![]() |
½ÃÀ庸°í¼
»óǰÄÚµå
1744377
¼¼°èÀÇ ¼öÁß Åë½Å ½ÃÀå(2025-2035³â)Global Underwater Communication Market 2025-2035 |
¼¼°èÀÇ ¼öÁß Åë½Å ½ÃÀå ±Ô¸ð´Â 2025³â¿¡ 49¾ï 5,000¸¸ ´Þ·¯·Î ÃßÁ¤µÇ°í, 2035³â±îÁö 107¾ï 5,000¸¸ ´Þ·¯·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ¸ç, ¿¹Ãø ±â°£ÀÎ 2025-2035³â ¿¬°£ Æò±Õ ¼ºÀå·ü(CAGR) 8.06%·Î ¼ºÀåÀÌ Àü¸ÁµÇ°í ÀÖ½À´Ï´Ù.
¼öÁß Åë½ÅÀº Àá¼öÇÔ, ¹«ÀÎ ¼öÁß Â÷·®, ¼ö»ó ÇÔÁ¤ µîÀÇ ¼öÁß Ç÷§Æû°£¿¡ ¾ÈÀüÇÏ°í ½Å·Ú¼º ³ôÀº Á¤º¸ ±³È¯À» °¡´ÉÇÏ°Ô ÇÏ´Â ÇØ±º ÀÛÀüÀÇ Áß¿äÇÑ ¿ä¼ÒÀÔ´Ï´Ù. Áö»óÀ̳ª °øÁß ³×Æ®¿öÅ©¿Í ´Þ¸® ¼öÁß Åë½ÅÀº ¹°ÀÇ ¹°¸®Àû Ư¼ºÀ¸·Î ÀÎÇØ ±âÁ¸ ÀüÆÄÀÇ À¯È¿¼ºÀÌ Á¦Çѵȴٴ µ¶ÀÚÀûÀÎ °úÁ¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ±× °á°ú ¹æÀ§±ºÀº ¼öÁß È¯°æ¿¡¼ÀÇ Åë½ÅÀ» À¯ÁöÇϱâ À§ÇØ À½Çâ ½ÅÈ£, ±¤Åë½Å, ÀÚ±â À¯µµ µîÀÇ Æ¯¼öÇÑ ±â¼ú¿¡ ÀÇÁöÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¹æ¹ýÀº ºñ¹Ð ÀÛÀüÀÇ Á¶Á¤, Á¤ÂûÀÇ ½Ç½Ã, Æò½ÃÀÇ ¼øÂûÀ̳ª À§Çèµµ°¡ ³ôÀº ÀÓ¹«¿¡ ÀÖ¾î¼ ¼öÁß ÀÚ»êÀÇ ¾ÈÀüÇÑ À̵¿ÀÇ È®º¸¿¡ ºÒ°¡°áÇÕ´Ï´Ù. ¼öÁß Åë½Å ³×Æ®¿öÅ©´Â ¶ÇÇÑ ¼öÁß ¼¾¼, Á¶±â °æ°è ½Ã½ºÅÛ, ÁöÈÖ °èÅëÀ» ¿¬°áÇÔÀ¸·Î½á º¸´Ù ±¤¹üÀ§ÇÑ ÇØ»ó »óȲ ÀνÄÀ» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÇØ±ºÀÇ ±³¸®°¡ ¼öÁß¿¡¼ÀÇ ¿ìÀ§¼º°ú ½ºÅÚ½º¼ºÀ» Á¡Á¡ ´õ °Á¶ÇÏ°Ô µÇ¾ú±â ¶§¹®¿¡ ±× Àü·«Àû Á߿伺Àº ÃÖ±Ù ³ô¾ÆÁö°í ÀÖ½À´Ï´Ù. È¿°úÀûÀÎ Åë½ÅÀÌ ¾øÀ¸¸é ¼öÁß Ç÷§ÆûÀÇ ÀÛÀü»ó °¡Ä¡´Â ÇöÀúÈ÷ ÀúÇϵ˴ϴÙ. µû¶ó¼ ¼öÁß Åë½Å ½Ã½ºÅÛÀº ÁöÈÖ ÅëÁ¦¸¦ °¡´ÉÇÏ°Ô ÇÒ »Ó¸¸ ¾Æ´Ï¶ó ¹Ù´å¼Ó À¯´ÖÀÌ ±¤´ëÇÏ°í ´ÙÅùÀÌ ²÷ÀÌÁö ¾Ê´Â ÇØ¿ª¿¡¼ Á¤È®, ¾ÈÀü, ÀÚÀ²ÀûÀ¸·Î Ȱµ¿ÇÒ ¼ö ÀÖµµ·Ï ÇÏ´Â Àü·Â Áõ° ÀåÄ¡À̱⵵ ÇÕ´Ï´Ù.
±â¼úÀÇ Áøº¸´Â ¼öÁß Åë½ÅÀÇ »õ·Î¿î ½Ã´ë¸¦ ÃßÁøÇØ, ¼öÁß ¹æÀ§ ½Ã½ºÅÛÀÇ »óÈ£ ÀÛ¿ë°ú ¿î¿ë ¹æ¹ýÀ» º¯È½Ã۰í ÀÖ½À´Ï´Ù. °¡Àå Áß¿äÇÑ µ¹ÆÄÀÇ Çϳª´Â À½Çâ ÆÄÇüÀÇ ¼³°è·Î, º¸´Ù Ŭ¸®¾îÇÏ°í °í¼ÓÀÌ¸ç ¾ÈÀüÇÑ ½ÅÈ£ÀÇ Àå°Å¸® Àü¼ÛÀ» °¡´ÉÇÏ°Ô Çϰí ÀÖ½À´Ï´Ù. ÀûÀÀ º¯Á¶ ±â¼úÀ» ÅëÇØ Åë½Å ½Ã½ºÅÛÀº ¿°ºÐ, ¿Âµµ, ÇØ·ù µîÀÇ È¯°æ Á¶°Ç¿¡ µû¶ó ÀÚµ¿À¸·Î Á¶Á¤ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÖ½À´Ï´Ù. ºí·ç ±×¸° ·¹ÀÌÀú ½Ã½ºÅÛÀÇ °³¹ß·Î ¼öÁß Ç×Çàü¿Í ¼ö»ó À¯´Ö °£ÀÇ ´Ü°Å¸®, ±¤´ë¿ª Åë½ÅÀÇ »õ·Î¿î °¡´É¼ºÀÌ ¿·È½À´Ï´Ù. ÀÌ·¯ÇÑ ±¤ÇÐÀû ¹æ¹ýÀº ƯÈ÷ ¾èÀº ÇØ¿ªÀ̳ª ³ëÀÌÁî°¡ ¸¹Àº ÇØ¿ª¿¡¼ ±âÁ¸ÀÇ À½ÇâÀ» ´ëüÇÒ ¼ö ÀÖ´Â ÀúÁö¿¬ Åë½Å ¼ö´ÜÀ» Á¦°øÇÕ´Ï´Ù. ¶Ç ºÎǰ ¼ÒÇüÈ·Î º¸´Ù ÄÞÆÑÆ®ÇÑ Åë½Å¸ðµâÀ» ¹«ÀÎ ¼öÁß Ç÷§Æû¿¡ žÀçÇÒ ¼ö ÀÖ°Ô µÅ ¿î¿ë À¯¿¬¼ºÀÌ È®´ëµÆ´Ù. ¸Ó½Å·¯´×Àº, ½ÅÈ£ ó¸®ÀÇ ÃÖÀûȳª °£¼· ´ëÃ¥ÀÇ °È¿¡ ÇѸòÀ» Çϱ⠽ÃÀÛÇϰí ÀÖ¾î ¼öÁß Åë½ÅÀÇ ½Å·Ú¼ºÀ» ÇÑÃþ ´õ ³ôÀ̰í ÀÖ½À´Ï´Ù. ¾ÏÈ£È ±â¼úÀº, ÇØ±º ¿î¿ëÀÇ ¾ö°ÝÇÑ º¸¾È ¿ä±¸¿¡ ÀÀÇÒ ¼ö ÀÖµµ·Ï ÁøÈÇØ, µ¿ÀûÀΠȯ°æÇÏ¿¡¼µµ ±â¹Ð µ¥ÀÌÅ͸¦ È®½ÇÇÏ°Ô º¸È£ÇÒ ¼ö ÀÖ°Ô µÇ¾î ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼ú Çõ½ÅÀ¸·Î ¼öÁß Åë½ÅÀº º¸´Ù °ß°íÇÏ°í ½Å¼ÓÇϸç ÀûÀÀ¼ºÀÌ ³ô¾ÆÁ³À¸¸ç, ¼öÁß ÇÔ´ë°¡ ¿¬°èÇÏ¿© ³×Æ®¿öÅ©ÈµÈ ÁøÇüÀ¸·Î Ȱµ¿ÇÏ¿© ¿©·¯ ¿µ¿ª¿¡ °ÉÄ£ ½Ç½Ã°£ ÀÇ»ç°áÁ¤À» Áö¿øÇÒ ¼ö ÀÖ°Ô µÇ¾ú½À´Ï´Ù.
¹æÀ§¿¡¼ ¼öÁß Åë½ÅÀÇ Á߿伺ÀÌ Áõ°¡ÇÏ´Â °ÍÀº ÁøÈÇÏ´Â ÇØ¾ç À§Çù, ÀÚÀ² ½Ã½ºÅÛÀÇ È°¿ë È®´ë, ÇØÀú Áö¿ªÀÇ Àü·«Àû °¡Ä¡ Áõ°¡·Î ÀÎÇÑ °ÍÀÔ´Ï´Ù. Àá¼öÇÔ°ú ¹«ÀÎ ¼öÁß Â÷·®ÀÇ ±ÞÁõÀ¸·Î ÀÎÇØ ´Ù¾çÇÑ ±íÀÌ¿Í °Å¸®¿¡¼ ÀÛµ¿ÇÏ´Â ½Å·ÚÇÒ ¼ö ÀÖ´Â ¸í·É Á¦¾î ¸µÅ©°¡ ±ä±ÞÇÏ°Ô ÇÊ¿äÇÕ´Ï´Ù. ¼öÁß ÀÓ¹«¿¡¼´Â ½ºÅÚ½º¼º°ú ³»±¸¼ºÀÌ ¿ä±¸µÇ´Â °æ¿ì°¡ ¸¹°í, ½Ç½Ã°£ ¶Ç´Â ±×°Í¿¡ °¡±î¿î Åë½ÅÀÌ ÀÛÀü ¼º°øÀÇ Áß¿äÇÑ ¿ä¼Ò°¡ µÇ°í ÀÖ½À´Ï´Ù. ÇØº´´ë´Â ÇöÀç ÇØÁß, ¼ö»ó, °øÁßÀÇ °¢ ÀÚ»ê °£ÀÇ µ¿±âȰ¡ ÇʼöÀûÀÎ º¹ÀâÇÑ ´ÙÁß ¼ö¿ª ȯ°æ¿¡¼ÀÇ È°µ¿À» ±â´ëÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ ÇØ¿ªÀÇ ÀνĴɷÂÀ» ³ôÀ̰íÀÚ ÇÏ´Â ¿å¸ÁÀ¸·ÎºÎÅÍ ¼öÁß Åë½ÅÀ» ÀÌ¿ëÇÏ¿© °üÁ¦¼¾ÅÍ·Î µ¥ÀÌÅ͸¦ Àü¼ÛÇÏ´Â ¼¾¼ ¾î·¹ÀÌ ¹× ÇØÀú °¨½Ã ½Ã½ºÅÛÀÇ ¹èÄ¡µµ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. ÆÄÀÌÇÁ¶óÀÎ ¹× ±¤¼¶À¯ ÄÉÀ̺í°ú °°Àº ÇØÀú ÀÎÇÁ¶ó°¡ ÀáÀçÀûÀΠǥÀûÀÌ µÇ´Â µ¿¾È Åë½Å ´É·ÂÀº ¸ð´ÏÅ͸µ°ú ½Å¼ÓÇÑ ´ëÀÀ ¸ðµÎ¿¡ ÇʼöÀûÀÔ´Ï´Ù. °Ô´Ù°¡ Áß¿äÇÑ ¼ö·ÎÀÇ ÆÐ±ÇÀ» µÑ·¯½Ñ Àü·«Àû °æÀïÀº ¾ïÁö¿Í Á¶±â °æ°è¸¦ À§ÇÑ °íµµÀÇ ¼öÁß ³×Æ®¿öÅ©ÀÇ °³¹ßÀ» °¢±¹¿¡ Ã˱¸Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ö¿ä·ÎºÎÅÍ ¼öÁß Åë½ÅÀº ÇØ»ó ¹æÀ§ °èȹÀÇ ÇÙ½É ¿ä¼Ò·Î ÀÚ¸®¸Å±èµÇ¾úÀ¸¸ç, ÀÓ¹«ÀÇ ¼º°ø»Ó¸¸ ¾Æ´Ï¶ó ÇØ¸éÇÏÀÇ ±¹ÀÍÀ» Áö۱â À§Çؼµµ ÇʼöÀûÀÌ µÇ°í ÀÖ½À´Ï´Ù.
Áö¿ªÀÇ ¿ì¼± »çÇ×°ú ÇØ±º Àü·«Àº ¼öÁß Åë½Å½Ã½ºÅÛÀÇ °³¹ß°ú ¹èÄ¡¿¡ Å« ¿µÇâÀ» ¹ÌĨ´Ï´Ù. Àεµ ÅÂÆò¾ç Áö¿ª¿¡¼´Â ÇØ±ºÀÇ À§»óÀÌ È®´ëµÇ°í ½Ã·¹ÀÎÀÇ Àü·«Àû Á߿伺ÀÌ ³ô¾ÆÁö°í Àֱ⠶§¹®¿¡ ÇØÀú Åë½Å ³×Æ®¿öÅ©¿¡ ¸¹Àº ÅõÀÚ°¡ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ª ±¹°¡µéÀº ½ÉÇØ¿Í ¿¬¾È ÇØ¿ª¿¡¼ÀÇ ¿¬°è¿Í »óȲ ÀνÄÀ» °ÈÇϱâ À§ÇØ Àá¼öÇÔ°ú ¹«ÀÎ Â÷·®¿¡ °íµµÀÇ À½Ç⠽ýºÅÛ°ú ±¤ÇÐ ½Ã½ºÅÛÀ» ÅëÇÕÇÏ´Â µ¥ ÁÖ·ÂÇϰí ÀÖ½À´Ï´Ù. À¯·´¿¡¼´Â, ´ÙÀÚ°£ÀÇ °ñÁ¶¿¡ ÀÖ¾î¼ÀÇ »óÈ£ ¿î¿ë¼º¿¡ ÁßÁ¡ÀÌ µÎ¾î, °øµ¿À¸·ÎÀÇ ÇØ»ó ¹æÀ§ ÀÛÀüÀ» Áö¿øÇÏ´Â ÀÀÁý¼ºÀÌ ³ôÀº ¼öÁß Åë½Å ÇÁ·ÎÅäÄÝÀÇ ±¸ÃàÀ» ¸ñÇ¥·Î ÇÑ °øµ¿ ³ë·ÂÀÌ ÀÌ·ç¾îÁö°í ÀÖ½À´Ï´Ù. º¹ÀâÇÑ ¼öÁß ÁöÇü°ú °¡È¤ÇÑ Á¶°ÇÀ» °¡Áø ´ë¼¾ç°ú ºÏ±Ø±Ç¿¡¼´Â Àå°Å¸® À½Çâ ½ÅÈ£¿Í ź·Â¼º ÀÖ´Â ¼¾¼ ¿¬°á ±â¼ú Çõ½ÅÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. Áßµ¿¿¡¼´Â ÇØ»ó ÀÎÇÁ¶ó º¸È£¿Í ¼öÁß À§Çù °¨Áö¸¦ ¸ñÀûÀ¸·Î ÇÑ ±¤¹üÀ§ÇÑ ¿¬¾È °¨½Ã ½Ã½ºÅÛÀÇ ÀÏȯÀ¸·Î ¼öÁß Åë½ÅÀÌ °ËÅäµÇ°í ÀÖ½À´Ï´Ù. ºÏ¹ÌÀÇ ¹æÀ§ Àü·«Àº ±â¼úÀû ¿ìÀ§¸¦ Áß½ÃÇϰí ÀÖÀ¸¸ç, ÅëÇÕµÈ ¼öÁß ÇԴ븦 À§ÇÑ ¾ÈÀüÇÏ°í ºü¸¥ Åë½ÅÀ» Áö¿øÇÏ´Â ÃÖ÷´Ü ¼Ö·ç¼ÇÀÇ Ã¤ÅÃÀ¸·Î À̾îÁö°í ÀÖ½À´Ï´Ù. ±× ¿Ü Áö¿ª¿¡¼´Â ½ÅÈï ÇØ±ºÀÌ ÆÄÆ®³Ê½ÊÀ̳ª Áö¿ª ¿¬ÇÕÀ» ÅëÇØ Á¡Â÷ ´É·ÂÀ» ³ôÀ̰í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Áö¿ª¿¡¼´Â ¼öÁß Åë½Å ½Ã½ºÅÛÀÌ Æ¯Á¤ ÀÛÀü ¿ä±¸, Áö¸®Àû Á¶°Ç, ¾Èº¸»óÀÇ °úÁ¦¸¦ ¹Ý¿µÇÏ¿© Á¶Á¤µÇ°í ÀÖ½À´Ï´Ù.
¹Ì±¹ Defense Innovation Unit(DIU), È£ÁÖÀÇ Advanced Strategic Capabilities Accelerator(ASCA), ¿µ±¹ÀÇ Defence and Security Accelerator(DASA)ÀÇ 3ÀÚ¿¡ ÀÇÇÑ 2Â÷ °øµ¿ ÀÌ´Ï¼ÅÆ¼ºê¸¦ ³ªÅ¸³»´Â AUKUS Maritime Innovation Challenge 2025´Â ¹Ù´å¼ÓÀÇ ÁöÈÖ, ÅëÁ¦ ¹× Åë½ÅÀ» °ÈÇÏ´Â ±â¼úÀ» Á¦¾ÈÇÏ´Â ¹Î°£ ±â¾÷À» ¸ðÁýÇϰí ÀÖ½À´Ï´Ù. ±× ¸ñÇ¥´Â °¡Àå °¡È¤ÇÑ ¼öÁß È¯°æ¿¡¼µµ ÇØ»ó Ç÷§ÆûÀÇ ¾ÈÀüÇϰí ź·Â¼º ÀÖ´Â Åë½ÅÀ» È®º¸ÇÏ¸é¼ Àü¼ú ¹× ÀÛÀüÀû ´É·ÂÀ» Çâ»ó½ÃŰ´Â °ÍÀÔ´Ï´Ù. ±â¼úÀû ¿ìÀ§¼ºÀÌ ¼¼°èÀÇ ÇØ¾ç ¾ÈÀü º¸ÀåÀ» ÁöŰ´Â µ¥ ÀÖ¾î¼ ¸Å¿ì Áß¿äÇÑ ½Ã´ë¿¡ ÀÖ¾î¼, AUKUSÀÇ ÆÄÆ®³ÊÀÎ ¿À½ºÆ®·¹Àϸ®¾Æ, ¿µ±¹, ¹Ì±¹Àº, ¼öÁßÀü ±â¼ú Çõ½ÅÀÇ ÇѰ迡 µµÀüÇϰí ÀÖ½À´Ï´Ù. AUKUS Pillar IIÀÇ ÀÏȯÀ¸·Î DIU´Â ¹Ì±¹ ±¹¹æºÎÀÇ ÀüÅõ ´É·ÂÀ» °ÈÇϱâ À§ÇÑ ¼±ÁøÀûÀÎ »ó¿ë ¼Ö·ç¼ÇÀ» ¿ä±¸Çϰí ÀÖÀ¸¸ç, ±× ÀÏȯÀ¸·Î ½Â¹«¿øÀ» µ¿¹ÝÇÏÁö ¾Ê´Â ÇØ»ó ÀÛÀüÀÇ »ì»ó ´É·ÂÀ» °ÈÇϰí, ¹Ù´å¼Ó ÀüÅõ °ø°£¿¡¼ ½Ç½Ã°£À¸·Î Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç °áÁ¤À» °¡´ÉÇÏ°Ô ÇÏ´Â ½Ã½ºÅÛÀ» °³¹ßÇϰí ÀÖ½À´Ï´Ù.
ÀÌ º¸°í¼´Â ¼¼°èÀÇ ¼öÁß Åë½Å ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, 10³â°£ÀÇ ºÎ¹®º° ½ÃÀå ¿¹Ãø, ±â¼ú µ¿Çâ, ±âȸ ºÐ¼®, ±â¾÷ ÇÁ·ÎÆÄÀÏ, ±¹°¡º° µ¥ÀÌÅÍ µîÀ» Á¤¸®Çß½À´Ï´Ù.
Ç÷§Æûº°
À¯Çüº°
Áö¿ªº°
ÀÌ Àå¿¡¼´Â 10³â°£ÀÇ ¼öÁß Åë½Å ½ÃÀå ºÐ¼®À» ÅëÇØ ¼öÁß Åë½Å ½ÃÀåÀÇ ¼ºÀå, º¯ÈÇÏ´Â Ãß¼¼, ±â¼ú ä¿ë °³¿ä ¹× ½ÃÀå ¸Å·Â¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ °³¿ä¸¦ Á¦°øÇÕ´Ï´Ù.
ÀÌ ºÎ¹®¿¡¼´Â ÀÌ ½ÃÀå¿¡ ¿µÇâÀ» ¹ÌÄ¥ °ÍÀ¸·Î ¿¹»óµÇ´Â »óÀ§ 10°³ ±â¼ú°ú ÀÌ·¯ÇÑ ±â¼úÀÌ ½ÃÀå Àüü¿¡ ¹ÌÄ¥ ¼ö ÀÖ´Â ¿µÇâ¿¡ ´ëÇØ ¼³¸íÇÕ´Ï´Ù.
ÀÌ ½ÃÀåÀÇ 10³â°£ ¼öÁß Åë½Å ½ÃÀå ¿¹ÃøÀº À§ÀÇ Àüü ºÎ¹®¿¡¼ ÀÚ¼¼È÷ ¼³¸íÇÕ´Ï´Ù.
ÀÌ ºÎ¹®Àº Áö¿ªº° ¼öÁß Åë½Å ½ÃÀå µ¿Çâ, ÃËÁø¿äÀÎ, ¾ïÁ¦¿äÀÎ, °úÁ¦, ±×¸®°í Á¤Ä¡, °æÁ¦, »çȸ, ±â¼ú µîÀÇ Ãø¸éÀ» ¸Á¶óÇϰí ÀÖ½À´Ï´Ù. ¶Ç, Áö¿ªº° ½ÃÀå ¿¹Ãø ¹× ½Ã³ª¸®¿À ºÐ¼®µµ »ó¼¼ÇÏ°Ô ´Ù·ç°í ÀÖ½À´Ï´Ù. Áö¿ª ºÐ¼®ÀÇ ¸¶Áö¸·¿¡´Â ÁÖ¿ä ±â¾÷ÀÇ ÇÁ·ÎÆÄÀϸµ, °ø±Þ¾÷üÀÇ Á¤¼¼, ±â¾÷ º¥Ä¡¸¶Å©°¡ Æ÷ÇԵǾî ÀÖ½À´Ï´Ù. ÇöÀç ½ÃÀå ±Ô¸ð´Â ÀÏ¹Ý ½Ã³ª¸®¿À¿¡ µû¶ó ÃßÁ¤µÇ°í ÀÖ½À´Ï´Ù.
ºÏ¹Ì
ÃËÁø¿äÀÎ, ¾ïÁ¦¿äÀÎ ¹× °úÁ¦
PEST
ÁÖ¿ä ±â¾÷
°ø±ÞÀÚ °èÃþÀÇ »óȲ
±â¾÷ º¥Ä¡¸¶Å·
À¯·´
秵¾Æ½Ã¾ÆÅÂÆò¾ç
³²¹Ì
ÀÌ Àå¿¡¼´Â ÀÌ ½ÃÀå¿¡¼ ÁÖ¿ä ¹æÀ§ ÇÁ·Î±×·¥À» ´Ù·ç¸ç ÀÌ ½ÃÀå¿¡¼ ½ÅûµÈ ÃֽŠ´º½º¿Í ƯÇã¿¡ ´ëÇØ¼µµ ¼³¸íÇϰí, ±¹°¡ ¼öÁØÀÇ 10³â°£ ½ÃÀå ¿¹Ãø°ú ½Ã³ª¸®¿À ºÐ¼®¿¡ ´ëÇØ¼µµ ¼³¸íÇÕ´Ï´Ù.
¹Ì±¹
¹æÀ§ ÇÁ·Î±×·¥
ÃֽŠ´º½º
ƯÇã
ÀÌ ½ÃÀåÀÇ ÇöÀç ±â¼ú ¼º¼÷µµ
ij³ª´Ù
ÀÌÅ»¸®¾Æ
ÇÁ¶û½º
µ¶ÀÏ
³×´ú¶õµå
º§±â¿¡
½ºÆäÀÎ
½º¿þµ§
±×¸®½º
È£ÁÖ
³²¾ÆÇÁ¸®Ä«
Àεµ
Áß±¹
·¯½Ã¾Æ
Çѱ¹
ÀϺ»
¸»·¹À̽þÆ
½Ì°¡Æ÷¸£
ºê¶óÁú
The Global Underwater Communication market is estimated at USD 4.95 billion in 2025, projected to grow to USD 10.75 billion by 2035 at a Compound Annual Growth Rate (CAGR) of 8.06% over the forecast period 2025-2035.
Underwater communication is a critical component of naval operations, enabling secure and reliable information exchange between submerged platforms such as submarines, unmanned underwater vehicles, and surface vessels. Unlike terrestrial or airborne networks, underwater communication faces unique challenges due to the physical properties of water, which limit the effectiveness of conventional radio waves. As a result, defense forces rely on specialized techniques such as acoustic signaling, optical transmission, and magnetic induction to maintain communication in submerged environments. These methods are essential for coordinating covert operations, conducting reconnaissance, and ensuring the safe movement of underwater assets during both peacetime patrols and high-risk missions. Subsurface communication networks also support broader maritime situational awareness by linking underwater sensors, early-warning systems, and command structures. Their strategic importance has grown in recent years as naval doctrines increasingly emphasize underwater dominance and stealth. Without effective communication, the operational value of submersible platforms is significantly diminished. Therefore, underwater communication systems are not only enablers of command and control but also force multipliers that allow undersea units to operate with precision, safety, and autonomy across vast and contested maritime domains.
Technological advancements are driving a new era in underwater communication, transforming how submerged defense systems interact and operate. One of the most significant breakthroughs has been in acoustic waveform design, allowing for clearer, faster, and more secure signal transmission over greater distances. Adaptive modulation techniques now enable communication systems to adjust automatically based on environmental conditions such as salinity, temperature, and ocean currents. The development of blue-green laser systems has opened new possibilities for short-range, high-bandwidth communication between underwater vehicles and surface units. These optical methods offer low-latency alternatives to traditional acoustics, particularly in shallow or noisy waters. Miniaturization of components has also allowed more compact communication modules to be installed in unmanned underwater platforms, expanding operational flexibility. Machine learning is beginning to play a role in optimizing signal processing and enhancing anti-interference measures, further increasing the reliability of submerged communication. Encryption technologies have evolved to meet the stringent security demands of naval operations, ensuring that sensitive data remains protected even in dynamic environments. These innovations have made underwater communication more robust, faster, and adaptable, enabling underwater fleets to operate in coordinated, networked formations and support real-time decision-making across multiple domains.
The increasing importance of underwater communication in defense stems from evolving maritime threats, expanded use of autonomous systems, and the growing strategic value of the undersea domain. The proliferation of submarines and unmanned underwater vehicles has created an urgent need for reliable command and control links that work across varying depths and distances. Underwater missions often involve stealth and endurance, making real-time or near-real-time communication a critical enabler of operational success. Naval forces are now expected to perform in complex, multi-theater environments where synchronization between undersea, surface, and aerial assets is essential. The desire to extend maritime domain awareness has also driven the deployment of sensor arrays and seabed monitoring systems that rely on underwater communication to transmit data back to control centers. As undersea infrastructure such as pipelines and fiber-optic cables become potential targets, communication capabilities are vital for both surveillance and rapid response. Additionally, the strategic competition for dominance in key waterways has pushed nations to develop sophisticated underwater networks for deterrence and early warning. These demands have positioned underwater communication as a core component of maritime defense planning, essential not only for mission success but also for safeguarding national interests below the ocean's surface.
Regional priorities and naval strategies heavily influence the development and deployment of underwater communication systems. In the Indo-Pacific, expanding naval presence and the strategic importance of contested sea lanes have led to substantial investments in undersea communication networks. Nations in this region are focusing on integrating advanced acoustic and optical systems into their submarines and unmanned vehicles to enhance coordination and situational awareness in deep and littoral waters. In Europe, emphasis is placed on interoperability within multinational frameworks, with joint efforts aimed at creating cohesive underwater communication protocols that support collaborative maritime defense operations. The Atlantic and Arctic regions, with their complex underwater topography and harsh conditions, are driving innovations in long-range acoustic signaling and resilient sensor connectivity. In the Middle East, underwater communication is being explored as part of broader coastal surveillance systems designed to protect maritime infrastructure and detect underwater threats. North American defense strategies emphasize technological superiority, leading to the adoption of cutting-edge solutions that support secure, high-speed communication for integrated underwater fleets. Elsewhere, emerging navies are gradually building capacity through partnerships and regional alliances. Across these regions, underwater communication systems are being tailored to reflect specific operational needs, geographic conditions, and security challenges.
Marking the second joint initiative between the U.S. Defense Innovation Unit (DIU), Australia's Advanced Strategic Capabilities Accelerator (ASCA), and the UK's Defence and Security Accelerator (DASA), the tri-national AUKUS Maritime Innovation Challenge 2025 is inviting commercial firms to propose technologies that enhance undersea command, control, and communications. The goal is to improve tactical and operational capabilities while ensuring secure and resilient communication for sea-based platforms-even in the most demanding underwater environments. In an age where technological superiority is crucial to safeguarding global maritime security, AUKUS partners-Australia, the United Kingdom, and the United States-are pushing the boundaries of underwater warfare innovation. As part of AUKUS Pillar II, DIU is seeking advanced commercial solutions to bolster the U.S. Department of Defense's warfighting capabilities by developing systems that enhance the lethality of uncrewed maritime operations and enable real-time, informed decision-making across the undersea battlespace.
By Platform
By Type
By Region
The 10-year underwater communication market analysis would give a detailed overview of underwater communication market growth, changing dynamics, technology adoption overviews and the overall market attractiveness is covered in this chapter.
This segment covers the top 10 technologies that is expected to impact this market and the possible implications these technologies would have on the overall market.
The 10-year underwater communication market forecast of this market is covered in detailed across the segments which are mentioned above.
The regional underwater communication market trends, drivers, restraints and Challenges of this market, the Political, Economic, Social and Technology aspects are covered in this segment. The market forecast and scenario analysis across regions are also covered in detailed in this segment. The last part of the regional analysis includes profiling of the key companies, supplier landscape and company benchmarking. The current market size is estimated based on the normal scenario.
North America
Drivers, Restraints and Challenges
PEST
Key Companies
Supplier Tier Landscape
Company Benchmarking
Europe
Middle East
APAC
South America
This chapter deals with the key defense programs in this market, it also covers the latest news and patents which have been filed in this market. Country level 10 year market forecast and scenario analysis are also covered in this chapter.
US
Defense Programs
Latest News
Patents
Current levels of technology maturation in this market
Canada
Italy
France
Germany
Netherlands
Belgium
Spain
Sweden
Greece
Australia
South Africa
India
China
Russia
South Korea
Japan
Malaysia
Singapore
Brazil
The opportunity matrix helps the readers understand the high opportunity segments in this market.
Hear from our experts their opinion of the possible analysis for this market.