀÇ ¸Þź °¡½º(CH4)¸¦ ¸»ÇÕ´Ï´Ù. ÇÕ¼º ¸ÞźÀº Àç»ý ¿¡³ÊÁö¿øÀ» Ȱ¿ëÇϰųª ź¼Ò Æ÷Áý ¹× Ȱ¿ë ±â¼úÀ» Æ÷ÇÔÇÏ´Â °øÁ¤À» ÅëÇØ »ý¼ºµË´Ï´Ù. ÇÕ¼º ¸ÞźÀÇ »ý»êÀº õ¿¬ °¡½º¸¦ ´ëüÇÒ ¼ö ÀÖ´Â Àúź¼Ò ¿¬·á·Î ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀ̰í Áö¼Ó °¡´É¼º ¸ñÇ¥¿¡ ±â¿©ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î ÇÕ´Ï´Ù.

ÇÕ¼º ¸ÞźÀ» ¼ö¼Ò ¿î¼Û ¿î¹Ýü·Î »ç¿ëÇÏ¸é ±âÁ¸ ÀÎÇÁ¶ó¿ÍÀÇ È£È¯¼º, ³·Àº ¾Ð·Â ¿ä±¸ »çÇ×, ³ôÀº ¿¡³ÊÁö ¹Ðµµ, »ç¿ë ÁöÁ¡¿¡¼­ ¼ö¼Ò·ÎÀÇ Àüȯ ¿ëÀ̼º µîÀÇ ÀÌÁ¡À» ´©¸± ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª Áö¼Ó °¡´ÉÇÑ Àúź¼Ò ¿¡³ÊÁö ½Ã½ºÅÛÀ» º¸ÀåÇϱâ À§Çؼ­´Â ÇÕ¼º ¸Þź »ý»ê ¹× ÀçÀüȯ °øÁ¤ÀÇ Àü¹ÝÀûÀÎ È¿À²¼ºÀ» °í·ÁÇØ¾ß ÇÑ´Ù´Â Á¡¿¡ À¯ÀÇÇÏ´Â °ÍÀÌ Áß¿äÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´Â ¼ö¼Ò ¼ö¼Û¿ë ÇÕ¼º ¸Þź ½ÃÀåÀÇ ÁÖ¿ä Æ®·»µåÀÔ´Ï´Ù.

¶ÇÇÑ ¿¡³ÊÁö ÀúÀå ¹× ±×¸®µå ¹ë·±½ÌÀº Àç»ý ¿¡³ÊÁöÀÇ È¿°úÀûÀÎ ÅëÇÕ, ±×¸®µå ¾ÈÁ¤¼º º¸Àå, ÇÇÅ© ¼ö¿ä °ü¸®, ±×¸®µå ¿î¿µ ÃÖÀûÈ­, º¸´Ù Áö¼Ó °¡´ÉÇÏ°í ºÐ»êµÈ ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·ÎÀÇ ÀüȯÀ» ÃËÁøÇÏ´Â µ¥ ÇʼöÀûÀÔ´Ï´Ù.

ÇÕ¼º ¸ÞźÀº Àç»ý °¡´ÉÇÑ Àü±â¸¦ Àü±âºÐÇØ¸¦ ÅëÇØ ¼ö¼Ò·Î ÀüȯÇÑ ´ÙÀ½ ÀÌ»êȭź¼Ò¿Í °áÇÕÇÏ¿© »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. Àü·Â-°¡½ºÈ­¶ó°í ÇÏ´Â ÀÌ ÇÁ·Î¼¼½º¸¦ ÅëÇØ ÇÇÅ© ±â°£¿¡ »ý¼ºµÈ À׿© Àç»ý ¿¡³ÊÁö¸¦ ÀúÀåÇß´Ù°¡ ÇÊ¿äÇÒ ¶§ ´Ù½Ã Àü±â³ª ¿­·Î ÀüȯÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ´Â Àç»ý ¿¡³ÊÁö¿øÀÇ °£ÇæÀûÀΠƯ¼º°ú ±ÕÇüÀ» ¸ÂÃß°í ¾ÈÁ¤ÀûÀÎ ¿¡³ÊÁö °ø±ÞÀ» º¸ÀåÇÏ´Â ¼ö´ÜÀ» Á¦°øÇϸç, °á°úÀûÀ¸·Î ÇÕ¼º ¸Þź ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù.

¶ÇÇÑ °¡½º ÀÎÇÁ¶óÀÇ Å»Åº¼ÒÈ­´Â ±âÈÄ ¸ñÇ¥ ´Þ¼º, Àç»ý ¿¡³ÊÁö ÅëÇÕ ÃËÁø, ´ë±â Áú °³¼±, ¿¡³ÊÁö ¾Èº¸ °­È­, ûÁ¤¿¡³ÊÁö ºÎ¹®ÀÇ Çõ½Å°ú ÀÏÀÚ¸® âÃâÀ» ÃËÁøÇÏ´Â µ¥ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ´Â º¸´Ù Áö¼Ó °¡´ÉÇÑ Àúź¼Ò ¿¡³ÊÁö ½Ã½ºÅÛÀ¸·Î ÀüȯÇÏ´Â µ¥ ÇʼöÀûÀÎ ´Ü°èÀÔ´Ï´Ù.

ÇÕ¼º ¸ÞźÀº ÆÄÀÌÇÁ¶óÀΰú ÀúÀå ½Ã¼³ µî ±âÁ¸ õ¿¬°¡½º ÀÎÇÁ¶ó¸¦ Å©°Ô °³Á¶ÇÒ ÇÊ¿ä ¾øÀÌ ÁÖÀÔÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ °¡½º ±×¸®µåÀÇ Å»Åº¼ÒÈ­¿Í Àç»ý ¿¡³ÊÁö º¸±ÞÀ» À§ÇØ ±âÁ¸ ÀÎÇÁ¶ó¸¦ Ȱ¿ëÇÏ´Â µ¥ ¸Å·ÂÀûÀÎ ¿É¼ÇÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ¿ä¼Ò´Â ÇÕ¼º ¸Þź ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇÕ¼º ¸Þź »ý»êÀº »ê¾÷ °øÁ¤¿¡¼­ Æ÷ÁýÇϰųª ´ë±â¿¡¼­ Á÷Á¢ Æ÷ÁýÇÑ CO2¸¦ Ȱ¿ëÇÏ¿© ¿Â½Ç°¡½º ¹èÃâÀ» ÁÙÀÌ´Â µ¥ ±â¿©ÇÒ ¼ö ÀÖ½À´Ï´Ù. ź¼Ò ¹èÃâÀ» ÀçȰ¿ëÇÏ¿© À¯¿ëÇÑ ¿¡³ÊÁö¿øÀ¸·Î ÀüȯÇÒ ¼ö ÀÖ´Â ±âȸ¸¦ Á¦°øÇϹǷΠȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâÀ» ÃÖ¼ÒÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¿äÀÎÀÌ ÇÕ¼º ¸Þź ½ÃÀåÀÇ ¼ºÀåÀ» ÃËÁøÇÕ´Ï´Ù.

±×·¯³ª ÇÕ¼º ¸ÞźÀÇ »ý»êÀº È­¼® ¿¬·á¿¡¼­ ÃßÃâÇÑ Ãµ¿¬ °¡½º¿¡ ºñÇØ ºñ¿ëÀÌ ¸¹ÀÌ µì´Ï´Ù. Àç»ý °¡´ÉÇÑ Àü±â¸¦ Àü±âºÐÇØ¸¦ ÅëÇØ ¼ö¼Ò·Î ÀüȯÇϰí ÀÌ»êȭź¼Ò¸¦ Æ÷ÁýÇÑ ´ÙÀ½ À̸¦ °áÇÕÇÏ¿© ¸ÞźÀ» »ý»êÇÏ´Â °úÁ¤Àº ºñ¿ë Áý¾àÀûÀÏ ¼ö ÀÖ½À´Ï´Ù. °á°úÀûÀ¸·Î ÇÕ¼º ¸ÞźÀÇ °¡°Ý °æÀï·ÂÀº ±¤¹üÀ§ÇÑ Ã¤ÅÃÀ» Á¦ÇÑÇÕ´Ï´Ù. ÀÌ´Â ÇÕ¼º ¸Þź ½ÃÀåÀÇ Áß¿äÇÑ Á¦¾à ¿äÀÎÀ¸·Î ÀÛ¿ëÇÕ´Ï´Ù.

¹Ý´ë·Î ÇÕ¼º ¸Þź »ý»ê °øÁ¤ÀÇ °³¼±Àº ¿¬±¸¿Í Çõ½ÅÀ» À§ÇÑ ¼öÀͼº ÀÖ´Â ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¿¹¸¦ µé¾î, Àü±âºÐÇØ, ¸Þźȭ, ź¼Ò Æ÷Áý ¹× ±âŸ °ü·Ã °øÁ¤ÀÇ ¹ßÀüÀº È¿À²¼ºÀ» ³ôÀÌ°í ºñ¿ëÀ» Àý°¨Çϸç ÇÕ¼º ¸Þź »ý»êÀÇ È®À强À» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹ßÀüÀº »ý»ê ºñ¿ëÀ» ³·Ãç ÇÕ¼º ¸ÞźÀÇ °æÁ¦¼º°ú °æÀï·ÂÀ» ³ôÀÏ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ¿äÀÎÀº ÇÕ¼º ¸Þź¿¡ ´ëÇÑ ¼ö¿ä¸¦ Áõ°¡½Ãų °ÍÀ¸·Î ¿¹»óµÇ¸ç, ÀÌ´Â ¿¹Ãø ±â°£ µ¿¾È ÇÕ¼º ¸Þź ½ÃÀåÀÇ È®ÀåÀ»À§ÇÑ »õ·Î¿î ±æÀ» ¿­ °ÍÀÔ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ¼­·Ð

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ½ÃÀå °³¿ä

  • ½ÃÀå Á¤ÀÇ ¹× ¹üÀ§
  • ÁÖ¿ä Á¶»ç °á°ú
    • ¿µÇâ ¿äÀÎ
    • ÁÖ¿ä ÅõÀÚ ±âȸ
  • Porter's Five Forces ºÐ¼®
    • °ø±Þ±â¾÷ÀÇ Çù»ó·Â
    • ±¸¸ÅÀÚÀÇ Çù»ó·Â
    • ´ëüǰÀÇ À§Çù
    • ½Å±Ô Âü°¡¾÷üÀÇ À§Çù
    • °æÀï »óȲ
  • ½ÃÀå ¿ªÇÐ
    • ¼ºÀå ÃËÁø ¿äÀÎ
      • Àç»ý °¡´É ¿¡³ÊÁö·ÎÀÇ Àüȯ Áõ°¡
      • °¡½º ÀÎÇÁ¶óÀÇ Å»Åº¼ÒÈ­
      • ¿¡³ÊÁö ¾Èº¸¿Í ±×¸®µå ¹ë·±½Ì
      • ¸Þź ÀÌ¿ë È®´ë ¹× ¹èÃâ °¨Ãà
    • ¾ïÁ¦ ¿äÀÎ
      • ÇÕ¼º ¸ÞźÀÇ °íºñ¿ë
      • È¿À² ÀúÇÏ¿Í ¿¡³ÊÁö ¼Õ½Ç
    • ±âȸ
      • ÇâÈÄ ±â¼ú Áøº¸¿Í ¿¬±¸ °³¹ß Ȱµ¿
  • COVID-19 ½ÃÀå¿¡ ¹ÌÄ¡´Â ¿µÇ⠺м®
  • ƯÇã »óȲ
  • °¡°Ý ºÐ¼®
  • ±ÔÁ¦ °¡À̵å¶óÀÎ
  • ¹ë·ùüÀÎ ºÐ¼®

Á¦4Àå ÇÕ¼º ¸Þź ½ÃÀå : ¿ø·áº°

  • °³¿ä
  • Á÷Á¢ °ø±â ȸ¼ö
  • ¼ö¼Ò¿Í ÀÌ»êȭź¼Ò

Á¦5Àå ÇÕ¼º ¸Þź ½ÃÀå : ¿ëµµº°

  • °³¿ä
  • ¿¬·á
  • ¼ö¼Ò ¿î¼Û ¿î¹Ýü
  • »ê¾÷¿ë
  • ±âŸ

Á¦6Àå ÇÕ¼º ¸Þź ½ÃÀå : Áö¿ªº°

  • °³¿ä
  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾Æ ÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • Çѱ¹
    • È£ÁÖ
    • ±âŸ ¾Æ½Ã¾Æ ÅÂÆò¾ç
  • ³²¹Ì¡¤Áßµ¿¡¤¾ÆÇÁ¸®Ä«
    • ºê¶óÁú
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áö¿ª

Á¦7Àå °æÀï ±¸µµ

  • ¼Ò°³
  • ÁÖ¿ä ¼º°ø Àü·«
  • ÁÖ¿ä 10°³»çÀÇ Á¦Ç° ¸ÅÇÎ
  • °æÀï ´ë½Ãº¸µå
  • °æÀï È÷Æ®¸Ê
  • ÁÖ¿ä ±â¾÷ÀÇ Æ÷Áö¼Å´×(2022³â)

Á¦8Àå ±â¾÷ °³¿ä

  • Dakota Gasification Company
  • CLARIANT
  • OSAKA GAS CO.,LTD
  • Terega
  • Mitsubishi Corporation
  • KADATEC sro
  • TransTech Energy, LLC
  • Zentrum fur Sonnenenergie-und Wasserstoff-Forschung Baden-Wurttemberg
  • Air Liquide
  • MAN Energy Solutions
LYJ 23.10.04

According to a new report published by Allied Market Research, titled, "Synthetic Methane Market," The synthetic methane market was valued at $89.7 million in 2022, and is estimated to reach $334.5 million by 2032, growing at a CAGR of 14.1% from 2023 to 2032.

Synthetic Methane Market - IMG1

Synthetic methane refers to artificially produced form of methane gas (CH4) that closely resembles natural gas in its chemical composition and properties. It is generated through processes that utilize renewable energy sources or involve carbon capture and utilization technologies. The production of synthetic methane aims to provide a low-carbon alternative to natural gas, reducing greenhouse gas emissions and contributing to sustainability goals.

Using synthetic methane as a hydrogen transport carrier offers advantages such as compatibility with existing infrastructure, lower pressure requirements, higher energy density, and ease of conversion back to hydrogen at the point of use. However, it is important to note that the overall efficiency of the synthetic methane production and reconversion processes should be considered to ensure a sustainable and low-carbon energy system. This factor is the major trend in the synthetic methane market for hydrogen transport carrier applications.

Furthermore, energy storage and grid balancing are essential for the effective integration of renewable energy, ensuring grid stability, managing peak demand, optimizing grid operations, and facilitating the transition to a more sustainable and decentralized energy system.

Synthetic methane can be produced by converting renewable electricity into hydrogen through electrolysis and then combining it with carbon dioxide. This process, known as power-to-gas, enables the storage of excess renewable energy generated during peak periods and its subsequent conversion back into electricity or heat when needed. It provides a means for balancing the intermittent nature of renewable energy sources and ensuring a stable energy supply, which, in turn, boosts the growth of the synthetic methane market.

Furthermore, Decarbonizing gas infrastructure is crucial for achieving climate goals, promoting renewable energy integration, improving air quality, enhancing energy security, and driving innovation and job creation in the clean energy sector. It is an essential step in the transition toward a more sustainable and low-carbon energy system.

Synthetic methane can be injected into existing natural gas infrastructure, including pipelines and storage facilities, without the need for significant modifications. This makes it an attractive option for decarbonizing the gas grid and utilizing the existing infrastructure for renewable energy distribution. This factor is expected to fuel the growth of the synthetic methane market.

Synthetic methane production can contribute to reducing greenhouse gas emissions by utilizing CO2 captured from industrial processes or directly from the atmosphere. It provides an opportunity to recycle carbon emissions and convert them into a useful energy source, thus minimizing environmental impact. This factor augments the growth of the synthetic methane market.

However, the production of synthetic methane is more expensive compared to natural gas extracted from fossil fuel sources. The process of converting renewable electricity into hydrogen through electrolysis, capturing carbon dioxide, and combining them to produce methane can be cost-intensive. As a result, the cost competitiveness of synthetic methane limits its widespread adoption. This acts as a significant constraint of the synthetic methane market.

On the contrary, Improvements in the process of synthetic methane production are anticipated to create lucrative opportunities for research and innovation. For instance, Advances in electrolysis, methanation, carbon capture, and other related processes can enhance efficiency, reduce costs, and increase the scalability of synthetic methane production. These advancements can drive down production costs, making synthetic methane more economically viable and competitive. This factor is expected to boost the demand for synthetic methane, which, in turn, is likely to open new avenues for the expansion of the synthetic menthane market during the forecast period.

The global synthetic methane market is segmented into source, application, and region. On the basis of source, the market is categorized into direct air capture and hydrogen and carbon dioxide. Depending on application, it is divided into fuel, hydrogen transport carrier, industrial, and others. Region -wise, the market is studied across North America, Europe, Asia-Pacific, and LAMEA.

The global synthetic methane market profiles leading players that include CLARIANT, Air Liquide, Terega, TransTech Energy, LLC, OSAKA GAS CO.,LTD, Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden-Wurttemberg, Dakota Gasification Company, Mitsubishi Corporation, KADATEC s.r.o., and MAN Energy Solutions.

The global synthetic methane market report provides in-depth competitive analysis as well as profiles of these major players.

Key Benefits For Stakeholders

  • This report provides a quantitative analysis of the market segments, current trends, estimations, and dynamics of the synthetic methane market analysis from 2022 to 2032 to identify the prevailing synthetic methane market opportunities.
  • The market research is offered along with information related to key drivers, restraints, and opportunities.
  • Porter's five forces analysis highlights the potency of buyers and suppliers to enable stakeholders make profit-oriented business decisions and strengthen their supplier-buyer network.
  • In-depth analysis of the synthetic methane market segmentation assists to determine the prevailing market opportunities.
  • Major countries in each region are mapped according to their revenue contribution to the global market.
  • Market player positioning facilitates benchmarking and provides a clear understanding of the present position of the market players.
  • The report includes the analysis of the regional as well as global synthetic methane market trends, key players, market segments, application areas, and market growth strategies.

Key Market Segments

By Source

  • Direct air capture
  • Hydrogen and carbon dioxide

By Application

  • Fuel
  • Hydrogen Transport Carrier
  • Industrial
  • Others

By Region

  • North America
    • U.S.
    • Canada
    • Mexico
  • Europe
    • Germany
    • UK
    • France
    • Spain
    • Italy
    • Rest of Europe
  • Asia-Pacific
    • China
    • India
    • Japan
    • South Korea
    • Australia
    • Rest of Asia-Pacific
  • LAMEA
    • Brazil
    • Saudi Arabia
    • South Africa
    • Rest of LAMEA

Key Market Players:

    • CLARIANT
    • Air Liquide
    • Terega
    • TransTech Energy, LLC
    • OSAKA GAS CO.,LTD
    • Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden-Wurttemberg
    • Dakota Gasification Company
    • Mitsubishi Corporation
    • KADATEC s.r.o.
    • MAN Energy Solutions

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION

  • 1.1. Report description
  • 1.2. Key market segments
  • 1.3. Key benefits to the stakeholders
  • 1.4. Research Methodology
    • 1.4.1. Primary research
    • 1.4.2. Secondary research
    • 1.4.3. Analyst tools and models

CHAPTER 2: EXECUTIVE SUMMARY

  • 2.1. CXO Perspective

CHAPTER 3: MARKET OVERVIEW

  • 3.1. Market definition and scope
  • 3.2. Key findings
    • 3.2.1. Top impacting factors
    • 3.2.2. Top investment pockets
  • 3.3. Porter's five forces analysis
    • 3.3.1. Bargaining power of suppliers
    • 3.3.2. Bargaining power of buyers
    • 3.3.3. Threat of substitutes
    • 3.3.4. Threat of new entrants
    • 3.3.5. Intensity of rivalry
  • 3.4. Market dynamics
    • 3.4.1. Drivers
      • 3.4.1.1. Increase in transition in renewable energy
      • 3.4.1.2. Decarbonization of gas infrastructure
      • 3.4.1.3. Energy security and grid balancing
      • 3.4.1.4. Increase in methane utilization and emission reduction
    • 3.4.2. Restraints
      • 3.4.2.1. High costs of synthetic methane
      • 3.4.2.2. Less efficiency and energy losses
    • 3.4.3. Opportunities
      • 3.4.3.1. Upcoming technological advancements and R&D activities
  • 3.5. COVID-19 Impact Analysis on the market
  • 3.6. Patent Landscape
  • 3.7. Pricing Analysis
  • 3.8. Regulatory Guidelines
  • 3.9. Value Chain Analysis

CHAPTER 4: SYNTHETIC METHANE MARKET, BY SOURCE

  • 4.1. Overview
    • 4.1.1. Market size and forecast
  • 4.2. Direct air capture
    • 4.2.1. Key market trends, growth factors and opportunities
    • 4.2.2. Market size and forecast, by region
    • 4.2.3. Market share analysis by country
  • 4.3. Hydrogen and carbon dioxide
    • 4.3.1. Key market trends, growth factors and opportunities
    • 4.3.2. Market size and forecast, by region
    • 4.3.3. Market share analysis by country

CHAPTER 5: SYNTHETIC METHANE MARKET, BY APPLICATION

  • 5.1. Overview
    • 5.1.1. Market size and forecast
  • 5.2. Fuel
    • 5.2.1. Key market trends, growth factors and opportunities
    • 5.2.2. Market size and forecast, by region
    • 5.2.3. Market share analysis by country
  • 5.3. Hydrogen Transport Carrier
    • 5.3.1. Key market trends, growth factors and opportunities
    • 5.3.2. Market size and forecast, by region
    • 5.3.3. Market share analysis by country
  • 5.4. Industrial
    • 5.4.1. Key market trends, growth factors and opportunities
    • 5.4.2. Market size and forecast, by region
    • 5.4.3. Market share analysis by country
  • 5.5. Others
    • 5.5.1. Key market trends, growth factors and opportunities
    • 5.5.2. Market size and forecast, by region
    • 5.5.3. Market share analysis by country

CHAPTER 6: SYNTHETIC METHANE MARKET, BY REGION

  • 6.1. Overview
    • 6.1.1. Market size and forecast By Region
  • 6.2. North America
    • 6.2.1. Key trends and opportunities
    • 6.2.2. Market size and forecast, by Source
    • 6.2.3. Market size and forecast, by Application
    • 6.2.4. Market size and forecast, by country
      • 6.2.4.1. U.S.
      • 6.2.4.1.1. Key market trends, growth factors and opportunities
      • 6.2.4.1.2. Market size and forecast, by Source
      • 6.2.4.1.3. Market size and forecast, by Application
      • 6.2.4.2. Canada
      • 6.2.4.2.1. Key market trends, growth factors and opportunities
      • 6.2.4.2.2. Market size and forecast, by Source
      • 6.2.4.2.3. Market size and forecast, by Application
      • 6.2.4.3. Mexico
      • 6.2.4.3.1. Key market trends, growth factors and opportunities
      • 6.2.4.3.2. Market size and forecast, by Source
      • 6.2.4.3.3. Market size and forecast, by Application
  • 6.3. Europe
    • 6.3.1. Key trends and opportunities
    • 6.3.2. Market size and forecast, by Source
    • 6.3.3. Market size and forecast, by Application
    • 6.3.4. Market size and forecast, by country
      • 6.3.4.1. Germany
      • 6.3.4.1.1. Key market trends, growth factors and opportunities
      • 6.3.4.1.2. Market size and forecast, by Source
      • 6.3.4.1.3. Market size and forecast, by Application
      • 6.3.4.2. UK
      • 6.3.4.2.1. Key market trends, growth factors and opportunities
      • 6.3.4.2.2. Market size and forecast, by Source
      • 6.3.4.2.3. Market size and forecast, by Application
      • 6.3.4.3. France
      • 6.3.4.3.1. Key market trends, growth factors and opportunities
      • 6.3.4.3.2. Market size and forecast, by Source
      • 6.3.4.3.3. Market size and forecast, by Application
      • 6.3.4.4. Spain
      • 6.3.4.4.1. Key market trends, growth factors and opportunities
      • 6.3.4.4.2. Market size and forecast, by Source
      • 6.3.4.4.3. Market size and forecast, by Application
      • 6.3.4.5. Italy
      • 6.3.4.5.1. Key market trends, growth factors and opportunities
      • 6.3.4.5.2. Market size and forecast, by Source
      • 6.3.4.5.3. Market size and forecast, by Application
      • 6.3.4.6. Rest of Europe
      • 6.3.4.6.1. Key market trends, growth factors and opportunities
      • 6.3.4.6.2. Market size and forecast, by Source
      • 6.3.4.6.3. Market size and forecast, by Application
  • 6.4. Asia-Pacific
    • 6.4.1. Key trends and opportunities
    • 6.4.2. Market size and forecast, by Source
    • 6.4.3. Market size and forecast, by Application
    • 6.4.4. Market size and forecast, by country
      • 6.4.4.1. China
      • 6.4.4.1.1. Key market trends, growth factors and opportunities
      • 6.4.4.1.2. Market size and forecast, by Source
      • 6.4.4.1.3. Market size and forecast, by Application
      • 6.4.4.2. India
      • 6.4.4.2.1. Key market trends, growth factors and opportunities
      • 6.4.4.2.2. Market size and forecast, by Source
      • 6.4.4.2.3. Market size and forecast, by Application
      • 6.4.4.3. Japan
      • 6.4.4.3.1. Key market trends, growth factors and opportunities
      • 6.4.4.3.2. Market size and forecast, by Source
      • 6.4.4.3.3. Market size and forecast, by Application
      • 6.4.4.4. South Korea
      • 6.4.4.4.1. Key market trends, growth factors and opportunities
      • 6.4.4.4.2. Market size and forecast, by Source
      • 6.4.4.4.3. Market size and forecast, by Application
      • 6.4.4.5. Australia
      • 6.4.4.5.1. Key market trends, growth factors and opportunities
      • 6.4.4.5.2. Market size and forecast, by Source
      • 6.4.4.5.3. Market size and forecast, by Application
      • 6.4.4.6. Rest of Asia-Pacific
      • 6.4.4.6.1. Key market trends, growth factors and opportunities
      • 6.4.4.6.2. Market size and forecast, by Source
      • 6.4.4.6.3. Market size and forecast, by Application
  • 6.5. LAMEA
    • 6.5.1. Key trends and opportunities
    • 6.5.2. Market size and forecast, by Source
    • 6.5.3. Market size and forecast, by Application
    • 6.5.4. Market size and forecast, by country
      • 6.5.4.1. Brazil
      • 6.5.4.1.1. Key market trends, growth factors and opportunities
      • 6.5.4.1.2. Market size and forecast, by Source
      • 6.5.4.1.3. Market size and forecast, by Application
      • 6.5.4.2. Saudi Arabia
      • 6.5.4.2.1. Key market trends, growth factors and opportunities
      • 6.5.4.2.2. Market size and forecast, by Source
      • 6.5.4.2.3. Market size and forecast, by Application
      • 6.5.4.3. South Africa
      • 6.5.4.3.1. Key market trends, growth factors and opportunities
      • 6.5.4.3.2. Market size and forecast, by Source
      • 6.5.4.3.3. Market size and forecast, by Application
      • 6.5.4.4. Rest of LAMEA
      • 6.5.4.4.1. Key market trends, growth factors and opportunities
      • 6.5.4.4.2. Market size and forecast, by Source
      • 6.5.4.4.3. Market size and forecast, by Application

CHAPTER 7: COMPETITIVE LANDSCAPE

  • 7.1. Introduction
  • 7.2. Top winning strategies
  • 7.3. Product Mapping of Top 10 Player
  • 7.4. Competitive Dashboard
  • 7.5. Competitive Heatmap
  • 7.6. Top player positioning, 2022

CHAPTER 8: COMPANY PROFILES

  • 8.1. Dakota Gasification Company
    • 8.1.1. Company overview
    • 8.1.2. Key Executives
    • 8.1.3. Company snapshot
    • 8.1.4. Operating business segments
    • 8.1.5. Product portfolio
    • 8.1.6. Business performance
  • 8.2. CLARIANT
    • 8.2.1. Company overview
    • 8.2.2. Key Executives
    • 8.2.3. Company snapshot
    • 8.2.4. Operating business segments
    • 8.2.5. Product portfolio
    • 8.2.6. Business performance
  • 8.3. OSAKA GAS CO.,LTD
    • 8.3.1. Company overview
    • 8.3.2. Key Executives
    • 8.3.3. Company snapshot
    • 8.3.4. Operating business segments
    • 8.3.5. Product portfolio
    • 8.3.6. Business performance
    • 8.3.7. Key strategic moves and developments
  • 8.4. Terega
    • 8.4.1. Company overview
    • 8.4.2. Key Executives
    • 8.4.3. Company snapshot
    • 8.4.4. Operating business segments
    • 8.4.5. Product portfolio
  • 8.5. Mitsubishi Corporation
    • 8.5.1. Company overview
    • 8.5.2. Key Executives
    • 8.5.3. Company snapshot
    • 8.5.4. Operating business segments
    • 8.5.5. Product portfolio
    • 8.5.6. Business performance
    • 8.5.7. Key strategic moves and developments
  • 8.6. KADATEC s.r.o.
    • 8.6.1. Company overview
    • 8.6.2. Key Executives
    • 8.6.3. Company snapshot
    • 8.6.4. Operating business segments
    • 8.6.5. Product portfolio
  • 8.7. TransTech Energy, LLC
    • 8.7.1. Company overview
    • 8.7.2. Key Executives
    • 8.7.3. Company snapshot
    • 8.7.4. Operating business segments
    • 8.7.5. Product portfolio
  • 8.8. Zentrum fur Sonnenenergie- und Wasserstoff-Forschung Baden-Wurttemberg
    • 8.8.1. Company overview
    • 8.8.2. Key Executives
    • 8.8.3. Company snapshot
    • 8.8.4. Operating business segments
    • 8.8.5. Product portfolio
  • 8.9. Air Liquide
    • 8.9.1. Company overview
    • 8.9.2. Key Executives
    • 8.9.3. Company snapshot
    • 8.9.4. Operating business segments
    • 8.9.5. Product portfolio
    • 8.9.6. Business performance
  • 8.10. MAN Energy Solutions
    • 8.10.1. Company overview
    • 8.10.2. Key Executives
    • 8.10.3. Company snapshot
    • 8.10.4. Operating business segments
    • 8.10.5. Product portfolio
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦