½ÃÀ庸°í¼­
»óǰÄÚµå
1546371

¼¼°èÀÇ ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå(2024-2034³â)

Global Defense Gyroscope Market 2024-2034

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Aviation & Defense Market Reports (A&D) | ÆäÀÌÁö Á¤º¸: ¿µ¹® 150+ Pages | ¹è¼Û¾È³» : 3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå ±Ô¸ð´Â 2024³â 42¾ï 1,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ¸ç, ¿¹Ãø ±â°£(2024-2034³â) µ¿¾È 9.25%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)·Î È®´ëµÇ¾î 2034³â±îÁö 102¾ï ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

Global Defense Gyroscope Market-IMG1

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå °³¿ä

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀº ÀÚÀ̷νºÄÚÇÁ »ê¾÷ Áß¿¡¼­µµ Ư¼öÇÑ ºÐ¾ß·Î, Ãֽб¹¹æ ½Ã½ºÅÛ¿¡ ÇʼöÀûÀÎ °íÁ¤¹Ð ¹æÇâ ¹× ¾ÈÁ¤È­ ±â¼úÀ» Á¦°øÇÏ´Â µ¥ ÃÊÁ¡À» ¸ÂÃß¾ú½À´Ï´Ù. ±º¿ëÀ¸·Î ÇʼöÀûÀÎ ÀÚÀ̷νºÄÚÇÁ´Â Ç×°ø±â, ¹Ì»çÀÏ, ÇÔÁ¤, Áö»ó Â÷·® µî ´Ù¾çÇÑ ¹æÀ§ Ç÷§ÆûÀÇ Á¤È®¼º°ú ½Å·Ú¼ºÀ» º¸ÀåÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÀÌ ÀåÄ¡´Â °¢¿îµ¿·® ¿ø¸®¿¡ µû¶ó ¹°Ã¼ÀÇ ¹æÇâÀ» ÃøÁ¤Çϰí À¯ÁöÇÔÀ¸·Î½á Ç×¹ý, Á¶ÁØ, ¾ÈÁ¤È­¸¦ Áö¿øÇÕ´Ï´Ù. ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀº ±¹¹æ ½Ã½ºÅÛÀÇ º¹À⼺ ¹× °íµµÈ­·Î ÀÎÇØ Å©°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. ±ºÀÌ ÀÛÀüÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» ³ôÀ̱â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó ÷´Ü ÀÚÀ̷νºÄÚÇÁ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â ½ÃÀå È®´ë¿Í ±â¼ú Çõ½ÅÀÇ ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå¿¡´Â ¸¶ÀÌÅ©·Î Àü±â ±â°è ½Ã½ºÅÛ(MEMS), ±¤¼¶À¯ ÀÚÀ̷νºÄÚÇÁ(FOG), ¸µ ·¹ÀÌÀú ÀÚÀ̷νºÄÚÇÁ(RLG) µî ´Ù¾çÇÑ À¯ÇüÀÇ ÀÚÀ̷νºÄÚÇÁ°¡ Æ÷ÇԵǸç, °¢°¢ÀÇ ÀÚÀ̷νºÄÚÇÁ´Â ƯÁ¤ ±¹¹æ ¿ëµµ¿¡ ¸Â´Â °íÀ¯ÇÑ ÀÌÁ¡À» Á¦°øÇÕ´Ï´Ù.

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå¿¡¼­ ±â¼úÀÇ ¿µÇâ:

±â¼úÀÇ ¹ßÀüÀº ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå¿¡ Å« ¿µÇâÀ» ¹ÌÄ¡°í ½ÃÀå Æ®·»µå¸¦ Çü¼ºÇÏ°í ±â¼ú Çõ½ÅÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ̷νºÄÚÇÁ ±â¼úÀÇ ¹ßÀüÀº ¼º´É, Á¤È®µµ ¹× ÅëÇÕ ´É·ÂÀ» Å©°Ô Çâ»ó½ÃÄ×½À´Ï´Ù. °¡Àå Çõ½ÅÀûÀÎ ±â¼ú Áß Çϳª´Â MEMS·Î, MEMS ÀÚÀ̷νºÄÚÇÁ´Â ´õ ÀÛ°í °¡º±°í ºñ¿ë È¿À²ÀûÀÎ ¼Ö·ç¼ÇÀ» Á¦°øÇÔÀ¸·Î½á ¾÷°è¿¡ Çõ¸íÀ» ÀÏÀ¸Ä×½À´Ï´Ù. ½Ç¸®ÄÜ ¿þÀÌÆÛÀÇ ¼ÒÇü ±â°è ºÎǰÀ¸·Î ¸¸µé¾îÁø ÀÌ ÀÚÀ̷νºÄÚÇÁ´Â ÈÞ´ë¿ë ±â±âºÎÅÍ Ã·´Ü ¹«ÀÎÇ×°ø±â(UAV)¿¡ À̸£±â±îÁö ´Ù¾çÇÑ ±¹¹æ ¿ëµµ¿¡ ÀûÇÕÇϸ鼭µµ ¶Ù¾î³­ ¼º´ÉÀ» ¹ßÈÖÇÕ´Ï´Ù. ¼ÒÇü »çÀÌÁî¿Í ³·Àº Àü·Â ¼Òºñ´Â ´Ù¾çÇÑ ¹æÀ§ ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ´Â µ¥ ƯÈ÷ À¯¸®Çϸç, FOG´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ±â¼ú ¹ßÀüÀÔ´Ï´Ù. ±¤ÇÐ °£¼· ¿ø¸®¸¦ ÀÌ¿ëÇÑ FOG´Â ¿òÁ÷ÀÌ´Â ºÎǰ ¾øÀÌ ³ôÀº Á¤¹Ðµµ¿Í ¾ÈÁ¤¼ºÀ» Á¦°øÇÏ¿© ½Å·Ú¼ºÀ» ³ôÀ̰í À¯Áöº¸¼ö Çʿ伺À» ÁÙ¿©ÁÖ¸ç, FOG´Â ¹Ì»çÀÏ À¯µµ ¹× ÷´Ü Ç×°ø±â Ç×¹ý µî ¸Å¿ì ³ôÀº Á¤¹Ðµµ°¡ ¿ä±¸µÇ´Â ÀÀ¿ë ºÐ¾ß¿¡¼­ ƯÈ÷ À¯¿ëÇÏ°Ô »ç¿ëµË´Ï´Ù.¿¡¼­ ·¹ÀÌÀú ºöÀ» »ç¿ëÇÏ¿© ȸÀüÀ» ÃøÁ¤ÇÏ´Â RLG´Â ¶Ù¾î³­ Á¤È®µµ¿Í ¾ÈÁ¤¼ºÀ¸·Î À¯¸íÇϸç, Á¤È®µµ¿Í ½Å·Ú¼ºÀÌ ÃÖ¿ì¼±½ÃµÇ´Â Ç×°ø±â ¹× ¿ìÁÖ¼± Ç×¹ý µî ÷´Ü ¹æÀ§¿ëµµ¿¡ ÀÌ»óÀûÀÔ´Ï´Ù. ¶ÇÇÑ, ÀÚÀ̷νºÄÚÇÁ¿Í °ü¼ºÇ×¹ý½Ã½ºÅÛ(INS)ÀÇ ÅëÇÕÀº Á¡Á¡ ´õ ³Î¸® º¸±ÞµÇ°í ÀÖ½À´Ï´Ù. ÀÌ Á¶ÇÕÀº Á¾ÇÕÀûÀÎ Ç×¹ý ¹× À¯µµ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ¿© Á¤È®µµ¸¦ Çâ»ó½ÃŰ°í ´Ù¾çÇÑ ¿î¿µ ½Ã³ª¸®¿À¿¡¼­ ½Å·Ú¼ºÀ» ³ô¿© Àüü ½Ã½ºÅÛ ¼º´ÉÀ» Çâ»ó½Ãŵ´Ï´Ù.

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎ :

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÇ ¼ºÀå¿¡´Â Çö´ë ±º»ç ÀÛÀüÀÇ ¿ä±¸»çÇ×°ú ±â¼ú ¹ßÀüÀÇ ÁøÈ­¸¦ ¹Ý¿µÇÏ´Â ¸î °¡Áö Áß¿äÇÑ ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ÁÖ¿ä ÃËÁø¿äÀÎ Áß Çϳª´Â ÀÚÀ̷νºÄÚÇÁ ±â¼úÀÇ Áö¼ÓÀûÀÎ ¹ßÀüÀ¸·Î, MEMS, FOG, RLGÀÇ ±â¼ú Çõ½ÅÀ¸·Î ¼º´É Çâ»ó, ¼ÒÇüÈ­, Àúºñ¿ëÈ­¸¦ ½ÇÇöÇÏ¿© ÷´Ü ÀÚÀ̷νºÄÚÇÁ ½Ã½ºÅÛÀ» ±¹¹æ ÀÀ¿ë ºÐ¾ß¿¡ º¸´Ù Ä£¼÷Çϰí È¿°úÀûÀ¸·Î »ç¿ëÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù. ±º»ç ½Ã½ºÅÛÀÌ °íµµÈ­µÊ¿¡ µû¶ó Á¤È®µµ¿Í ½Å·Ú¼ºÀ» Çâ»ó½ÃŰ´Â ÃÖ÷´Ü ÀÚÀ̷νºÄÚÇÁ ±â¼úÀÇ Çʿ伺ÀÌ Á¡Á¡ ´õ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ¶Ç ´Ù¸¥ Å« ¿øµ¿·ÂÀº ¼¼°è ±¹¹æ ¿¹»ê Áõ°¡ÀÔ´Ï´Ù. Àü ¼¼°è °¢±¹ Á¤ºÎ´Â ±¹¹æ ´É·ÂÀÇ Çö´ëÈ­¿¡ ¸¹Àº ÅõÀÚ¸¦ ÅëÇØ ÀÛÀü È¿À²¼ºÀ» ³ôÀÌ°í ±â¼úÀû ¿ìÀ§¸¦ À¯ÁöÇϱâ À§ÇØ ³ë·ÂÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±¹¹æºñ Áõ°¡´Â ÷´Ü ÀÚÀ̷νºÄÚÇÁ ½Ã½ºÅÛ¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î À̾îÁý´Ï´Ù. ¶ÇÇÑ, Á¤¹Ð À¯µµÅº°ú ÷´Ü Ç×¹ý ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ °í¼º´É ÀÚÀ̷νºÄÚÇÁ¿¡ ´ëÇÑ ¼ö¿äµµ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ±¹¹æ ½Ã½ºÅÛÀÌ ÁøÈ­ÇÔ¿¡ µû¶ó Á¤È®ÇÏ°í ¾ÈÁ¤ÀûÀÎ À¯µµ°¡ °¡´ÉÇÑ ÀÚÀ̷νºÄÚÇÁ¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖÀ¸¸ç, ÀÌ´Â Á¤¹Ð À¯µµ ¹«±â ¹× ÷´Ü ±º»ç Ç÷§ÆûÀÇ Àü¹ÝÀûÀÎ È¿À²¼º¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, ÁöÁ¤ÇÐÀû ±äÀå°ú Áö¿ª ºÐÀïÀº ÀÚÀ̷νºÄÚÇÁ¸¦ Æ÷ÇÔÇÑ ¹æÀ§ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇÕ´Ï´Ù. ±º»ç Çö´ëÈ­ ¹× Àü·« °­È­¿¡ Èû¾²´Â ±¹°¡µéÀº ±¹¹æ ¿ª·®À» °­È­ÇÏ°í »õ·Î¿î À§Çù¿¡ ´ëÀÀÇϱâ À§ÇØ Ã·´Ü ÀÚÀÌ·Î ½Ã½ºÅÛÀ» È®º¸ÇÏ´Â °ÍÀ» ¿ì¼±¼øÀ§·Î »ï°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, µå·Ð°ú ÀÚÀ² ÁÖÇà Â÷·®°ú °°Àº ¹«ÀÎ ½Ã½ºÅÛÀÇ »ç¿ëÀÌ Áõ°¡ÇÔ¿¡ µû¶ó °í±Þ ÀÚÀ̷νºÄÚÇÁ¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ½Ã½ºÅÛÀº È¿°úÀûÀÎ ÀÛµ¿À» À§ÇØ Á¤È®ÇÑ ¹æÇâ°ú ¾ÈÁ¤È­¿¡ ÀÇÁ¸Çϰí ÀÖÀ¸¸ç, ¹«ÀÎ Ç÷§Æû¿ëÀ¸·Î Ưº°È÷ ¼³°èµÈ ÀÚÀ̷νºÄÚÇÁ¿¡ ´ëÇÑ ¼ºÀå ½ÃÀåÀ» âÃâÇϰí ÀÖ½À´Ï´Ù.

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÇ Áö¿ªº° µ¿Çâ

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÇ Áö¿ªº° µ¿ÇâÀº ÁöÁ¤ÇÐÀû µ¿Çâ, ±¹¹æ ÁöÃâ, ±â¼ú ¹ßÀüÀÇ ¿µÇâÀ» ¹Þ¾Æ ´Ù¾çÇÑ ¼ö¿ä¿Í ¼ºÀå ÆÐÅÏÀ» º¸À̰í ÀÖ½À´Ï´Ù. ºÏ¹Ì, ƯÈ÷ ¹Ì±¹Àº ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÇ ÁÖ¿ä Áö¿ªÀÔ´Ï´Ù. ¹Ì±¹ÀÇ ±¹¹æ ¿¹»êÀº ¿©ÀüÈ÷ ¼¼°è ÃÖ´ë ±Ô¸ðÀ̸ç, ÀÚÀ̷νºÄÚÇÁ¸¦ Æ÷ÇÔÇÑ Ã·´Ü ±º»ç ±â¼ú¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ¸¦ ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÁÖ¿ä ¹æ»ê¾÷üµéÀÇ Á¸Àç¿Í ±â¼ú Çõ½Å¿¡ ´ëÇÑ ÁýÁßÀº ÀÌ Áö¿ª¿¡¼­ ÃÖ÷´Ü ÀÚÀ̷νºÄÚÇÁ ½Ã½ºÅÛ¿¡ ´ëÇÑ °­·ÂÇÑ ¼ö¿ä¸¦ âÃâÇÏ´Â µ¥ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¹Ì±ºÀº ±¹¹æ ÀÎÇÁ¶ó Çö´ëÈ­¿¡ ÁßÁ¡À» µÎ°í ÷´Ü ±â¼úÀ» Ç÷§Æû¿¡ ÅëÇÕÇÏ¿© ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÇ ¼ºÀåÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. À¯·´µµ ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁÀÇ Áß¿äÇÑ ½ÃÀåÀ¸·Î, ±¹¹æ ¿¹»ê Áõ°¡¿Í ±â¼ú ¹ßÀü¿¡ ´ëÇÑ °ü½ÉÀÌ ±× ¿øµ¿·ÂÀÌ µÇ°í ÀÖ½À´Ï´Ù. À¯·´ ±¹°¡µéÀº ±¹¹æ ½Ã½ºÅÛ Çö´ëÈ­ ¹× ±º»ç·Â °­È­¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, À̴ ÷´Ü ÀÚÀ̷νºÄÚÇÁ ±â¼ú¿¡ ´ëÇÑ ¼ö¿ä¸¦ âÃâÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, À¯·´¿¡´Â ¿©·¯ ´ëÇü ¹æ»ê¾÷üµéÀÌ Á¸ÀçÇÏ¿© »õ·Î¿î ÀÚÀ̷νºÄÚÇÁ ±â¼ú °³¹ß ¹× äÅÿ¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ±¹¹æºñ Áõ°¡¿Í Áö¿ª ¾Èº¸ ¿ì·Á·Î ÀÎÇØ ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÌ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ»°ú °°Àº ±¹°¡µéÀº ¹æÀ§·Â Çö´ëÈ­¿Í ÀÚÀ̷νºÄÚÇÁ¸¦ Æ÷ÇÔÇÑ Ã·´Ü ±º»ç ½Ã½ºÅÛ °³¹ß¿¡ ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª¿¡¼­´Â Á¤¹Ð À¯µµÅº°ú ¹«ÀÎ ½Ã½ºÅÛ¿¡ ´ëÇÑ °ü½ÉÀÌ ³ô¾ÆÁö¸é¼­ °í¼º´É ÀÚÀ̷νºÄÚÇÁ¿¡ ´ëÇÑ ¼ö¿ä°¡ ´õ¿í Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ½ÅÈï±¹µéµµ ±¹¹æ·Â °­È­¿Í ÷´Ü ±â¼ú µµÀÔÀ¸·Î ½ÃÀå ¼ºÀå¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù. Áßµ¿ÀÇ °æ¿ì, ÁöÁ¤ÇÐÀû ±äÀåÀÌ °íÁ¶µÇ°í ºÐÀïÀÌ Áö¼ÓµÇ¸é¼­ ÀÚÀ̷νºÄÚÇÁ¸¦ Æ÷ÇÔÇÑ ¹æÀ§ ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª ±¹°¡µéÀº ±º»ç·Â °­È­¿Í ±¹¹æ ½Ã½ºÅÛ °­È­¸¦ ¸ñÇ¥·Î Çϰí ÀÖÀ¸¸ç, À̴ ÷´Ü ÀÚÀ̷νºÄÚÇÁ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ¸¶Áö¸·À¸·Î, ¶óƾ¾Æ¸Þ¸®Ä«´Â ´Ù¸¥ Áö¿ª¸¸Å­ µÎµå·¯ÁöÁö´Â ¾ÊÁö¸¸, ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå¿¡¼­ ¿Ï¸¸ÇÑ ¼ºÀå¼¼¸¦ º¸À̰í ÀÖ½À´Ï´Ù. ±¹¹æ Çö´ëÈ­ ³ë·Â°ú ±º»ç ±â¼ú¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡´Â ±¹¹æ ´É·Â Çâ»ó°ú ÷´Ü ½Ã½ºÅÛ ÅëÇÕ¿¡ ÁßÁ¡À» µÎ¾î ÀÌ Áö¿ª ½ÃÀå ¹ßÀü¿¡ ±â¿©Çϰí ÀÖ½À´Ï´Ù.

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀåÀÇ ÁÖ¿ä ÇÁ·Î±×·¥

IFOG´Â ÀúÁú·® °íü ÀåÄ¡·Î ±ä ¼ö¸í, ³ôÀº ½Å·Ú¼º, ³»Áøµ¿ ¹× ³»Ãæ°Ý¼º µî ¸¹Àº ÀåÁ¡À» °¡Áö°í ÀÖ½À´Ï´Ù. ÇØ±º Àü·« ¹Ì»çÀÏ Àü¹®°¡µéÀº ¸Å»çÃß¼¼Ã÷ ÁÖ Ä·ºê¸®Áö¿¡ À§Ä¡ÇÑ Charles Stark Draper Laboratory Inc.¿¡ Àá¼öÇÔ ¹ß»ç Trident II(D5) Çٹ̻çÀÏ¿ë °£¼·Çü ±¤¼¶À¯ ÀÚÀÌ·Î(IFOG)ÀÇ Áõ¼³À» ¿äûÇß½À´Ï´Ù. µå·¹ÀÌÆÛ ·¦Àº ¹Ì±¹ ÇØ±º Àü·« ½Ã½ºÅÛ ÇÁ·Î±×·¥ ´ç±¹À¸·ÎºÎÅÍ IFOGÀÇ ¼³°è ºÐ¼®, ½ÃÇè, ȹµæ ¹× Á¦Á¶¸¦ ¿äû¹Þ¾ÒÀ¸¸ç, Trident II ¹Ì»çÀÏÀÇ °ü¼º À¯µµ ¹× Ç×¹ýÀº IFOG¸¦ ÅëÇØ ÀÌ·ç¾îÁý´Ï´Ù. Çٹ̻çÀÏÀº ¿ÜºÎ ½ÅÈ£¿¡ ÀÇÁ¸ÇÏÁö ¾Ê´Â À§¼ºÇ×¹ý½Ã½ºÅÛ°ú °°Àº ¸Å¿ì ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¶¸³Çü À¯µµ ½Ã½ºÅÛÀ» ÇÊ¿ä·Î ÇÕ´Ï´Ù.

M11Àº iXblue ±¤¼¶À¯ ÀÚÀÌ·Î ±â¼úÀ» ±â¹ÝÀ¸·Î ÇÏ´Â °í¼º´É Àü·«±Þ °ü¼ºÇ×¹ý½Ã½ºÅÛÀ¸·Î, ¼ö»ó ¹× Àá¼öÇÔ µî ÃֽŠÀüÅõÇÔÁ¤ÀÇ ±º»çÀû ¿ä±¸»çÇ×À» ÃæÁ·ÇÏ´Â °í¼º´É Àü·«±Þ °ü¼ºÇ×¹ý½Ã½ºÅÛÀ¸·Î, GNSS¸¦ »ç¿ëÇÒ ¼ö ¾ø´Â ȯ°æ¿¡¼­µµ M11ÀÇ À§Ä¡, ¹æÀ§, ·Ñ, ÇÇÄ¡, ¼Óµµ µ¥ÀÌÅÍ´Â ³î¶ó¿ï Á¤µµ·Î Á¤È®ÇÕ´Ï´Ù. Á¤È®ÇÕ´Ï´Ù. È®Àå °¡´ÉÇÑ ±â¼úÀÎ iXblueÀÇ µ¶ÀÚÀûÀÎ ±¤¼¶À¯ ÀÚÀ̷νºÄÚÇÁÀÇ ¼º´ÉÀº ½Ã½ºÅÛ¿¡ »ç¿ëµÇ´Â ±¤ÇÐ ºÎǰ(¸ðµÎ ÇÁ¶û½º »ý»ê ¼¾ÅÍ¿¡¼­ ÀÚü »ý»ê)ÀÇ ±â¼ú ÇѰ踦 È®ÀåÇϰí ÄÚÀÏÀÇ ±æÀÌ¿Í Á÷°æÀ» Á¶Á¤ÇÏ¿© Á¶Á¤ÇÒ ¼ö ÀÖ½À´Ï´Ù. µû¶ó¼­ ÀÌ ±â¼úÀº ´Ù¾çÇÑ ¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·½Ãų ¼ö ÀÖÀ¸¸ç, ±× °á°ú ÇØ±º Ç÷§ÆûÀÇ ´Ù¾çÇÑ ¼º´É ¿ä±¸ »çÇ×À» ÃæÁ·ÇÏ´Â ´Ù¾çÇÑ INS ¶óÀξ÷À» Á¦°øÇÒ ¼ö ÀÖ½À´Ï´Ù.

¸ñÂ÷

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå : º¸°í¼­ Á¤ÀÇ

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå ³»¿ª

  • À¯Çüº°
  • Áö¿ªº°
  • Ç÷§Æûº°

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå ºÐ¼®(ÇâÈÄ 10³â°£)

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå ±â¼ú

¼¼°èÀÇ ¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå ¿¹Ãø

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå : Áö¿ªº° µ¿Çâ°ú ¿¹Ãø

  • ºÏ¹Ì
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ ¹× ¾ïÁ¦¿äÀÎ, °úÁ¦
    • PEST ºÐ¼®
    • ½ÃÀå ¿¹Ãø°ú ½Ã³ª¸®¿À ºÐ¼®
    • ÁÖ¿ä ±â¾÷
    • °ø±Þ¾÷ü °èÃþ »óȲ
    • ±â¾÷ º¥Ä¡¸¶Å·
  • À¯·´
  • Áßµ¿
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ³²¹Ì

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå : ±¹°¡º° ºÐ¼®

  • ¹Ì±¹
    • ¹æÀ§ °èȹ
    • Ãֽе¿Çâ
    • ƯÇã
    • ÇöÀçÀÇ ½ÃÀå ±â¼ú ¼º¼÷µµ
    • ½ÃÀå ¿¹Ãø°ú ½Ã³ª¸®¿À ºÐ¼®
  • ij³ª´Ù
  • ÀÌÅ»¸®¾Æ
  • ÇÁ¶û½º
  • µ¶ÀÏ
  • ³×´ú¶õµå
  • º§±â¿¡
  • ½ºÆäÀÎ
  • ½º¿þµ§
  • ±×¸®½º
  • È£ÁÖ
  • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
  • Àεµ
  • Áß±¹
  • ·¯½Ã¾Æ
  • Çѱ¹
  • ÀϺ»
  • ¸»·¹À̽þÆ
  • ½Ì°¡Æ÷¸£
  • ºê¶óÁú

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå : ½ÃÀå ±âȸ ¸ÅÆ®¸¯½º

¹æÀ§¿ë ÀÚÀ̷νºÄÚÇÁ ½ÃÀå : Á¶»ç¿¡ °üÇÑ Àü¹®°¡ÀÇ °ßÇØ

°á·Ð

Aviation and Defense Market Reports¿¡ ´ëÇØ

LSH 24.09.12

The Global Defense Gyroscope market is estimated at USD 4.21 billion in 2024, projected to grow to USD 10.20 billion by 2034 at a Compound Annual Growth Rate (CAGR) of 9.25% over the forecast period 2024-2034.

Global Defense Gyroscope Market - IMG1

Introduction to the Defense Gyroscope Market:

The defense gyroscope market is a specialized segment within the broader gyroscope industry, focused on providing precision orientation and stabilization technologies essential for modern defense systems. Gyroscopes, integral to military applications, play a crucial role in ensuring the accuracy and reliability of various defense platforms, including aircraft, missiles, naval vessels, and ground vehicles. These devices measure and maintain an object's orientation based on angular momentum principles, thereby aiding in navigation, targeting, and stabilization. The market for defense gyroscopes has experienced significant growth due to the increasing complexity and sophistication of defense systems. As military forces strive for greater operational effectiveness and precision, the demand for advanced gyroscope technologies has risen, driving market expansion and innovation. The defense gyroscope market encompasses various types of gyroscopes, including microelectromechanical systems (MEMS), fiber optic gyroscopes (FOGs), and ring laser gyroscopes (RLGs), each offering unique advantages tailored to specific defense applications.

Technology Impact in the Defense Gyroscope Market:

Technological advancements have profoundly influenced the defense gyroscope market, shaping its development and driving innovation. The evolution of gyroscope technologies has led to significant improvements in performance, accuracy, and integration capabilities. One of the most transformative technologies is Microelectromechanical Systems (MEMS). MEMS gyroscopes have revolutionized the industry by offering smaller, lighter, and more cost-effective solutions. These gyroscopes, built from miniature mechanical components on silicon wafers, provide excellent performance while being suitable for a wide range of defense applications, from handheld devices to advanced unmanned aerial vehicles (UAVs). Their compact size and low power consumption are particularly advantageous for integration into diverse defense systems. Fiber Optic Gyroscopes (FOGs) represent another significant technological advancement. Utilizing light interference principles, FOGs offer high precision and stability with no moving parts, enhancing their reliability and reducing maintenance needs. FOGs are especially valuable in applications requiring extreme accuracy, such as missile guidance and advanced aircraft navigation. Ring Laser Gyroscopes (RLGs), which use laser beams within a ring-shaped cavity to measure rotation, are known for their exceptional precision and stability. RLGs are ideal for high-end defense applications, including aircraft and spacecraft navigation, where precision and reliability are paramount. Additionally, the integration of gyroscopes with Inertial Navigation Systems (INS) has become increasingly prevalent. This combination enhances overall system performance by providing comprehensive navigation and guidance solutions, improving accuracy, and reliability across various operational scenarios.

Key Drivers in the Defense Gyroscope Market:

Several key factors are driving the growth of the defense gyroscope market, reflecting the evolving demands of modern military operations and technological advancements. One of the primary drivers is the continuous advancement in gyroscope technology. Innovations in MEMS, FOGs, and RLGs have led to improved performance, reduced size, and lower costs, making advanced gyroscopic systems more accessible and effective for defense applications. As military systems become more sophisticated, the need for cutting-edge gyroscope technologies that offer enhanced accuracy and reliability becomes increasingly critical. Another significant driver is the increase in global defense budgets. Governments around the world are investing heavily in the modernization of their defense capabilities, seeking to enhance operational effectiveness and maintain technological superiority. This increase in defense spending translates into higher demand for advanced gyroscopic systems, as military forces require the latest technologies to ensure precision and reliability in their operations. The growing emphasis on precision-guided munitions and advanced navigation systems also fuels demand for high-performance gyroscopes. As defense systems evolve, there is a greater need for gyroscopes that can provide accurate and stable guidance, contributing to the overall effectiveness of precision-guided weapons and advanced military platforms. Additionally, geopolitical tensions and regional conflicts drive investments in defense technologies, including gyroscopes. Nations engaged in military modernization and strategic enhancements prioritize the acquisition of advanced gyroscopic systems to strengthen their defense capabilities and address emerging threats. Finally, the increasing use of unmanned systems, such as drones and autonomous vehicles, further drives demand for advanced gyroscopes. These systems rely on precise orientation and stabilization for effective operation, creating a growing market for gyroscopes designed specifically for unmanned platforms.

Regional Trends in the Defense Gyroscope Market:

Regional trends in the defense gyroscope market reveal varying demands and growth patterns influenced by geopolitical dynamics, defense spending, and technological advancements. North America, particularly the United States, is a major player in the defense gyroscope market. The U.S. defense budget remains one of the largest globally, driving substantial investments in advanced military technologies, including gyroscopes. The presence of key defense contractors and a focus on innovation contribute to a strong demand for cutting-edge gyroscopic systems in this region. The U.S. military's emphasis on modernizing its defense infrastructure and integrating advanced technologies into its platforms supports the growth of the defense gyroscope market. Europe also represents a significant market for defense gyroscopes, driven by increasing defense budgets and a focus on technological advancements. European nations are investing in modernizing their defense systems and enhancing their military capabilities, creating demand for advanced gyroscopic technologies. Additionally, the presence of several leading defense manufacturers in Europe contributes to the development and adoption of new gyroscope technologies. The Asia-Pacific region is experiencing rapid growth in the defense gyroscope market, driven by rising defense expenditures and regional security concerns. Countries such as China, India, and Japan are investing heavily in modernizing their defense capabilities and developing advanced military systems, including gyroscopes. The region's increasing focus on precision-guided munitions and unmanned systems further fuels demand for high-performance gyroscopes. Emerging economies in the Asia-Pacific region are also contributing to market growth as they enhance their defense capabilities and adopt advanced technologies. In the Middle East, rising geopolitical tensions and ongoing conflicts drive investments in defense technologies, including gyroscopes. Countries in the region are seeking to bolster their military capabilities and enhance their defense systems, leading to increased demand for advanced gyroscopic solutions. Finally, Latin America, while not as prominent as other regions, is witnessing gradual growth in the defense gyroscope market. Defense modernization efforts and increasing investments in military technologies contribute to the development of the market in this region, with a focus on improving defense capabilities and integrating advanced systems.

Key Defense Gyroscope Market Program:

Draper Lab to build more interferometric fiber optic gyros (IFOGs) for ballistic missile inertial guidance.IFOGs are low-mass solid-state devices that have a number of benefits, including long lifespans, great dependability, and vibration and shock resistance.Under the provisions of a $111 million contract, experts in U.S. Navy strategic missiles are requesting that The Charles Stark Draper Laboratory Inc. in Cambridge, Mass. construct more interferometric fiber optic gyros (IFOGs) for submarine-launched Trident II (D5) nuclear missiles.Draper Lab is being requested by officials of the Navy Strategic Systems Programs in Washington for the design analysis, testing, acquisition, and manufacturing of IFOG. The work is for the Royal Navy of the United Kingdom and the U.S.For the Trident II missile, inertial guidance and navigation are provided by the IFOG. Ultra-reliable self-contained guidance systems, such as satellite navigation systems, are required for nuclear missiles and do not rely on external signals.

The M11 is a highly high-performance strategic grade inertial navigation system that satisfies the military requirements of the most recent combat ships, both surface and submarines. It is based on iXblue Fiber-Optic Gyroscope technology. Even in GNSS-denied environments, the M11's position, heading, roll, pitch, and speed data are incredibly accurate. Its unparalleled performance limits platform drift to one nautical mile for every 360 hours of surface GNSS-denied or underwater submerged navigation.As a scalable technology, the performance of iXblue's own fiber-optic gyroscopes can be adjusted by pushing the boundaries of technology for the optical components used in the systems (all of which are produced by the company in its French production centers), as well as by adjusting the coil's length and diameter. This allows the technology to be tailored to a wide range of performance requirements, resulting in an extensive range of INS that satisfy the various performance requirements of naval platforms.

Table of Contents

Defense Gyroscope Market Report Definition

Defense Gyroscope Market Segmentation

By Type

By Region

By Platform

Defense Gyroscope Market Analysis for next 10 Years

The 10-year Defense Gyroscope Market analysis would give a detailed overview of Defense Gyroscope Market growth, changing dynamics, technology adoption overviews and the overall market attractiveness is covered in this chapter.

Market Technologies of Defense Gyroscope Market

This segment covers the top 10 technologies that is expected to impact this market and the possible implications these technologies would have on the overall market.

Global Defense Gyroscope Market Forecast

The 10-year Defense Gyroscope Market forecast of this market is covered in detailed across the segments which are mentioned above.

Regional Defense Gyroscope Market Trends & Forecast

The regional Defense Gyroscope Market trends, drivers, restraints and Challenges of this market, the Political, Economic, Social and Technology aspects are covered in this segment. The market forecast and scenario analysis across regions are also covered in detailed in this segment. The last part of the regional analysis includes profiling of the key companies, supplier landscape and company benchmarking. The current market size is estimated based on the normal scenario.

North America

Drivers, Restraints and Challenges

PEST

Market Forecast & Scenario Analysis

Key Companies

Supplier Tier Landscape

Company Benchmarking

Europe

Middle East

APAC

South America

Country Analysis of Defense Gyroscope Market

This chapter deals with the key defense programs in this market, it also covers the latest news and patents which have been filed in this market. Country level 10 year market forecast and scenario analysis are also covered in this chapter.

US

Defense Programs

Latest News

Patents

Current levels of technology maturation in this market

Market Forecast & Scenario Analysis

Canada

Italy

France

Germany

Netherlands

Belgium

Spain

Sweden

Greece

Australia

South Africa

India

China

Russia

South Korea

Japan

Malaysia

Singapore

Brazil

Opportunity Matrix for Defense Gyroscope Market

The opportunity matrix helps the readers understand the high opportunity segments in this market.

Expert Opinions on Defense Gyroscope Market Report

Hear from our experts their opinion of the possible analysis for this market.

Conclusions

About Aviation and Defense Market Reports

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦