|
시장보고서
상품코드
1891801
세계의 전도성 잉크 시장 : 용도별, 유형별, 기술별, 최종 이용 산업별, 기재별, 지역별 - 시장 규모, 산업 동향, 기회 분석 및 예측(2026-2035년)Global Conductive Ink Market: Application, By Type, Technology, End-Use Industry, Substrate, Region - Market Size, Industry Dynamics, Opportunity Analysis and Forecast for 2026-2035 |
||||||
세계 전도성 잉크 시장은 지속적으로 성장하고 있으며, 2025년에는 시장 규모가 약 34억 5,000만 달러에 달할 것으로 예측됩니다. 이러한 상승 추세는 앞으로도 계속될 것으로 예상되며, 2035년까지 시장 규모는 거의 두 배로 증가하여 약 62억 4,000만 달러에 달할 것으로 예측됩니다. 이는 2026년부터 2035년까지의 예측 기간 동안 6.1%의 연평균 복합 성장률(CAGR)을 나타내며, 진화하는 기술 수요에 힘입어 지속적이고 견고한 성장을 강조하고 있습니다.
이러한 시장 확대의 배경에는 여러 가지 요인이 있으며, 특히 플렉서블 일렉트로닉스 및 소형화 장치에 대한 수요 증가가 핵심적인 역할을 하고 있습니다. 민생 전자기기의 소형화 및 다기능화에 따라 플렉서블 기판에 적용할 수 있는 전도성 잉크에 대한 수요도 증가하고 있습니다. 이 잉크는 차세대 가젯에 필수적인 구부릴 수 있고 가볍고 효율적인 전자 부품을 개발할 수 있게 해줍니다. 또한, 태양광 발전과 무선 주파수 식별(RFID) 기술 등의 주요 응용 분야도 이러한 성장에 크게 기여하고 있습니다.
DuPont, Henkel, Heraeus, Sun Chemical, Poly-Ink와 같은 주요 기업들은 엄격한 연구개발, 지속적인 혁신, 전략적 사업 전개로 전도성 잉크 시장을 주도하고 있습니다. 이들 기업들은 고객의 특정 요구에 맞는 고품질 제품 생산에 집중하는 동시에 비용 효율적인 솔루션을 제공하기 위해 노력하면서 치열한 경쟁을 벌이고 있습니다. 시장 환경은 빠르게 변화하고 있으며, 3D 프린팅과 같은 기술 발전으로 새로운 기회가 창출되는 한편, 환경에 민감한 고객층에게 어필할 수 있는 지속 가능하고 친환경적인 솔루션에 대한 관심이 높아지고 있습니다.
최근 동향으로는 2025년 9월 Pimoroni사가 전자종이 디스플레이 'Inky' 시리즈의 신제품 'Inky Frame 7.3인치'를 발표했습니다. 이 새로운 기기는 라즈베리 파이 피코2 W를 탑재하고, E Ink Spectra 컬러 패널을 채택했습니다. 컬러 전자종이 기술의 한계를 뛰어넘어 디스플레이 기술에서 전도성 잉크의 적용 범위를 확장하고 있습니다. 한편, 엡손은 2025년 7월에 개최되는 오토매티카 박람회에서 직접 투 쉐이프 프린팅 시스템을 전시할 예정입니다.
전도성 잉크의 응용 분야를 더욱 확대하기 위해, 2025년 2월 스웨덴의 스타트업 기업 N-ink는 유기태양전지(OPV)의 전하추출층과 페로브스카이트 태양전지의 수송층용으로 설계된 n형 전도성 잉크를 발표했습니다. 이 획기적인 제품은 태양광 발전 기술의 중요한 진전을 보여주는 것으로, 차세대 태양전지의 효율성과 지속가능성을 향상시키는 데 기여할 수 있습니다.
성장의 핵심 요인
전도성 잉크 시장의 성장을 주도하는 가장 강력한 요인은 태양광 발전의 확대를 주도하는 재생 에너지의 급격한 증가입니다. 2025년 한 해에만 600기가와트 이상의 신규 태양광 발전 설비가 설치될 것으로 예상되며, 이는 깨끗하고 지속 가능한 에너지원에 대한 전 세계의 적극적인 노력을 반영합니다. 이러한 태양광 발전 용량의 급격한 성장은 태양전지 제조에 필수적인 재료인 전도성 잉크에 대한 수요를 직접적으로 증가시킬 것입니다. 이 태양전지는 태양광에서 생성된 전기를 포획하고 수송하기 위해 전도성이 높은 금속선을 이용하는 기본 원리에 의존하고 있습니다.
새로운 기회 트렌드
전도성 잉크 시장의 자동차 산업은 전통적인 기계 조립 중심의 분야에서 인쇄 전자제품의 주요 소비 분야로 크게 변모하고 있습니다. 이러한 진화는 전기자동차(EV)의 항속거리를 극대화하는 중요한 과제에 기인하며, 경량화 및 효율성 향상을 위한 혁신적인 접근법이 요구되고 있습니다. 전통적으로 차량 전기 연결에 오랫동안 사용되어 온 구리 와이어 하네스는 무게가 크고 복잡하고 부피가 커서 무게가 크게 증가하고 설계 유연성이 제한됩니다. 이러한 문제를 해결하기 위해 자동차 제조업체들은 '인몰드 일렉트로닉스(IME)' 기술 채택을 가속화하고 있습니다. 이는 전자회로를 차량 구조의 내부 패널에 직접 인쇄하는 기술입니다.
최적화 장벽
전도성 잉크에 대한 수요가 크게 증가하고 있음에도 불구하고, 시장은 현재 원자재 가격의 극심한 변동으로 인해 심각한 문제에 직면해 있습니다. 많은 전도성 잉크의 주성분인 은은 투기적 거래나 수급 균형의 교란으로 인한 급격한 가격 변동에 특히 취약한 특성을 가지고 있습니다. 이러한 변동성은 잉크 제조업체와 최종 사용자 모두에게 불안정한 경제 환경을 조성하고, 공급망 전반의 예산, 조달 및 가격 전략을 복잡하게 만들고 있습니다. 2025년 12월 산업용 은괴 가격이 급등하여 1kg당 약 1,050달러에 이르렀고, 이 문제는 특히 두드러졌습니다. 이는 전년 동기 대비 22%라는 큰 폭의 상승으로, 주로 산업용 공급 부족으로 인한 것입니다.
The global conductive ink market is experiencing significant expansion, with its value reaching approximately US$3.45 billion in 2025. This upward trajectory is expected to continue strongly, as projections estimate the market will nearly double in size, reaching a valuation of around US$6.24 billion by 2035. This represents a compound annual growth rate (CAGR) of 6.1% over the forecast period from 2026 to 2035, highlighting sustained and robust growth driven by evolving technological demands.
Several factors underpin this market expansion, with the rising demand for flexible electronics and miniaturized devices playing a central role. As consumer electronics become increasingly compact and versatile, the need for conductive inks that can be applied to flexible substrates grows correspondingly. These inks enable the development of bendable, lightweight, and more efficient electronic components that are essential for next-generation gadgets. Additionally, key applications such as photovoltaics and radio-frequency identification (RFID) technologies are major contributors to this growth.
Key players such as DuPont, Henkel, Heraeus, Sun Chemical, and Poly-Ink are leading the conductive ink market through a combination of rigorous research and development, continuous innovation, and strategic business initiatives. These companies compete intensely by focusing on producing high-quality products tailored to specific customer needs while also striving to offer cost-effective solutions. The market landscape is rapidly evolving, with new opportunities emerging from advancements in technologies like 3D printing, as well as a growing emphasis on sustainable and environmentally friendly solutions that appeal to a more eco-conscious customer base.
In recent developments, September 2025 saw Pimoroni announce the latest addition to its Inky family of ePaper displays-the Inky Frame 7.3". This new device is powered by the Raspberry Pi Pico 2 W. It features an E Ink Spectra color panel, pushing the boundaries of color ePaper technology and expanding applications for conductive inks in display technologies. Meanwhile, Epson is set to showcase its direct-to-shape printing system at the Automatica trade fair in July 2025.
Further pushing the frontier of conductive ink applications, in February 2025, Swedish startup N-ink introduced an n-type conductive ink designed for use in the charge-extracting layer of organic solar cells (OPV) and transport layers of perovskite solar cells. This breakthrough product represents a significant step forward in photovoltaic technology, offering potential improvements in efficiency and sustainability for next-generation solar cells.
Core Growth Drivers
The most powerful catalyst driving growth in the conductive ink market is the worldwide surge in renewable energy, with solar power expansion leading the charge. In 2025 alone, new solar power installations are projected to surpass 600 gigawatts, reflecting an aggressive global push towards clean and sustainable energy sources. This rapid growth in solar capacity directly fuels demand for conductive inks, which are essential materials used in the manufacturing of solar cells. These cells rely on the fundamental principle of utilizing highly conductive metal lines to capture and transport electricity generated from sunlight.
Emerging Opportunity Trends
The automotive industry within the conductive ink market is undergoing a significant transformation, shifting from its traditional role as a primarily mechanical assembly sector to becoming a leading consumer of printed electronics. This evolution is largely due to the critical imperative to maximize the driving range of electric vehicles (EVs), which demands innovative approaches to reduce weight and improve efficiency. Conventional copper wire harnesses, long used for electrical connectivity in vehicles, are heavy, complex, and bulky, adding significant weight and limiting design flexibility. To address these challenges, automakers are increasingly adopting "In-Mold Electronics" (IME) technology, where electronic circuitry is directly printed onto interior panels of the vehicle structure.
Barriers to Optimization
Despite strong and growing demand for conductive inks, the market is currently grappling with a major challenge stemming from extreme volatility in raw material prices. Silver, a key component in many conductive inks, is particularly vulnerable to sharp price fluctuations driven by speculative trading and supply-demand imbalances. This volatility creates a precarious economic environment for both ink manufacturers and their end-users, complicating budgeting, procurement, and pricing strategies across the supply chain. In December 2025, this issue became especially pronounced when the price of industrial silver flakes surged dramatically, reaching approximately US$1,050 per kilogram. This represented a steep 22% increase compared to the same period the previous year, largely due to shortages in industrial supply.
By application, the photovoltaics segment, which primarily includes solar panels, emerged as the largest contributor to the conductive ink market, accounting for 36.7% of the total revenue in 2024. This substantial share is closely linked to the rapid expansion of global solar energy capacity. In 2024 alone, solar capacity additions worldwide surpassed 590 gigawatts, reflecting a robust and sustained investment in renewable energy infrastructure. This surge in solar installations has a direct and significant impact on the demand for conductive inks, particularly silver-based pastes, which are essential materials used in the manufacturing of solar cells.
By technology, the screen printing segment dominated, holding the largest share, accounting for 45.6% in 2024. This technology's leading position is largely attributed to its ability to meet high-throughput manufacturing demands, which are critical in today's fast-paced production environments. Screen printing has evolved into a highly automated process, with modern platforms capable of processing an impressive volume of wafers-often exceeding 4,000 units per hour in large-scale gigafactories. This level of efficiency ensures that screen printing remains the preferred method for applying conductive inks in mass production settings, where speed and precision are paramount.
By the substrate, in 2024, the glass substrates segment accounted for a substantial portion of the conductive ink market, contributing approximately 42.1% of the total share. This significant contribution is driven by evolving technological trends and increasing demand for innovative applications involving glass surfaces. One of the key factors behind this growth is the modernization of automotive cockpits, which has led to the integration of advanced curved glass dashboard displays. These displays require conductive patterns that can be printed directly onto the glass, but they also demand inks with exceptional adhesion properties capable of withstanding repeated thermal cycling.
By Type, Silver-based conductive inks hold the largest market share in the conductive ink industry, accounting for approximately 50% of the market by type. This dominant position reflects the critical role silver plays in delivering superior electrical conductivity, which is essential for many advanced electronic applications. Despite fluctuations and challenges in sourcing raw materials, silver remains the preferred choice among manufacturers due to its unmatched performance characteristics, especially in high-frequency and precision applications where reliability and conductivity cannot be compromised.
By Type
By Application
By Technology
By Substrate
By End-Use Industry
By Region
Geography Breakdown