½ÃÀ庸°í¼­
»óǰÄÚµå
1528162

¼¼°èÀÇ ¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå(2024-2034³â)

Global Defense 3D Printing Market 2024-2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Aviation & Defense Market Reports (A&D) | ÆäÀÌÁö Á¤º¸: ¿µ¹® 150+ Pages | ¹è¼Û¾È³» : 3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀº 2024³â 30¾ï ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£ Áß(2024-2034³â) 10.59%ÀÇ ¿¬Æò±Õ ¼ºÀå·ü(CAGR)·Î È®´ëµÇ¾úÀ¸¸ç, 2034³â±îÁö 82¾ï 1,000 ¸¸¹Ì ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Global Defense 3D Printing Market-IMG1

¼¼°è ¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå °³¿ä

ÀûÃþ Á¶Çü(AM)À¸·Îµµ ¾Ë·ÁÁø 3D ÇÁ¸°ÆÃÀº ¹æÀ§ »ê¾÷¿¡ Çõ¸íÀ» ÀÏÀ¸Å°°í ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº Àç·á¸¦ ¿¬¼ÓÀûÀ¸·Î ÀûÃþÇÏ¿© 3Â÷¿ø ¹°Ã¼¸¦ ¸¸µå´Â °ÍÀÔ´Ï´Ù. Àç·á¸¦ Á¦°ÅÇÏ¿© ¿øÇÏ´Â ¸ð¾çÀ» Çü¼ºÇÏ´Â ±âÁ¸ÀÇ Á¦°Å ¼ºÇü°ú´Â ´Þ¸®, 3D ÇÁ¸°ÆÃÀº ·¹À̾·Î ¹°Ã¼¸¦ ¸¸µì´Ï´Ù. ¹æ¾î¿¡ ¹ÌÄ¡´Â ¿µÇâÀº Å®´Ï´Ù. ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇκÎÅÍ ÃÖÁ¾ »ç¿ë ºÎǰ Á¦Á¶¿¡ À̸£±â±îÁö 3D ÇÁ¸°ÆÃÀº ¹æ¾î ½Ã½ºÅÛÀÇ ¼³°è, Á¦Á¶ ¹× ¹èÆ÷ ¹æ¹ýÀ» ¹Ù²Ù°í ÀÖ½À´Ï´Ù.

¼¼°è ¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ±â¼ú ¿µÇâ

3D ÇÁ¸°ÆÃÀÌ ¹æ¾î ºÐ¾ß¿¡ ¹ÌÄ¡´Â ¿µÇâÀº ´Ù¸éÀûÀÔ´Ï´Ù. Áß¿äÇÑ ÀåÁ¡ Áß Çϳª´Â ½Å¼ÓÇÑ ÇÁ·ÎÅäŸÀÌÇÎÀ¸·Î 3D ÇÁ¸°ÆÃÀ» ÅëÇØ ¼³°èºÎÅÍ Á¦Á¶±îÁöÀÇ »çÀÌŬÀ» °¡¼ÓÈ­ÇÏ¿© ÇÁ·ÎÅäŸÀÔÀ» ½Å¼ÓÇÏ°Ô ¹Ýº¹ÇÏ°í °³¼±ÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ ±â´ÉÀº »õ·Î¿î ¹«±â ½Ã½ºÅÛ, Â÷·® ¹× ÀåºñÀÇ ½Å¼ÓÇÑ °³¹ß·Î À̾îÁ® º¯È­ÇÏ´Â ¹æ¾î ¿ä±¸¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇÒ ¼ö ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ ÀÌÁ¡Àº °ø±Þ¸Á ÃÖÀûÈ­ÀÔ´Ï´Ù. ºÎǰÀÇ ÇöÁö »ý»êÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á 3D ÇÁ¸°ÆÃÀº º¹ÀâÇϰí Ãë¾àÇÑ °ø±Þ¸Á¿¡ ´ëÇÑ ÀÇÁ¸¼ºÀ» ÁÙ¿©ÁÝ´Ï´Ù. ÀÌ ±â´ÉÀº ±âÁ¸ °ø±Þ ¶óÀÎÀÌ Áß´ÜµÉ ¼ö ÀÖ´Â ¿ø°ÝÁö¿Í Àû´ëÀûÀΠȯ°æ¿¡¼­ ƯÈ÷ À¯¿ëÇÕ´Ï´Ù. 3D ÇÁ¸°ÆÃÀº ¹«°Ô¿Í °­µµ¸¦ ÃÖÀûÈ­ÇÏ´Â º¹ÀâÇÑ ¸ð¾çÀ» ¸¸µé ¼ö ÀÖ¾î °æ·®È­¸¦ ÃËÁøÇÕ´Ï´Ù. À̰ÍÀº °æ·®È­°¡ ¼º´É°ú È¿À²¼ºÀ» Çâ»ó½ÃŰ´Â Ç×°ø¿ìÁÖ ¹× Áö»ó Â÷·®¿¡ ¸Å¿ì Áß¿äÇÕ´Ï´Ù. ÀÌ ±â¼úÀº ´õ¿í Ä¿½ºÅ͸¶ÀÌ¡¼ºÀ» ³ô¿© ƯÁ¤ ¿ä±¸¿Í Á¶°Ç¿¡ ¸Â°Ô °íµµ·Î Ä¿½ºÅ͸¶ÀÌ¡µÈ ºÎǰ°ú ºÎǰÀ» »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ À¯¿¬¼ºÀº ¹æ¾î ¿ëµµ¿¡ º¸´Ù Á¤¹ÐÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÕ´Ï´Ù. ¸¶Áö¸·À¸·Î 3D ÇÁ¸°ÆÃÀº ÁÖ¹®Çü ¿¹ºñ ºÎǰÀ» »ý»êÇÏ¿© ¹°·ù ¹× À¯Áö º¸¼ö¿¡ ÀÌÁ¡À» Á¦°øÇÏ¿© ¹°·ù ¹®Á¦¿Í ´Ù¿î ŸÀÓÀ» ÁÙÀÔ´Ï´Ù. ÀÌ ±â´ÉÀº ¹æ¾î ½Ã½ºÅÛÀÇ À¯Áöº¸¼ö ¹× ¼ö¸®¸¦ ½Å¼ÓÇÏ°Ô ¼öÇàÇÒ ¼ö ÀÖ¾î ´Ù¾çÇÑ »óȲ¿¡¼­ÀÇ ¿î¿µ ż¼¸¦ À¯ÁöÇÕ´Ï´Ù.

¼¼°è ¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ

¹æÀ§ »ê¾÷¿¡¼­ 3D ÇÁ¸°ÆÃÀÇ º¸±ÞÀ» ÃËÁøÇÏ´Â ¸î °¡Áö ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ÁÖ¿ä ¿äÀÎ Áß Çϳª´Â ¿î¿µ È¿À²¼ºÀÔ´Ï´Ù. ºÎǰ ¹× ÇÁ·ÎÅäŸÀÔÀ» ½Å¼ÓÇÏ°Ô Á¦Á¶ÇÒ ¼ö ÀÖÀ¸¹Ç·Î È¿À²¼ºÀÌ Å©°Ô Çâ»óµÇ°í ºñ¿ëÀÌ Àý°¨µÇ°í ¹æ¾î ±â¼úÀÇ °³¹ß°ú ¹èÆ÷°¡ °£¼ÒÈ­µË´Ï´Ù. 3D ÇÁ¸°ÆÃ Àç·á¿Í °øÁ¤ÀÇ Áö¼ÓÀûÀÎ °³¼±À¸·Î ÀÀ¿ë ¹üÀ§°¡ È®´ëµÇ°í ÀÌ ±â¼úÀÌ Á¡Á¡ ¹ü¿ëÀûÀ̰í È¿°úÀûÀ̱⠶§¹®¿¡ ±â¼ú ¹ßÀüµµ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. °ø±Þ¸ÁÀÇ È¸º¹·Âµµ Áß¿äÇÑ ÃßÁø·ÂÀÔ´Ï´Ù. ¼¼°èÀûÀÎ °ø±Þ¸Á¿¡ ´ëÇÑ ÀÇÁ¸µµ¸¦ ÁÙÀÓÀ¸·Î½á 3D ÇÁ¸°ÆÃÀº ¹æ¾î Ȱµ¿ÀÇ Åº·Â¼ºÀ» ³ô¿© ±î´Ù·Î¿î Á¶°Ç¿¡¼­µµ Áß¿äÇÑ ºÎǰÀ» ÇöÁö¿¡¼­ »ý»êÇÒ ¼ö ÀÖ½À´Ï´Ù. Áö¸®Àû ÀÌÁ¡Àº 3D ÇÁ¸°ÆÃ äÅÿ¡ ´õ¿í ±â¿©ÇÕ´Ï´Ù. ƯÈ÷, ±º»ç±âÁö°¡ ºÐ»êµÇ¾î ÀÖ´Â ±¹°¡¿¡¼­´Â ºÎǰÀÇ ÇöÁö »ý»ê¿¡ ÀÇÇØ ¹°·ùÀÇ °úÁ¦¸¦ °æ°¨ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, 3D ÇÁ¸°ÆÃÀº ¹æ¾î »ê¾÷¿¡¼­ Çõ½Å°ú ½ÇÇè ¹®È­¸¦ ¼ºÀå½Ãŵ´Ï´Ù. ÀÌ ±â¼úÀº »õ·Ó°Ô °³¼±µÈ ¹æ¾î ±â¼úÀÇ °³¹ßÀ» ÃËÁøÇϰí, Áøº¸¸¦ ÃËÁøÇϰí, ºü¸£°Ô ÁøÈ­ÇÏ´Â ºÐ¾ß¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇÕ´Ï´Ù.

¼¼°è ¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀåÀÇ Áö¿ªº° µ¿Çâ

¹æÀ§¿ë 3D ÇÁ¸°ÆÃÀÇ Áö¿ª µ¿ÇâÀº ±â¼úÀû ¼º¼÷µµ, °æÁ¦ »óȲ, ÁöÁ¤ÇÐÀû ¿ì¼±¼øÀ§¿¡ µû¶ó ´Þ¶óÁý´Ï´Ù. 3D ÇÁ¸°ÆÃÀÇ ¼±±¸ÀÚÀÎ ¹Ì±¹¿¡¼­´Â ¹æÀ§¿ë ±â¼ú¿¡ ¸¹Àº ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ¿©±â¿¡ ÃÊÁ¡Àº °í¼º´É ±¸¼º ¿ä¼Ò¸¦ »ý»êÇϱâÀ§ÇÑ °í±Þ Àç·á ¹× ÇÁ·Î¼¼½ºÀÇ °³¹ßÀÌ¸ç ¹æ¾î ±â¼úÀÇ ¹ßÀü¿¡¼­ ¹Ì±¹ÀÇ ÁÖµµÀû ¿ªÇÒÀ» ¹Ý¿µÇÕ´Ï´Ù. À¯·´¿¡¼­´Â °¢±¹ÀÌ ¹æ¾î¸¦ À§ÇÑ 3D ÇÁ¸°ÆÃÀÇ °¡´É¼ºÀ» Àû±ØÀûÀ¸·Î ¸ð»öÇϰí ÀÖÀ¸¸ç, Çù·Â°ú Ç¥ÁØÈ­¿¡ ÁßÁ¡À» µÎ°í ÀÖ½À´Ï´Ù. À¯·´ ±¹°¡µéÀº °øÅë Ç¥ÁØÀ» °³¹ßÇϰí Áö½ÄÀ» °øÀ¯Çϱâ À§ÇØ Çù·ÂÇϰí ÀÖ½À´Ï´Ù. À̰ÍÀº ´Ù¾çÇÑ ¹æ¾î ½Ã½ºÅÛ¿¡ 3D ÇÁ¸°ÆÃÀ» ÅëÇÕÇϰí Àü¹ÝÀûÀÎ ´É·ÂÀ» °­È­ÇÏ´Â µ¥ µµ¿òÀÌ µË´Ï´Ù. ¾Æ½Ã¾Æ¿¡¼­´Â Áß±¹°ú Çѱ¹ µîÀÇ ±¹°¡µéÀÌ 3D ÇÁ¸°ÆÃ ´É·ÂÀ» ºü¸£°Ô Çâ»ó½Ã۰í ÀÖ½À´Ï´Ù. ±¹³» »ê¾÷Á¤Ã¥°ú ¹æ¾î¿¹»ê È®´ë¿¡ ÈûÀÔ¾î ÀÌµé ±¹°¡µéÀº ¹æÀ§ºÎ¹®À» °­È­ÇÏ°í ´Ù¾çÇÑ ±º¿ëµµ¸¦ Áö¿øÇϱâ À§ÇØ 3D ÇÁ¸°ÆÃ ±â¼ú¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ±â¼ú Çõ½ÅÀ¸·Î ¾Ë·ÁÁø À̽º¶ó¿¤Àº ±º»ç ¸ñÀûÀ¸·Î 3D ÇÁ¸°ÆÃÀ» È¿°úÀûÀ¸·Î Ȱ¿ëÇÕ´Ï´Ù. ÀÌ ±¹°¡´Â ¹«ÀÎ Ç×°ø±â(UAV) ¹× ±âŸ °í±Þ ½Ã½ºÅÛÀ» Á¦Á¶ÇÏ´Â µ¥ÀÌ ±â¼úÀ» Ȱ¿ëÇϰí ÀÖÀ¸¸ç ¹æ¾î ¾÷¹«¿¡ ÃÖ÷´Ü ±â¼úÀ» ÅëÇÕÇÏ´Â ¼±µÎ ÁÖÀÚÀÔ´Ï´Ù.

¹æÀ§¿ë 3D ÇÁ¸°ÆÃÀÇ ÁÖ¿ä ÇÁ·Î±×·¥

È£ÁÖ À°±ºÀº ±¹¹æ ºÐ¾ß¿¡¼­ ±Ý¼Ó 3D ÇÁ¸°ÆÃÀÇ ÀáÀçÀûÀÎ ±âȸ¸¦ Àå·ÁÇϰí ÀÖ½À´Ï´Ù. È£ÁÖ À°±º°ú SPEE3D´Â 2021³â¿¡µµ Çù·ÂÀ» °è¼ÓÇϰí 12°³¿ù µ¿¾È SPEE3D ±â¼úÀ» Å×½ºÆ®ÇÒ ¿¹Á¤ÀÔ´Ï´Ù. È£ÁÖ À°±ºÀÇ 1Â÷ ÀüÅõ Áö¿ø ´ë´ë´Â ÇöÁö ±â¾÷ÀÎ SPEE3D¿¡ ´Ù½Ã Çù·ÂÀÇ ±âȸ¸¦ ÁÖ¾ú½À´Ï´Ù. À̹ø Á¦ÈÞ´Â ½±°Ô »ç¿ëÇÒ ¼ö ÀÖ´Â µ¶ÀÚÀûÀÎ ±Ý¼Ó ¼ö¸® ºÎǰÀÇ Àç°í¸¦ Å©°Ô °­È­ÇÒ ¼ö ÀÖ´Â ½Å±â¼ú °³¹ß¿¡ ÁýÁßÇÕ´Ï´Ù.

ÇØ»ç ¹× ¹æÀ§ »ê¾÷À» À§ÇØ Ä³³ª´Ù´Â ÃÖÃÊÀÇ 3D ÀÎ¼â ±Ý¼Ó ¿¬±¸½Ã¼³À» °Ç¼³Çß½À´Ï´Ù. ´º ºê·±ÁîÀ¨ ´ëÇÐÀº CFM(Custom Fabricators and Machinists) ¹× ´º ºê·±ÁîÀ¨ ÁÖ ¹× ³ë¹Ù½ºÄÚ½Ã¾Æ ÁÖ Ä¿¹Â´ÏƼ ±â°ü°ú °øµ¿À¸·Î Marine Additive Manufacturing Centre of Excellence¸¦ ¼³¸³Çß½À´Ï´Ù. ÀÌ ¼¾ÅÍ´Â ±Ý¼Ó 3D ÇÁ¸°ÆÃÀ» »ç¿ëÇÏ¿© ÇØ¾ç »ê¾÷¿ë ÀÎÁõ ¸ÂÃã ºÎǰÀ» Á¦Á¶ÇÏ´Â ±¹³» ÃÖÃÊÀÇ ¼¾ÅÍ·Î ¿¬±¸, »ó¾÷È­, ³ëµ¿·Â °³¹ß ¹× ÈÆ·ÃÀ» °áÇÕÇÕ´Ï´Ù. ¼¾ÅÍÀå¿¡¼­ UNB ±â°è°øÇÐ ºÎ±³¼öÀÇ ¸ðÇÁ¼¾ ¸ðÇϸ¶µð ¹Ú»ç°¡ ¼¾ÅÍÀÇ ¿¬±¸°³¹ß Ȱµ¿À» ´ã´çÇÕ´Ï´Ù.

½ºÆäÀÎ Á¶¼±»ç Navantia´Â ÀûÃþ Á¶ÇüÀ» ÀÌ¿ëÇÏ¿© ½ºÆäÀÎ ÇØ±º F-110 ÇÁ¸®±ê(±ºÇÔ) 5ôÀ» °ÇÁ¶ÇÔÀ¸·Î½á ±¹¹æºÎ¿Í ÇÕÀÇÇß½À´Ï´Ù. ÀÌ È¸»ç¿¡ µû¸£¸é ÀÌ·¯ÇÑ ÇÔ¼±Àº 3D ÇÁ¸°ÅÍ·Î Á¦Á¶µÈ ºÎǰÀ̳ª ÇÔ¼±À» À§ÇùÀ¸·ÎºÎÅÍ º¸È£ÇÏ´Â »çÀ̹ö º¸¾È ½Ã½ºÅÛ µî Industry 4.0 ±â¼úÀ» µµÀÔÇÑ ÇÔ´ë ÃÖÃÊÀÇ ÇÔ¼±ÀÔ´Ï´Ù. 5ô ÇÁ¸®±êÇÔÀº ½ºÆäÀÎ ÇØ±ºÀÇ ASTILLERO 4.0 ÇÁ·¹ÀÓ¿öÅ©ÀÇ ÀÏȯÀ¸·Î ÃÖ÷´Ü ÅëÇÕ Á¦¾î ¹× ½Ã¹Ä·¹ÀÌ¼Ç ½Ã½ºÅÛ(µðÁöÅÐ Æ®À©)À» »ç¿ëÇÏ¿© °ÇÁ¶µË´Ï´Ù. ÀÌ ÇÁ·¹ÀÓ¿öÅ©´Â º¸´Ù È¿°úÀûÀÎ ¿î¼Û ³×Æ®¿öÅ©¸¦ ±¸ÃàÇϱâ À§ÇØ µðÁöÅÐÈ­¸¦ Ȱ¿ëÇÏ°í ¼±¹ÚÀ» °ÇÁ¶ÇÏ´Â ¹æ¹ýÀ» ¹Ù²Ù·Á´Â NavantiaÀÇ ³ë·ÂÀÇ ÀϺÎÀÔ´Ï´Ù.

¸ñÂ÷

¹æÀ§¿ë 3D Àμ⠽ÃÀå : º¸°í¼­ Á¤ÀÇ

¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå ³»¿ª

  • ¿ëµµº°
  • Áö¿ªº°
  • Àç·áº°

¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå ºÐ¼®(ÇâÈÄ 10³â°£)

¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå ½ÃÀå ±â¼ú

¼¼°è ¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå ¿¹Ãø

¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : Áö¿ªº° µ¿Çâ ¹× ¿¹Ãø

  • ºÏ¹Ì
    • ÃËÁø¡¤¾ïÁ¦¿äÀÎ, °úÁ¦
    • PEST ºÐ¼®
    • ½ÃÀå ¿¹Ãø°ú ½Ã³ª¸®¿À ºÐ¼®
    • ÁÖ¿ä ±â¾÷
    • °ø±ÞÀÚ °èÃþÀÇ »óȲ
    • ±â¾÷ º¥Ä¡¸¶Å·
  • À¯·´
  • Áßµ¿
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì

¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : ±¹°¡º° ºÐ¼®

  • ¹Ì±¹
    • ¹æ¾î °èȹ
    • Ãֽе¿Çâ
    • ƯÇã
    • ÀÌ ½ÃÀåÀÇ ÇöÀç ±â¼ú ¼º¼÷ ¼öÁØ
    • ½ÃÀå ¿¹Ãø°ú ½Ã³ª¸®¿À ºÐ¼®
  • ij³ª´Ù
  • ÀÌÅ»¸®¾Æ
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • ³×´ú¶õµå
  • º§±â¿¡
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ±×¸®½º
  • È£ÁÖ
  • ³²¾ÆÇÁ¸®Ä«
  • Àεµ
  • Áß±¹
  • ·¯½Ã¾Æ
  • Çѱ¹
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • ºê¶óÁú

¹æÀ§¿ë 3D Àμ⠽ÃÀå : ½ÃÀå ±âȸ ¸ÅÆ®¸¯½º

¹æÀ§¿ë 3D ÇÁ¸°ÆÃ ½ÃÀå : Á¶»ç¿¡ °üÇÑ Àü¹®°¡ÀÇ °ßÇØ

°á·Ð

Aviation and Defense Market Reports Á¤º¸

JHS 24.08.14

The Global Defense 3D Printing Market is estimated at USD 3.00 billion in 2024, projected to grow to USD 8.21 billion by 2034 at a Compound Annual Growth Rate (CAGR) of 10.59% over the forecast period 2024-2034.

Global Defense 3D Printing Market - IMG1

Introduction to Defense 3D Printing Market:

3D printing, also known as additive manufacturing, is revolutionizing the defense industry. This technology involves creating three-dimensional objects by successively layering materials. In contrast to traditional subtractive manufacturing, which removes material to form a desired shape, 3D printing builds up objects layer by layer. The implications for defense are profound. From rapid prototyping to the production of end-use parts, 3D printing is transforming how defense systems are designed, manufactured, and deployed.

Technology Impact in Defense 3D Printing Market:

The impact of 3D printing on the defense sector is multifaceted. One significant advantage is rapid prototyping, where 3D printing accelerates the design-to-production cycle, enabling rapid iteration and refinement of prototypes. This capability leads to faster development of new weapons systems, vehicles, and equipment, allowing for quicker adaptation to changing defense needs. Another benefit is supply chain optimization. By enabling local production of parts, 3D printing reduces reliance on complex and vulnerable supply chains. This capability is particularly beneficial in remote or hostile environments, where traditional supply lines may be disrupted. 3D printing also facilitates light weighting by allowing for the creation of complex geometries that optimize weight and strength. This is crucial for aerospace and ground vehicles, where weight reduction can lead to improved performance and efficiency. The technology further enhances customization, enabling the production of highly customized parts and components tailored to specific needs and conditions. This flexibility allows for more precise solutions in defense applications. Finally, 3D printing offers advantages in logistics and maintenance by producing spare parts on demand, reducing logistical challenges and downtime. This capability ensures that defense systems can be maintained and repaired quickly, maintaining operational readiness in various situations.

Key Drivers in Defense 3D Printing Market:

Several factors are driving the adoption of 3D printing in the defense industry. One major factor is operational efficiency; the ability to rapidly produce parts and prototypes significantly improves efficiency and reduces costs, streamlining the development and deployment of defense technologies. Technological advancements also play a crucial role, as continuous improvements in 3D printing materials and processes expand the range of applications, making the technology increasingly versatile and effective. Supply chain resilience is another key driver. By reducing reliance on global supply chains, 3D printing enhances the resilience of defense operations, ensuring that critical components can be produced locally even in challenging conditions. Geographic advantages further contribute to the adoption of 3D printing, particularly for countries with dispersed military bases, where local production of parts can mitigate logistical challenges. Finally, 3D printing fosters a culture of innovation and experimentation within the defense industry. This technology encourages the development of new and improved defense technologies, driving progress and maintaining a competitive edge in a rapidly evolving field.

Regional Trends in Defense 3D Printing Market:

Regional trends in defense 3D printing vary based on technological maturity, economic conditions, and geopolitical priorities. In the United States, which is a pioneer in 3D printing, significant investments have been made in the technology for defense applications. The focus here is on developing advanced materials and processes to produce high-performance components, reflecting the country's leading role in advancing defense technologies. In Europe, countries are actively exploring the potential of 3D printing for defense, with a strong emphasis on collaboration and standardization. European nations are working together to develop common standards and share knowledge, which helps in integrating 3D printing into various defense systems and enhancing overall capabilities. In Asia, countries like China and South Korea are rapidly advancing their 3D printing capabilities. Driven by domestic industrial policies and expanding defense budgets, these nations are investing heavily in 3D printing technology to bolster their defense sectors and support a range of military applications. Israel, known for its innovation, has effectively leveraged 3D printing for military purposes. The country utilizes the technology for the production of unmanned aerial vehicles (UAVs) and other advanced systems, showcasing its role as a leader in integrating cutting-edge technologies into its defense operations.

Key Defense 3D Printing Program:

The Australian Army continues to encourage potential opportunities for metal 3D printing within the Defense sector. The Australian Army and SPEE3D will continue their collaboration in 2021, with plans to test SPEE3D technology for an additional 12 months. Once more, the 1st Combat Service Support Battalion of the Australian Army has given local firm SPEE3D the chance to work with them. This time, the alliance will concentrate on creating new techniques that might vastly enhance the stock of readily accessible unique metal repair parts.

For the maritime and defence industries, Canada constructed its first 3D printing metal research facility. The University of New Brunswick, in collaboration with Custom Fabricators and Machinists (CFM) and community institutions in New Brunswick and Nova Scotia, established the Marine Additive Manufacturing Centre of Excellence. The centre, which is the first in the nation to use metal 3D printing to make certified custom parts for the marine industry, will combine research, commercialization, and workforce development and training. The center's director and associate professor of mechanical engineering at UNB, Dr. Mohsen Mohammadi, will be in charge of the center's research and development activities.

The Spanish shipbuilder Navantia has an agreement with the Ministry of Defense to build five F-110 frigates (warships) for the Spanish Navy using additive manufacturing. These ships will be the first in the fleet, according to the business, to incorporate Industry 4.0 technologies with 3D printed components and cybersecurity systems that protect ships from threats. The five frigates will be built using cutting-edge integrated control and simulation systems, or a digital twin, as part of the Spanish navy's ASTILLERO 4.0 framework. This framework is a component of Navantia's effort to change the way ships are built so that it takes advantage of digitalization to create more effective transportation networks.

Table of Contents

Defense 3D Printing Market Report Definition

Defense 3D Printing Market Segmentation

By Application

By Region

By Material

Defense 3D Printing Market Analysis for next 10 Years

The 10-year Defense 3D Printing Market analysis would give a detailed overview of Defense 3D Printing Market growth, changing dynamics, technology adoption overviews and the overall market attractiveness is covered in this chapter.

Market Technologies of Defense 3D Printing Market

This segment covers the top 10 technologies that is expected to impact this market and the possible implications these technologies would have on the overall market.

Global Defense 3D Printing Market Forecast

The 10-year Defense 3D Printing Market forecast of this market is covered in detailed across the segments which are mentioned above.

Regional Defense 3D Printing Market Trends & Forecast

The regional Defense 3D Printing Market trends, drivers, restraints and Challenges of this market, the Political, Economic, Social and Technology aspects are covered in this segment. The market forecast and scenario analysis across regions are also covered in detailed in this segment. The last part of the regional analysis includes profiling of the key companies, supplier landscape and company benchmarking. The current market size is estimated based on the normal scenario.

North America

Drivers, Restraints and Challenges

PEST

Market Forecast & Scenario Analysis

Key Companies

Supplier Tier Landscape

Company Benchmarking

Europe

Middle East

APAC

South America

Country Analysis of Defense 3D Printing Market

This chapter deals with the key defense programs in this market, it also covers the latest news and patents which have been filed in this market. Country level 10 year market forecast and scenario analysis are also covered in this chapter.

US

Defense Programs

Latest News

Patents

Current levels of technology maturation in this market

Market Forecast & Scenario Analysis

Canada

Italy

France

Germany

Netherlands

Belgium

Spain

Sweden

Greece

Australia

South Africa

India

China

Russia

South Korea

Japan

Malaysia

Singapore

Brazil

Opportunity Matrix for Defense 3D Printing Market

The opportunity matrix helps the readers understand the high opportunity segments in this market.

Expert Opinions on Defense 3D printing Market Report Report

Hear from our experts their opinion of the possible analysis for this market.

Conclusions

About Aviation and Defense Market Reports

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦