![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1511775
¼¼°èÀÇ Áö·Ú ŽÁö ½ÃÀå(2024-2034³â)Global Mine Detection Market 2024-2034 |
¼¼°è Áö·Ú ŽÁö ½ÃÀåÀº 2024³â 63¾ï 6,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£(2024-2034³â) µ¿¾È 4.82%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î ¼ºÀåÇÏ¿© 2034³â¿¡´Â 101¾ï 8,000¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
Áö·Ú´Â ±ºÀΰú ¹Î°£ÀÎ ¸ðµÎ¿¡°Ô ½É°¢ÇÑ À§ÇùÀÌ µË´Ï´Ù. ÀÌ·¯ÇÑ ¼û°ÜÁø Æø¹ß¹°Àº ¹«¹æºñ »óÅÂÀÇ »ç¶÷µéÀ» ´ÙÄ¡°Ô Çϰųª Á×ÀÏ ¼ö ÀÖÀ¸¸ç, ±º»ç ÀÛÀüÀ» ¹æÇØÇÏ°í ºÐÀï ÈÄ Àç°Ç Ȱµ¿À» Áö¿¬½Ãų ¼ö ÀÖ½À´Ï´Ù. ¹æ¾î¿ë Áö·Ú ŽÁö´Â ÀÌ·¯ÇÑ Ä¡¸íÀûÀÎ ÀåÄ¡¸¦ ã¾Æ ¹«·ÂȽÃÄÑ ±ºÀÇ ¾ÈÀüÇÑ ÅëÇàÀ» º¸ÀåÇϰí ÀεµÀû Áö·Ú Á¦°Å Ȱµ¿À» ÃËÁøÇϱâ À§ÇØ »ç¿ëµÇ´Â ¹æ¹ý°ú ±â¼úÀ» Æ÷°ýÇÕ´Ï´Ù.
Áö·Ú ŽÁö´Â º¹ÀâÇÏ°í ´Ù¸éÀûÀÎ ÀÛ¾÷ÀÔ´Ï´Ù. Áö·Ú´Â ´Ù¾çÇÑ ÇüÅ·ΠÁ¸ÀçÇÏ¸ç ¾Ð·ÂÆÇ, Æ®¸³ ¿ÍÀ̾î, ÀÚ±â Æ®¸®°Å µî ´Ù¾çÇÑ ±âÆø ¸ÞÄ¿´ÏÁòÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù. Áö·Ú´Â ´Ù¾çÇÑ ±íÀÌ¿¡ ¸Å¼³µÇ¾î ÀÖ¾î ´õ¿í ³À̵µ°¡ ³ô¾ÆÁ³½À´Ï´Ù. ±âÁ¸ÀÇ Áö·Ú ŽÁö ¹æ¹ýÀº ¼öÀÛ¾÷¿¡ ÀÇÁ¸ÇÏ´Â °æ¿ì°¡ ¸¹¾Æ º´»çµéÀ» À§Çè¿¡ ºü¶ß¸®´Â °æ¿ì°¡ ¸¹¾Ò½À´Ï´Ù. ÇÏÁö¸¸ ±â¼úÀÇ ¹ßÀüÀ¸·Î º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀΠŽÁö ¹æ¹ýÀÌ µîÀåÇϰí ÀÖ½À´Ï´Ù.
¹æ¾î¿ë Áö·Ú ŽÁö´Â ¸Å¼³µÈ Æø¹ß¹°À» ½Äº°ÇÏ°í ¹«·ÂȽÃŰ´Â ƯÁ¤ °úÁ¦¿¡ ¸ÂÃß¾î ´Ù¾çÇÑ Á¢±Ù ¹æ½ÄÀ» äÅÃÇϰí ÀÖ½À´Ï´Ù.
¼öÀÛ¾÷ Ž»ç´Â ¿©ÀüÈ÷ ±âº»ÀûÀÎ ¹æ¹ýÀ¸·Î, ±Ý¼Ó ŽÁö±â³ª ¸·´ë±â¸¦ ÀÌ¿ëÇØ ¶¥¼Ó¿¡ Áö·Ú°¡ ÀÖ´ÂÁö ¹°¸®ÀûÀ¸·Î Á¶»çÇÏ´Â ¹æ¹ýÀÔ´Ï´Ù. ÀÌ ¹æ¹ýÀº ¾èÀº Áö·Ú¿¡ È¿°úÀûÀÌÁö¸¸, ³ëµ¿·ÂÀÌ ¸¹ÀÌ µé°í ½Ç¼ö·Î Æø¹ßÇÒ ¼ö ÀÖ´Â À§Ç輺ÀÌ ³»ÀçµÇ¾î ÀÖ½À´Ï´Ù. Áö·Ú ŽÁö°ßÀº ¹Î°¨ÇÑ Èİ¢À¸·Î Æø¹ß¹°À» ŽÁöÇÏ´Â Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ƯÈ÷ ³ª¹«°¡ ¿ì°ÅÁø Áö¿ªÀ̳ª ½Ã¾ß°¡ Á¦ÇÑµÈ ÇèÁØÇÑ ÁöÇü¿¡¼´Â Ư¼ö ÈÆ·ÃÀ» ¹ÞÀº Áö·Ú ŽÁö°ßÀÌ ±âµ¿¼º°ú ½Å·Ú¼ºÀÌ ³ôÀº ŽÁö ´É·ÂÀ» ¹ßÈÖÇÕ´Ï´Ù.
±â°èÀû Áö·Ú Á¦°Å ¹æ¹ýÀº Áö·Ú ·Ñ·¯¿Í °øÈ¸Àü ÀåÄ¡¿Í °°Àº Ư¼ö µµ±¸¸¦ »ç¿ëÇÕ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ¾Ð·ÂÀ» °¡Çϰųª ÅëÁ¦µÈ Æø¹ßÀ» ÀÏÀ¸ÄÑ Áö·Ú¸¦ Æø¹ß½ÃŰ°Å³ª ¶¥¿¡¼ Á¦°ÅÇÕ´Ï´Ù. È¿°úÀûÀÌÁö¸¸, ÀÌ·¯ÇÑ ¹æ¹ýÀº ¶§¶§·Î ÀÎÇÁ¶ó¸¦ ¼Õ»ó½ÃŰ°í ºÒ¹ßźÀ» ³²±æ ¼ö ÀÖÀ¸¸ç, ±ºÀΰú ¹Î°£ÀÎ ¸ðµÎ¿¡°Ô À§ÇèÀ» ÃÊ·¡ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¹æ¾î¿ë Áö·Ú ŽÁö¿¡ ´ëÇÑ °¢ Á¢±Ù ¹æ½ÄÀº ƯÁ¤ ÀÛÀü ¿ä°Ç°ú ȯ°æ Á¶°Ç¿¡ µû¶ó ´Ù¸£¸ç, ´Ù¾çÇÑ ÀÛÀü ÁöÇü¿¡¼ ¸Å¼³µÈ Æø¹ß¹° À§Çù¿¡ ´ëÀÀÇϱâ À§ÇÑ ¾ÈÀü, È¿À²¼º, È¿°ú¼ºÀ» ³ôÀ̱â À§ÇÑ Áö¼ÓÀûÀÎ ³ë·ÂÀ» ¹Ý¿µÇÕ´Ï´Ù.
¹æ¾î¿ë Áö·Ú ŽÁö ±â¼úÀÇ ¹ßÀüÀº ¸î °¡Áö Çõ½ÅÀûÀÎ Á¢±Ù ¹æ½ÄÀ» ÅëÇØ ÀÌ·¯ÇÑ ÀÛÀüÀÇ È¿°ú¿Í ¾ÈÀü¼ºÀ» º¯È½Ã۰í ÀÖ´Ù: ÃֽŠ±Ý¼Ó ŽÁö±â´Â °¨µµ¿Í ½Äº° ´É·ÂÀ» Çâ»ó½Ã۰í Áö·Ú¿¡ ¹¯Èù ±Ý¼Ó ºÎǰÀÇ Å½Áö¸¦ Å©°Ô Çâ»ó½ÃŰ´Â ¹æÇâÀ¸·Î ÁøÈÇϰí ÀÖ½À´Ï´Ù. ÁöÇÏ Ä§Åõ ·¹ÀÌ´õ(GPR) ±â¼úÀº ÁöÇÏ¿¡ ÀüÀÚ±â ÆÞ½º¸¦ Àü¼ÛÇÏ¿© ºñ±Ý¼Ó Áö·Ú¸¦ ŽÁöÇÏ°í ¹Ý»çµÈ ½ÅÈ£¸¦ ºÐ¼®ÇÏ¿© ¼û°ÜÁø À§ÇùÀ» ã¾Æ³»´Â ¹æ½ÄÀ¸·Î À̸¦ º¸¿ÏÇÕ´Ï´Ù.
ÀüÀÚ±â À¯µµ(EMI) ŽÁö±â´Â ÁÖº¯ ÁöÇüÀÇ Àüµµµµ¸¦ ±â¹ÝÀ¸·Î Áö·ÚÀÇ ±Ý¼Ó ¼ººÐÀ» ½Äº°ÇÏ´Â µ¥ ±â¿©ÇÕ´Ï´Ù. ÀÌ ¹æ¹ýÀº ¸Å¼³µÈ ±Ý¼Ó ¹°Ã¼¸¦ ÀÚ¿¬ ȯ°æ°ú È¿°úÀûÀ¸·Î ±¸º°ÇÏ¿© ŽÁö °úÁ¤À» °ÈÇÕ´Ï´Ù. À½Çâ ¹× ÁöÁø ŽÁö ¹æ¹ýÀº À½ÆÄ ¶Ç´Â Áøµ¿À» ÀÌ¿ëÇÏ¿© ¸Å¼³µÈ Áö·ÚÀÇ Á¸À縦 ³ªÅ¸³¾ ¼ö ÀÖ´Â ÁöÇÏÀÇ ÀÌ»ó ¡Èĸ¦ ½Äº°ÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ƯÈ÷ ÁöÇüÀ̳ª Á¶°ÇÀ¸·Î ÀÎÇØ ´Ù¸¥ ¹æ¹ýÀÌ È¿°úÀûÀÌÁö ¾ÊÀ» ¼ö Àִ ȯ°æ¿¡¼ Ãß°¡ÀûÀΠŽÁö ´É·ÂÀ» Á¦°øÇÕ´Ï´Ù.
÷´Ü ¼¾¼°¡ ÀåÂøµÈ ¹«ÀÎ Áö»ó Â÷·®(UGV)Àº Áö·Ú ŽÁöÀÇ ±â¼úÀû µµ¾àÀ» »ó¡ÇÕ´Ï´Ù. ÀÌ ¿ø°Ý Á¶Á¾ Â÷·®Àº À§Çè Áö¿ªÀ» Ž»öÇϰí ÀÚÀ²ÀûÀ¸·Î Áö·Ú¸¦ Ž»öÇÒ ¼ö ÀÖ¾î Á¦°Å ÀÛ¾÷ Áß Àΰ£ÀÌ ÀáÀçÀû À§Çè¿¡ ³ëÃâµÇ´Â °ÍÀ» ÃÖ¼ÒÈÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀº Á¤È®µµ Çâ»ó, ºñ±Ý¼Ó À§ÇùÀ» Æ÷ÇÔÇÑ Å½Áö ´É·Â È®´ë, Àü¹ÝÀûÀÎ ÀÛÀü ¾ÈÀü¼ºÀ» Çâ»ó½ÃÅ´À¸·Î½á ±¹¹æ Áö·Ú ŽÁö¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ±º°¡ ÀÌ·¯ÇÑ Ã·´Ü ±â¼ú¿¡ Áö¼ÓÀûÀ¸·Î ÅõÀÚÇϰí äÅÃÇÔ¿¡ µû¶ó Áö·Ú ŽÁö Ȱµ¿ÀÇ È¿À²¼ºÀ» ³ôÀ̰í À§ÇèÇÑ È¯°æ¿¡¼ À§ÇèÀ» ÁÙÀÌ¸ç ¼º°ú¸¦ Çâ»ó½Ãų °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
»õ·Î¿î Áö·Ú ŽÁö ±â¼úÀÇ °³¹ß°ú äÅÃÀº ¸î °¡Áö Áß¿äÇÑ ¿äÀο¡ ÀÇÇØ ÃßÁøµÇ°í ÀÖÀ¸¸ç, °¢ ¿äÀÎÀº Çö´ëÀÇ ºÐÀï ¹× ºÐÀï ÈÄ ½Ã³ª¸®¿À¿¡¼ ¶Ñ·ÇÇÑ µµÀü°ú Çʿ伺¿¡ ´ëÀÀÇϰí ÀÖ½À´Ï´Ù. ù°, ÀεµÁÖÀÇÀû ¿äûÀ¸·Î ÀÎÇØ È¿°úÀûÀÎ Áö·Ú ŽÁö ±â¼úÀÌ ½Ã±ÞÈ÷ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. Áö·Ú´Â Àû´ë ÇàÀ§°¡ Áß´ÜµÈ ÈÄ¿¡µµ ¿À·§µ¿¾È ºÐÀï Áö¿ªÀÇ ¹Î°£ÀÎÀ» À§Çè¿¡ ºü¶ß¸®°í ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ ±â¼úÀº Áö·Ú Á¦°Å ÀÛ¾÷À» °¡¼ÓÈÇϰí, À§Çè Áö¿ªÀ» Á¦°ÅÇϸç, Áö¿ª »çȸÀÇ ¾ÈÀü°ú »îÀ» º¸ÀåÇϱâ À§ÇØ ÇʼöÀûÀÔ´Ï´Ù.
ÇÃ¶ó½ºÆ½, º¹ÇÕÀç·á µî ºñ±Ý¼Ó Àç·á·Î ¸¸µé¾îÁø Áö·Ú¸¦ Æ÷ÇÔÇØ Áö·ÚÀÇ À§ÇùÀÌ °íµµÈµÊ¿¡ µû¶ó ÷´Ü ŽÁö ¹æ¹ýÀÌ ÇÊ¿äÇÏ°Ô µÇ¾ú½À´Ï´Ù. ±âÁ¸ÀÇ ±Ý¼Ó ŽÁö±â¸¸À¸·Î´Â ÀÌ·¯ÇÑ ÃֽŠÁö·Ú¸¦ ŽÁöÇϱ⿡ ÃæºÐÇÏÁö ¾ÊÀ» ¼ö ÀÖÀ¸¸ç, ´Ù¾çÇÑ ÁöÇü¿¡ ¸Å¼³µÈ ºñ±Ý¼Ó À§ÇùÀ» È®½ÇÇÏ°Ô ½Äº°ÇÒ ¼ö ÀÖ´Â ±â¼ú °³¹ßÀÌ ÇÊ¿äÇÕ´Ï´Ù. Áö·Ú Á¦°Å ÀÛ¾÷¿¡ Á¾»çÇÏ´Â ±ºÀεéÀÇ ¾ÈÀü¿¡ ´ëÇÑ ¿ì·Á·Î ÀÎÇØ Àΰ£ÀÌ Á÷Á¢ÀûÀ¸·Î À§Çè¿¡ ³ëÃâµÇ´Â °ÍÀ» ÃÖ¼ÒÈÇÏ´Â ±â¼úÀÌ ¿ä±¸µÇ°í ÀÖ½À´Ï´Ù. ¹«ÀÎ ½Ã½ºÅÛ°ú ÷´Ü ¼¾¼·Î ÃËÁøµÇ´Â ¿ø°Ý ŽÁö ´É·ÂÀº º¸´Ù ¾ÈÀüÇϰí È¿À²ÀûÀÎ Áö·Ú Á¦°Å ÀÛ¾÷À» °¡´ÉÇÏ°Ô Çϰí, ÀÌ·¯ÇÑ À§ÇèÇÑ ÀÛ¾÷¿¡ Á¾»çÇÏ´Â Àη¿¡ ´ëÇÑ À§ÇèÀ» ÁÙÀÏ ¼ö ÀÖ½À´Ï´Ù. ºñ¿ë È¿À²¼ºÀº »õ·Î¿î Áö·Ú ŽÁö ±â¼úÀÇ Ã¤Åÿ¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¶Ç ´Ù¸¥ ¸Å¿ì Áß¿äÇÑ ¿øµ¿·ÂÀÔ´Ï´Ù. ±¹¹æ ±â°ü°ú ÀεµÀû Áö¿ø ´Üü ¸ðµÎ ÀÚ¿øÀ» ÃÖÀûÈÇϰí Áö·Ú Á¦°Å ÀÛ¾÷°ú °ü·ÃµÈ ¿î¿µ ºñ¿ëÀ» ÃÖ¼ÒÈÇÏ´Â ¼Ö·ç¼ÇÀ» ã°í ÀÖ½À´Ï´Ù. Çõ½ÅÀûÀÎ ±â¼úÀº ÇÁ·Î¼¼½º¸¦ °£¼ÒÈÇϰí, Á¦°Å ÀÛ¾÷¿¡ ÇÊ¿äÇÑ ½Ã°£À» ´ÜÃàÇϰí, ÇÊ¿äÇÑ ÀηÂÀ» ÁÙÀ̸ç, ±Ã±ØÀûÀ¸·Î Áö·Ú Á¦°Å ÀÌ´Ï¼ÅÆ¼ºêÀÇ È¿À²¼º°ú °æÁ¦¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù. ±â¼ú ¹ßÀüÀÌ °è¼Ó ¹ßÀüÇÔ¿¡ µû¶ó »õ·Î¿î Áö·Ú ŽÁö ±â¼úÀÇ °³¹ßÀº Áö·Ú À§ÇùÀ» ±ÙÀýÇϱâ À§ÇÑ Àü ¼¼°è ³ë·Â¿¡¼ ÀεµÁÖÀÇÀû Çʿ並 ÃæÁ·Çϰí, ÁøÈÇÏ´Â À§ÇùÀ» ¿ÏÈÇϰí, ÀηÂÀÇ ¾ÈÀüÀ» °ÈÇϸç, ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» ´Þ¼ºÇϱâ À§ÇØ °è¼ÓÇØ¼ ¸Å¿ì Áß¿äÇÕ´Ï´Ù.
Áö·Ú ŽÁö Ȱµ¿ÀÇ ÃÊÁ¡Àº Áö¿ª¸¶´Ù Å©°Ô ´Ù¸£¸ç, ÀÌ´Â ±â¼ú ¹ßÀü ¼öÁØ, ¿¹»ê Á¦¾à ¹× ƯÁ¤ ÀÛÀü»óÀÇ ¿ä±¸°¡ ´Ù¸£±â ¶§¹®ÀÔ´Ï´Ù. ¹Ì±¹, À¯·´ µî ¼±Áø±¹¿¡¼´Â Áö·Ú ŽÁö¸¦ À§ÇÑ ÃÖ÷´Ü ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ¿©±â¿¡´Â ÷´Ü ¼¾¼¿Í ÀΰøÁö´É(AI) ¾Ë°í¸®ÁòÀÌ Å¾ÀçµÈ ¹«ÀÎ ½Ã½ºÅÛÀÌ Æ÷ÇԵ˴ϴÙ. ¶ÇÇÑ, Çö´ë ºÐÀï ½Ã³ª¸®¿À¿¡¼ ½É°¢ÇÑ À§ÇùÀÌ µÇ°í ÀÖ´Â ±ÞÁ¶Æø¹ß¹°(IED)¿¡ ´ëÀÀÇϱâ À§ÇÑ Ã·´Ü ´ëÀÀ ±â¼ú °³¹ß¿¡µµ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. ÀÌµé ±¹°¡´Â Áö·Ú ŽÁö Ȱµ¿ÀÇ È¿À²¼º°ú ¾ÈÀü¼ºÀ» ³ôÀ̱â À§ÇØ ±â¼úÀû ¿ìÀ§¿Í Çõ½ÅÀ» ¿ì¼±¼øÀ§¿¡ µÎ°í ÀÖ½À´Ï´Ù.
¹Ý´ë·Î, °³¹ßµµ»ó±¹¿¡¼´Â Áö·Ú ŽÁö¿¡ ´ëÇÑ Á¢±Ù ¹æ½Ä¿¡ ¿µÇâÀ» ¹ÌÄ¡´Â ¿¹»ê Á¦¾à¿¡ Á÷¸éÇÏ´Â °æ¿ì°¡ ¸¹½À´Ï´Ù. ÀÌ·¯ÇÑ ±¹°¡µéÀº ÀüÅëÀûÀÎ ¹æ¹ý°ú ±âº» ±Ý¼Ó ŽÁö±â ¹× °£´ÜÇÑ ±â°è½Ä Á¦°Å µµ±¸¿Í °°Àº º¸´Ù Àú·ÅÇÑ ±â¼úÀÇ Á¶ÇÕ¿¡ ÀÇÁ¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀçÁ¤Àû Á¦¾àÀ¸·Î ÀÎÇØ °¡¿ëÇÑ ÀÚ¿øÀ¸·Î ½ÇÇàÇÒ ¼ö ÀÖ´Â ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀÌ Çö½ÇÀûÀ¸·Î Áß¿äÇÏ°Ô º¸ÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÌµé ±¹°¡´Â Áö·Ú¸¦ ¾ÈÀüÇÏ°Ô Ã³¸®ÇÏ°í Æó±âÇÒ ¼ö ÀÖ´Â ÆøÅº 󏮯À ÈÆ·Ã¿¡ ¿ì¼±¼øÀ§¸¦ µÎ°í, ÀÎÀû Àü¹®¼º°ú ÇöÁö ¿ª·®À» Áß½ÃÇÏ´Â °æ¿ìµµ ÀÖ½À´Ï´Ù. ºÐÀï ÈÄ Áö¿ª¿¡¼ Áö·Ú ŽÁö Ȱµ¿ÀÇ ÁÖ¿ä ¸ñÀûÀº Á¾Á¾ Àç°Ç°ú ÀçÁ¤ÂøÀ» ÃËÁøÇϱâ À§ÇÑ ½Å¼ÓÇÑ Áö·Ú Á¦°Å¿¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã³ª¸®¿À¿¡¼´Â Áö·Ú¿Í ºÒ¹ßźÀÇ Á÷Á¢ÀûÀÎ À§ÇùÀ» Á¦°ÅÇϱâ À§ÇØ ¼Óµµ¿Í È¿À²¼ºÀÌ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ±â°è½Ä Áö·Ú Á¦°Å ½Ã½ºÅÛ°ú °°ÀÌ ½Å¼ÓÇÑ ¹èÄ¡¿Í Á¦°Å¸¦ °¡´ÉÇÏ°Ô ÇÏ´Â ±â¼úÀÌ ÀϹÝÀûÀ¸·Î »ç¿ëµË´Ï´Ù. ÀÌ·¯ÇÑ Áö¿ª¿¡¼´Â Çdz¹ÎµéÀÇ ¾ÈÀüÇÑ ±ÍȯÀ» °¡´ÉÇÏ°Ô Çϰí Àå±âÀûÀÎ ¾ÈÁ¤°ú ¹ßÀüÀ» Áö¿øÇϱâ À§ÇØ À§ÇèÁö¿ªÀ» ¿ì¼±ÀûÀ¸·Î Á¦°ÅÇØ¾ß ÇÕ´Ï´Ù.
ÀüüÀûÀ¸·Î ¼±Áø±¹Àº ÃÖ÷´Ü ±â¼ú°ú ´ëÃ¥¿¡ ÁßÁ¡À» µÎ´Â ¹Ý¸é, °³¹ßµµ»ó±¹Àº ÀçÁ¤Àû Á¦¾àÀ» ±Øº¹Çϱâ À§ÇØ Çö½ÇÀûÀÎ Á¢±Ù ¹æ½ÄÀ» ÃëÇÏ´Â ¹Ý¸é, ºÐÀï ÈÄ Áö¿ªÀº ÀεµÀû Àç°Ç ¸ñÀûÀÇ ½Å¼ÓÇÑ Á¦°Å¸¦ ¿ì¼±½ÃÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¢±Ù ¹æ½ÄÀÇ ´Ù¾ç¼ºÀº Àü ¼¼°è °¢Áö¿¡¼ Áö·Ú ŽÁö Ȱµ¿°ú °ü·ÃµÈ º¹ÀâÇÑ °úÁ¦¿Í ¿ì¼±¼øÀ§¸¦ ¹Ý¿µÇÕ´Ï´Ù.
L3 TEchnologiesÀÇ ÀÚȸ»ç´Â ¹Ì À°±ºÀ» À§ÇØ Áö·Ú ŽÁö Ç÷§ÆûÀ» °³¹ßÇÒ ¿¹Á¤À̸ç, AN/PSS-14 Ä«¿îÅ͸¶ÀÎ ½Ã½ºÅÛÀº L3ÀÇ º¸¾È ¹× ŽÁö ½Ã½ºÅÛ ºÎ¹®¿¡¼ Áö¿ø ¼ºñ½ºµµ Á¦°ø¹Þ°Ô µÉ °ÍÀ¸·Î ¿¹»óµÈ´Ù, L3ÀÇ º¸¾È ¹× ŽÁö ½Ã½ºÅÛ ºÎ¹®À¸·ÎºÎÅÍ Áö¿ø ¼ºñ½º¸¦ ¹Þ°Ô µÉ °ÍÀ̶ó°í ±¹¹æºÎ´Â ¸ñ¿äÀÏ ¹ßÇ¥Çß½À´Ï´Ù. ÀÌ °íÁ¤ °¡°Ý °è¾àÀº 2023³â 11¿ù 20ÀϱîÁö À¯È¿ÇÕ´Ï´Ù. ´ëÀÎ Áö·Ú¿Í ´ëÀüÂ÷ Áö·Ú´Â Áö»ó ·¹ÀÌ´õ, ±Ý¼Ó ŽÁö±â, ¼ÒÇÁÆ®¿þ¾î ¹× ¸¶ÀÌÅ©·ÎÇÁ·Î¼¼¼ ¾î·¹ÀÌ ¼ÒÇÁÆ®¿þ¾î¸¦ »ç¿ëÇÏ¿© AN/PSS-14¿¡ ÀÇÇØ ŽÁöµË´Ï´Ù. °¢ ÀÛ¾÷ ¸í·ÉÀÌ ¹ßÁÖµÉ ¶§ °è¾à Ȱµ¿ÀÎ À°±º °è¾à »ç·ÉºÎ°¡ ÀçÁ¤°ú ÀÛ¾÷ Àå¼Ò¸¦ °áÁ¤ÇÕ´Ï´Ù.
Promoteq°ú Minelab Countermine DivisionÀº ½º¿þµ§ ±ºÀÇ Áö·Ú, ºÒ¹ßź ¹× °£ÀÌ ÆøÅº ŽÁö ´É·ÂÀ» Çâ»ó½ÃŰ´Â µ¥ µµ¿òÀ» ÁÙ ¼ö ÀÖ°Ô µÇ¾î ±â»Ú°Ô »ý°¢ÇÕ´Ï´Ù. ÀÌ °è¾àÀº 2024³â±îÁö À¯È¿Çϸç, ½º¿þµ§ ±º, ½º¿þµ§ ±¹¹æ¹°ÀÚ°ü¸®±¹, ½º¿þµ§ ¹Î°£ ºñ»ó»çÅÂûÀ¸·ÎºÎÅÍ Ãß°¡ ÁÖ¹®À» ¹ÞÀ» ¼ö ÀÖ½À´Ï´Ù.
º» º¸°í¼´Â ¼¼°è Áö·Ú ŽÁö ½ÃÀå¿¡ ´ëÇØ ºÐ¼®ÇßÀ¸¸ç, Àüü ½ÃÀå ±Ô¸ð µ¿Çâ Àü¸Á, Áö¿ªº°/±¹°¡º° »ó¼¼ µ¿Çâ, ÁÖ¿ä ±â¼ú °³¿ä, ½ÃÀå ±âȸ µî¿¡ ´ëÇØ Á¶»çÇÏ¿´½À´Ï´Ù.
The Global Mine Detection market is estimated at USD 6.36 billion in 2024, projected to grow to USD 10.18 billion by 2034 at a Compound Annual Growth Rate (CAGR) of 4.82% over the forecast period 2024-2034.
Landmines pose a significant threat to both military personnel and civilians. These hidden explosives can maim or kill unsuspecting individuals, hindering military operations and delaying reconstruction efforts in post-conflict zones. Defense mine detection encompasses the methods and technologies employed to locate and neutralize these deadly devices, ensuring safe passage for troops and facilitating humanitarian demining activities.
Mine detection is a complex and multifaceted task. Mines come in various forms, employing different detonation mechanisms like pressure plates, tripwires, or magnetic triggers. They can be buried at varying depths, adding another layer of difficulty. Traditional methods of mine detection relied heavily on manual techniques, often putting soldiers at risk. However, advancements in technology have led to a range of safer and more efficient detection methods.
Manual probing remains a fundamental method, utilizing metal detectors and prodders to physically inspect the ground for mines. Effective for shallow mines, this approach is labor-intensive and carries inherent risks due to the potential for accidental detonation. Mine detection dogs play a crucial role, utilizing their highly sensitive sense of smell to detect explosives. Particularly effective in areas with dense foliage or rugged terrain where visibility is limited, these specially trained dogs provide a mobile and reliable detection capability.
Mechanical mine clearance methods involve the use of specialized equipment such as mine rollers and flailing devices. These tools apply pressure or create controlled explosions to either detonate or clear mines from the ground. While effective, these methods can sometimes damage infrastructure and may leave behind unexploded ordnance, posing risks to both military personnel and civilians. Each approach in defense mine detection addresses specific operational requirements and environmental conditions, reflecting ongoing efforts to enhance safety, efficiency, and effectiveness in countering the threat of buried explosives across diverse operational landscapes.
Technological advancements in defense mine detection are transforming the effectiveness and safety of these operations through several innovative approaches: Modern metal detectors have evolved to offer enhanced sensitivity and discrimination capabilities, significantly improving the detection of buried metallic components in mines. Ground penetrating radar (GPR) technology complements this by detecting non-metallic mines through the transmission of electromagnetic pulses into the ground, analyzing the reflected signals to pinpoint hidden threats.
Electromagnetic Induction (EMI) detectors contribute by identifying metallic components within mines based on the electrical conductivity of the surrounding terrain. This method enhances the detection process by effectively distinguishing buried metal objects from the natural environment. Acoustic and seismic detection methods utilize sound waves or vibrations to identify anomalies in the ground that may indicate the presence of buried mines. These techniques provide additional layers of detection capability, particularly in environments where other methods may be less effective due to terrain or conditions.
Unmanned Ground Vehicles (UGVs) equipped with advanced sensors represent a significant technological leap in mine detection. These remotely operated vehicles can navigate hazardous areas and autonomously search for mines, minimizing the exposure of human personnel to potential risks during clearance operations. Collectively, these technological innovations are revolutionizing defense mine detection by improving accuracy, expanding detection capabilities to include non-metallic threats, and enhancing overall operational safety. As military forces continue to invest in and adopt these advanced technologies, the effectiveness of mine detection efforts is expected to increase, mitigating risks and improving outcomes in hazardous environments.
The development and adoption of new mine detection technologies are driven by several critical factors, each addressing distinct challenges and imperatives in modern conflict and post-conflict scenarios. Firstly, the humanitarian imperative underscores the urgent need for effective mine detection technologies. Landmines continue to endanger civilian populations in areas affected by conflict long after hostilities cease. Innovative technologies are essential to expedite demining efforts, clear hazardous areas, and ensure the safety and livelihoods of local communities.
Evolving threats from sophisticated mines, including those constructed from non-metallic materials such as plastics and composites, highlight the necessity for advanced detection methods. Traditional metal detectors alone may not suffice in detecting these modern mines, necessitating the development of technologies that can reliably identify non-metallic threats buried in diverse terrain types. Safety concerns for military personnel engaged in mine clearance operations drive the demand for technologies that minimize direct human exposure to risk. Remote detection capabilities, facilitated by unmanned systems and advanced sensors, enable safer and more efficient mine clearance operations, reducing the danger posed to personnel involved in these hazardous tasks. Cost-effectiveness is another pivotal driver influencing the adoption of new mine detection technologies. Defense agencies and humanitarian organizations alike seek solutions that optimize resources and minimize operational costs associated with demining efforts. Innovative technologies promise to streamline processes, reduce the time required for clearance operations, and decrease the manpower needed, ultimately enhancing the efficiency and affordability of demining initiatives. As advancements in technology continue to evolve, the development of new mine detection technologies remains crucial for addressing humanitarian needs, mitigating evolving threats, enhancing safety for personnel, and achieving cost-effective solutions in global efforts to eradicate the threat of landmines.
The focus on mine detection efforts varies significantly across different regions, driven by varying levels of technological advancement, budgetary constraints, and specific operational needs. In developed nations such as the United States and countries in Europe, there is a substantial investment in cutting-edge technologies for mine detection. These include unmanned systems equipped with advanced sensors and artificial intelligence (AI) algorithms. The emphasis is also on developing sophisticated countermeasures to address improvised explosive devices (IEDs), which pose a significant threat in modern conflict scenarios. These nations prioritize technological superiority and innovation to enhance the effectiveness and safety of mine detection operations.
Conversely, developing nations often encounter budget limitations that affect their approach to mine detection. These countries may rely on a combination of traditional methods and more affordable technologies, such as basic metal detectors and simple mechanical clearance tools. Due to financial constraints, there is a pragmatic focus on cost-effective solutions that can be implemented with available resources. Additionally, these nations may prioritize the training of bomb disposal teams to safely handle and dispose of mines, emphasizing human expertise and local capabilities. In post-conflict regions, the primary objective of mine detection efforts is often rapid demining to facilitate reconstruction and resettlement initiatives. Speed and efficiency are critical in these scenarios to remove the immediate threat posed by landmines and unexploded ordnance. Technologies that enable quick deployment and clearance, such as mechanical mine clearance systems, are commonly utilized. These regions prioritize clearing hazardous areas to enable the safe return of displaced populations and support long-term stability and development.
Overall, while developed nations focus on cutting-edge technologies and countermeasures, developing nations navigate financial constraints with pragmatic approaches, and post-conflict regions prioritize rapid clearance for humanitarian and reconstruction purposes. The diversity in approaches reflects the complex challenges and priorities associated with mine detection efforts worldwide.
Under a prospective five-year, $83.9M deal, an L3 Technologies subsidiary will create mine detection platforms for the U.S. Army. The AN/PSS-14 countermine system will also receive support services from L3's Security and Detection Systems division, the Department of Defense announced on Thursday. The firm-fixed-price contract will be in effect through November 20, 2023. Antipersonnel and antitank mines are detected by AN/PSS-14 using a ground radar, metal detector, software, and microprocessor array software. At the time each task order is awarded, Army Contracting Command, the contracting activity, will decide on the finances and work sites.
Promoteq and Minelab Countermine Division are happy to help the Swedish Armed Forces improve their capacity for mine, UXO, and IED detection. The agreement, which is valid until 2024, permits further call-off orders from the Swedish Armed Forces, the Swedish Defence Materiel Administration, and the Swedish Civil Contingencies Agency.
Mine Detection Market Report Definition
Mine Detection Market Segmentation
By Region
By Platform
By Type
Mine Detection Market Analysis for next 10 Years
The 10-year Mine Detection Market analysis would give a detailed overview of Mine Detection Market growth, changing dynamics, technology adoption overviews and the overall market attractiveness is covered in this chapter.
Market Technologies of Mine Detection Market
This segment covers the top 10 technologies that is expected to impact this market and the possible implications these technologies would have on the overall market.
Global Mine Detection Market Forecast
The 10-year Mine Detection Market forecast of this market is covered in detailed across the segments which are mentioned above.
Regional Mine Detection Market Trends & Forecast
The regional Mine Detection Market trends, drivers, restraints and Challenges of this market, the Political, Economic, Social and Technology aspects are covered in this segment. The market forecast and scenario analysis across regions are also covered in detailed in this segment. The last part of the regional analysis includes profiling of the key companies, supplier landscape and company benchmarking. The current market size is estimated based on the normal scenario.
North America
Drivers, Restraints and Challenges
PEST
Market Forecast & Scenario Analysis
Key Companies
Supplier Tier Landscape
Company Benchmarking
Europe
Middle East
APAC
South America
Country Analysis of Mine Detection Market
This chapter deals with the key defense programs in this market, it also covers the latest news and patents which have been filed in this market. Country level 10 year market forecast and scenario analysis are also covered in this chapter.
US
Defense Programs
Latest News
Patents
Current levels of technology maturation in this market
Market Forecast & Scenario Analysis
Canada
Italy
France
Germany
Netherlands
Belgium
Spain
Sweden
Greece
Australia
South Africa
India
China
Russia
South Korea
Japan
Malaysia
Singapore
Brazil
Opportunity Matrix for Mine Detection Market
The opportunity matrix helps the readers understand the high opportunity segments in this market.
Expert Opinions on Mine Detection Market Report
Hear from our experts their opinion of the possible analysis for this market.
Conclusions
About Aviation and Defense Market Reports