½ÃÀ庸°í¼­
»óǰÄÚµå
1826576

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷¿ë µå·Ð ½ÃÀå Àü¸Á : ¿ëµµ, Á¦Ç° À¯Çü, ±¹°¡º° ºÐ¼®°ú ¿¹Ãø(2025-2035³â)

Asia-Pacific Future of Agri-Drones Market: Focus on Agri-Drones Applications, Product Types, and Country - Analysis and Forecast, 2025-2035

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: BIS Research | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 1-5ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷¿ë µå·Ð ½ÃÀå ±Ô¸ð´Â 2024³â 10¾ï 5,490¸¸ ´Þ·¯¿¡¼­ 2035³â¿¡´Â 266¾ï 7,660¸¸ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2025³âºÎÅÍ 2035³â±îÁö ¿¹Ãø ±â°£ µ¿¾È 34.19%ÀÇ CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷¿ë µå·Ð ½ÃÀåÀº ÅõÀÔÀç ÃÖÀûÈ­¿Í ÀÛ¹° »ý»ê¼º Çâ»óÀ» À§ÇÑ Á¤¹Ð³ó¾÷ÀÇ ±Þ¼ÓÇÑ º¸±Þ µî ¸î °¡Áö »õ·Î¿î Æ®·»µå¿¡ ÀÇÇØ Çü¼ºµÇ°í ÀÖ½À´Ï´Ù. ÀÛ¹°À» ½Ç½Ã°£À¸·Î ¸ð´ÏÅ͸µÇϰí, ÀûÀÀÀûÀ¸·Î »ìÆ÷Çϰí, ÇØÃæÀ» Á¶±â¿¡ ¹ß°ßÇÒ ¼ö ÀÖ´Â µå·ÐÀº ±âÈÄ ½º¸¶Æ® ³ó¾÷ÀÇ ÃßÁøÀ» ¹è°æÀ¸·Î ³ôÀº ¼ö¿ä¸¦ ¸ðÀ¸°í ÀÖÀ¸¸ç, ÀÌ´Â Áö¿ªÀÇ Áö¼Ó°¡´É¼º ÇÁ·Î±×·¥À» µÞ¹ÞħÇϰí ÀÖ½À´Ï´Ù. ÀÚÀ²ÁÖÇà µå·ÐÀÌ ¹ç¿¡¼­ Àη ÀÛ¾÷ÀÇ Çʿ伺À» ÁÙÀÓÀ¸·Î½á ³ëµ¿·Â ºÎÁ·ÀÌ ½ÉÈ­µÇ´Â °¡¿îµ¥ ÀÚµ¿È­ÀÇ Á߿伺Àº Á¡Á¡ ´õ Ä¿Áö°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ, µå·Ð°ú °°Àº ±â¼úÀÇ ¹ßÀüÀ¸·Î ´ë±Ô¸ð Çù¾÷ ³óÀÛ¾÷ÀÌ °¡´ÉÇØÁ³°í, IoT ¹× ºòµ¥ÀÌÅÍ Ç÷§Æû°úÀÇ ÅëÇÕÀ» ÅëÇØ ¿¹Ãø ºÐ¼®°ú ´õ ³ªÀº ³ó¾÷ °æ¿µ ÆÇ´ÜÀÌ °¡´ÉÇØÁ³½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå Åë°è
¿¹Ãø ±â°£ 2025-2035³â
2025³â Æò°¡¾× 14¾ï 940¸¸ ´Þ·¯
2035³â ¿¹Ãø 266¾ï 7,660¸¸ ´Þ·¯
CAGR 34.19%

¾Æ½Ã¾ÆÅÂÆò¾ç Àü¿ª¿¡¼­ ÁøÇàµÇ°í ÀÖ´Â ±ÔÁ¦ ȯ°æµµ °ø¿ª ¹ý±Ô¿Í ÀÎÁõ ÀýÂ÷¸¦ ÅëÀÏÇÏ¿© µå·Ð Ȱµ¿À» ÇÕ¹ýÈ­Çϱ⠽ÃÀÛÇß½À´Ï´Ù. ÀÌ·¯ÇÑ Ãß¼¼´Â ÷´Ü ±â¼ú, µ¥ÀÌÅÍ ÀÎÅÚ¸®Àü½º, Áö¼Ó°¡´ÉÇÑ ³ó¾÷ÀÇ À¶ÇÕÀ» º¸¿©ÁÖ¸ç, ³ó¾÷¿ë µå·ÐÀº ¾Æ½Ã¾ÆÅÂÆò¾ç¿¡¼­ Â÷¼¼´ë ³ó¾÷ ¼Ö·ç¼ÇÀÇ Å« ¿øµ¿·ÂÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå °³¿ä

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷¿ë µå·Ð ½ÃÀåÀº ½º¸¶Æ® ³ó¾÷°ú Á¤¹Ð³ó¾÷ ±â¼úÀÇ È°¿ëÀÌ È®´ëµÇ¸é¼­ ºü¸£°Ô ¼ºÀåÇϰí ÀÖ½À´Ï´Ù. Áß±¹, Àεµ, ÀϺ», È£ÁÖ µîÀÇ ±¹°¡¿¡¼­´Â ³ó¾÷¿ë µå·ÐÀÌ ÀÛ¹° ¸ð´ÏÅ͸µ, º´ÇØÃæ ŽÁö, Åä¾ç ºÐ¼®, Á¤¹Ð »ìÆ÷¿¡ Ȱ¿ëµÇ°í ÀÖÀ¸¸ç, À̸¦ ÅëÇØ ³ó¾÷ÀεéÀº ÀÛ¹° »ý»ê·® Áõ°¡, ÅõÀÔ ºñ¿ë Àý°¨, ÀÚ¿ø Ȱ¿ëÀÇ ±Ø´ëÈ­¸¦ ½ÇÇöÇϰí ÀÖ½À´Ï´Ù. AI, IoT, GPS ±â¹Ý ½Ã½ºÅÛ, ¸Ó½Å·¯´×°ú °°Àº ÷´Ü ±â¼úÀº ½Ç½Ã°£ µ¥ÀÌÅÍ ¼öÁý, ¿¹Ãø ºÐ¼®, ÀÚµ¿È­µÈ ³óÀå °ü¸®¸¦ °¡´ÉÇÏ°Ô ÇÏ¿© Áö¼Ó°¡´ÉÇÏ°í ±âÈÄ¿¡ ¸Â´Â ½º¸¶Æ®ÇÑ ³ó¾÷À» Áö¿øÇϰí ÀÖ½À´Ï´Ù.

¹Ýº¹ÀûÀÎ ÀÛ¾÷¿¡¼­ Àη ÀÇÁ¸µµ¸¦ ³·Ãß´Â ÀÚÀ²Çü µå·Ð¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡¿Í ³óÃÌ Áö¿ªÀÇ ³ëµ¿·Â ºÎÁ·µµ ½ÃÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. Áß±¹, ÀϺ», Çѱ¹ µîÀÇ ±¹°¡¿¡¼­´Â µðÁöÅÐ ³ó¾÷À» Áö¿øÇÏ´Â Á¤ºÎÀÇ ³ë·Â°ú ½º¸¶Æ® ³ó¾÷ ÇÁ·Î±×·¥, º¸Á¶±ÝÀ» ÅëÇØ µµÀÔÀÌ ÁøÇàµÇ°í ÀÖ½À´Ï´Ù. °¡º¯ »ìÆ÷ ½Ã½ºÅÛ, ±ºÁý µå·Ð, ´ÙÁß ½ºÆåÆ®·³ À̹Ì¡ ¼¾¼­¿Í °°Àº ±â¼ú Çõ½ÅÀº ¹ç ¸ÅÇÎ, ¼öÈ®·® ÃßÁ¤, ÀÚ¿ø È¿À²ÀûÀÎ ³ó¾÷À» °³¼±Çϰí ÀÖ½À´Ï´Ù.

Á¤¹Ð ½Ãºñ, ¼öÈ®·® ¿¹Ãø, ÀÛ¹° °Ç°­ ¸ð´ÏÅ͸µ, °ü°³ °ü¸® µîÀº ÀÌ Áö¿ª¿¡¼­ ³ó¾÷¿ë µå·ÐÀÇ ÁÖ¿ä ¿ëµµ Áß ÀϺÎÀÔ´Ï´Ù. ±â¼ú Çõ½ÅÀÇ ¹ßÀü°ú Áö¼Ó°¡´ÉÇÑ ³ó¾÷ ¹æ½Ä¿¡ ´ëÇÑ ÀνÄÀÌ ³ô¾ÆÁü¿¡ µû¶ó ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷¿ë µå·Ð ½ÃÀåÀº ºü¸£°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ÷´Ü µðÁöÅÐ ³ó¾÷ ¼Ö·ç¼ÇÀÇ Áß½ÉÁö·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¼¼ºÐÈ­ 1 : ¿ëµµº°

  • ÀÛ¹° ¸ð´ÏÅ͸µ/½ºÄ«¿ìÆÃ
  • Åä¾ç °ÇÀü¼º Æò°¡ ¹× ź¼Ò ÃßÀû
  • Á¤¹Ð »ìÆ÷
  • °¡Ãà ¸ð´ÏÅ͸µ
  • º¸Çè ¹× Ã»±¸ Æò°¡
  • ±âŸ

¼¼ºÐÈ­ 2 : µå·Ð À¯Çüº°

  • °íÁ¤ÀÍ µå·Ð
  • ¸ÖƼ ·ÎÅÍ µå·Ð
  • ½Ì±Û ·ÎÅÍ µå·Ð
  • ÇÏÀ̺긮µå µå·Ð(°íÁ¤Çü+ȸÀüÇü)

¼¼ºÐÈ­ 3 : ÆäÀ̷ε庰

  • ¼ÒÇü ÆäÀ̷εå(2kg ¹Ì¸¸)
  • ÁßÇü ÆäÀ̷εå(2-20kg)
  • ´ëÇü ÆäÀ̷εå(20-50kg)
  • ÃÊ´ëÇü ÆäÀ̷εå(50kg ÀÌ»ó)

¼¼ºÐÈ­ 4 : Áö¿ªº°

  • ¾Æ½Ã¾ÆÅÂÆò¾ç

¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ³ó¾÷¿ë µå·Ð ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ÁÖ¿ä µ¿Çâ, ½ÃÀå ¿µÇâ¿äÀÎ ºÐ¼®, ¹ý¡¤±ÔÁ¦ ȯ°æ, ±â¼ú¡¤Æ¯Ç㠺м®, ½ÃÀå ±Ô¸ð ÃßÁ¤ ¹× ¿¹Ãø, °¢Á¾ ºÎ¹®º°¡¤ÁÖ¿ä ±¹°¡º° »ó¼¼ ºÐ¼®, °æÀï ±¸µµ, ÁÖ¿ä ±â¾÷ °³¿ä µîÀÇ Á¤º¸¸¦ Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

ÁÖ¿ä ¿ä¾à

¹üÀ§¿Í Á¤ÀÇ

Á¦1Àå ½ÃÀå : ¾÷°è Àü¸Á

  • ½ÃÀå ¿ªÇÐ
    • µ¿Çâ, ÃËÁø¿äÀÎ, °úÁ¦, ±âȸ : ÇöÀç ¹× ÇâÈÄÀÇ ¿µÇâ Æò°¡
  • µ¿Çâ
    • ÁöÇü ÀûÀÀÇü, GPS ºñ´ëÀÀ ³ó¾÷ ȯ°æ¿ë °íµµ ºñÇà Á¦¾î ½Ã½ºÅÛ
    • Á¤¹Ð³ó¾÷À» À§ÇÑ Â÷¼¼´ë UAV ¾ÆÅ°ÅØÃ³ : ¸ðµâÇü ÆäÀ̷εå¿Í AI ÅëÇÕ
  • ƯÇ㠺м®
  • ½ÃÀå ¿ªÇÐ °³¿ä
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀå ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ½ÃÀå ±âȸ
  • ½ºÅ¸Æ®¾÷ »óȲ
  • ±â¼ú ä¿ë ¸ÅÆ®¸¯½º
  • µå·Ð µµÀÔ ºñ¿ë ºÐ¼®

Á¦2Àå Áö¿ª

  • Áö¿ª ¿ä¾à
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áö¿ª °³¿ä
    • ½ÃÀå ¼ºÀå ¿øµ¿·Â
    • ½ÃÀå °úÁ¦
    • ¾Æ½Ã¾ÆÅÂÆò¾ç ½ÃÀå
    • Áß±¹
    • ÀϺ»
    • Àεµ
    • Çѱ¹
    • ±âŸ

Á¦3Àå °æÀï º¥Ä¡¸¶Å·°ú ±â¾÷ °³¿ä

  • DJI
  • XAG Co., Ltd.
  • Yamaha Motor Co., Ltd.
  • Garuda Aerospace Pvt. Ltd.
  • Nileworks Inc.
  • Marut Dronetech Pvt. Ltd.
  • Suzhou Eavision Robotic Technologies Co., Ltd.

Á¦4Àå Á¶»ç ¹æ¹ý

KSM 25.10.13

This report can be delivered in 2 working days.

Introduction to Asia-Pacific Future of Agri-Drones Market

The Asia-Pacific future of agri-drones market is projected to reach $26,676.6 million by 2035 from $1,054.9 million in 2024, growing at a CAGR of 34.19% during the forecast period 2025-2035. The APAC agri-drones market is being shaped by several emerging trends, including the rapid adoption of precision agriculture to optimize inputs and enhance crop productivity. Drones that can monitor crops in real time, spray adaptively, and spot pests early are in high demand as a result of the push for climate-smart farming, which supports regional sustainability programs. With autonomous drones reducing the need for manual fieldwork, automation is becoming more and more significant in the face of the pervasive labor shortage. Large-scale, coordinated operations are also made possible by technical advancements like swarm drones, while predictive analytics and better farm management choices are made possible by integration with IoT and big data platforms.

KEY MARKET STATISTICS
Forecast Period2025 - 2035
2025 Evaluation$1,409.4 Million
2035 Forecast$26,676.6 Million
CAGR34.19%

By establishing uniform airspace laws and certification procedures, the changing regulatory environment throughout Asia-Pacific is also starting to legalize drone activities. Agri-drones are positioned as a major force behind next-generation agricultural solutions in the Asia-Pacific region as a result of these trends, which collectively demonstrate the convergence of cutting-edge technology, data intelligence, and sustainable agriculture.

Market Introduction

The market for agri-drones in Asia-Pacific (APAC) is expanding rapidly due to the region's growing use of smart farming and precision agriculture technology. Agri-drones are being used for crop monitoring, pest and disease detection, soil analysis, and precision spraying in nations including China, India, Japan, and Australia. This helps farmers increase crop production, lower input costs, and maximize resource use. In order to support sustainable and climate-smart agriculture, cutting-edge elements like artificial intelligence (AI), the Internet of Things (IoT), GPS-based systems, and machine learning allow for real-time data collecting, predictive analytics, and automated farm management.

The growing desire for autonomous drones, which lessen reliance on manual labor for repetitive tasks, and labor shortages in rural areas are other factors driving the industry. Adoption is rising in nations like China, Japan, and South Korea because to government initiatives supporting digital agriculture, smart agricultural programs, and subsidies. Field mapping, yield estimate, and resource-efficient farming are being improved by innovations including variable-rate spraying systems, swarm drones, and multispectral imaging sensors.

Precision fertilization, yield prediction, crop health monitoring, and irrigation management are some of the main uses of agri-drones in APAC. The APAC agri-drones market is expected to grow rapidly due to technology advancements and rising awareness of sustainable farming methods, positioning the area as a center for cutting-edge digital agricultural solutions.

Market Segmentation:

Segmentation 1: by Application

  • Crop Monitoring/Scouting
  • Soil Health Assessment and Carbon Tracking
  • Precision Spraying
  • Livestock Monitoring
  • Insurance and Claim Assessment
  • Others

Segmentation 2: by Drone Type

  • Fixed-Wing Drones
  • Multi-Rotor Drones
  • Single-Rotor Drones
  • Hybrid Drones (Fixed + Rotary)

Segmentation 3: by Payload

  • Small Payload (<2 kg)
  • Medium Payload (2-20 kg)
  • Large Payload (20-50 kg)
  • Heavy Payload (>50 kg)

Segmentation 4: by Region

  • Asia-Pacific

APAC Agri-Drones Market Trends, Drivers and Challenges

Market Trends

  • Precision Agriculture Adoption: Increasing use of drones for targeted spraying, crop monitoring, and soil analysis.
  • Climate-Smart Farming: Drones enabling sustainable farming practices, such as early pest detection and adaptive irrigation.
  • Automation & Autonomous Drones: Rising deployment of autonomous drones to reduce dependence on manual labor.
  • Swarm Technology: Coordinated drone operations for large-scale field management.
  • Integration with IoT & Big Data: Real-time monitoring, predictive analytics, and data-driven decision-making.
  • High-Resolution Imaging & Multi-Spectral Sensors: Enhanced crop health assessment and yield prediction.
  • Digital Agriculture Initiatives: Adoption driven by government programs in China, Japan, India, and South Korea.

Key Market Drivers

  • Labor Shortages: Rural workforce constraints increasing the need for drone-assisted automation.
  • Rising Food Demand: Growing population and food security concerns driving efficient farming solutions.
  • Cost Optimization: Drones reduce input usage (fertilizers, pesticides, water), lowering operational costs.
  • Technological Advancements: AI, machine learning, and GPS integration improving drone capabilities.
  • Government Support & Subsidies: Incentives and regulatory frameworks promoting smart agriculture adoption.
  • Sustainability Goals: Focus on reducing environmental footprint through precision farming.

Market Challenges

  • Regulatory Barriers: Inconsistent drone regulations and certification requirements across APAC countries.
  • High Initial Investment: Cost of advanced drones and supporting technologies can be prohibitive for smallholders.
  • Technical Expertise: Need for trained personnel to operate drones and analyze data effectively.
  • Connectivity Issues: Limited internet/IoT infrastructure in rural areas affecting real-time data transmission.
  • Weather Dependency: Adverse weather conditions can disrupt drone operations and reduce efficiency.

How can this report add value to an organization?

Product/Innovation Strategy: This report provides a detailed analysis of the APAC future of agri-drones market, segmented by application, drone type, and payload. It covers various agri-drones, such as fixed-wing drones, multi-rotor drones, single-rotor drones, and hybrid drones (fixed + rotary), of different payloads, such as small payload (<2 kg), medium payload (2-20 kg), large payload (20-50 kg), and heavy payload (>50 kg) for several applications such as crop monitoring/scouting, soil health assessment and carbon tracking, precision spraying, livestock monitoring, insurance and claim assessment, and others. The report helps innovators identify gaps in the current offering landscape and adapt product roadmaps to deliver differentiated, scalable, and regulatory-compliant solutions.

Growth/Marketing Strategy: The APAC future of agri-drones market has been rapidly evolving, with major players engaging in capacity expansion, strategic alliances, and pilot deployments to strengthen their market position. This report tracks those developments and provides insights into how key companies are entering or expanding into application segments. It supports marketing teams in identifying high-growth sectors, aligning value propositions with end-user expectations, and crafting targeted go-to-market strategies based on regional dynamics and technological readiness.

Competitive Strategy: A thorough competitive landscape is provided, profiling leading players based on their product offerings, innovation pipelines, partnerships, and expansion plans. Competitive benchmarking enables readers to evaluate how companies are positioned across drone types, payloads, and application areas.

Table of Contents

Executive Summary

Scope and Definition

1 Market: Industry Outlook

  • 1.1 Market Dynamics
    • 1.1.1 Trends, Drivers, Challenges, and Opportunities: Current and Future Impact Assessment
  • 1.2 Trends
    • 1.2.1 Advanced Flight Control Systems for Terrain Adaptive, GPS-Denied Agricultural Environments
    • 1.2.2 Next-Generation UAV Architectures for Precision Farming: Modular Payloads and AI Integration
  • 1.3 Patent Analysis
  • 1.4 Market Dynamics Overview
    • 1.4.1 Market Drivers
      • 1.4.1.1 Need for Climate-Resilient Agricultural Decision Support Systems
      • 1.4.1.2 Integration of Drone Data into Crop Insurance and Credit Systems
      • 1.4.1.3 Expansion of UAVs in Land Use Mapping and Resource Planning
    • 1.4.2 Market Restraints
      • 1.4.2.1 Navigating Regulatory Hurdles and Mitigating Security Risks in Agri-Drone Deployment
      • 1.4.2.2 Cost and Infrastructure Barrier for Smallholders
      • 1.4.2.3 Scaling Data Management and Technical Capabilities for Agri-Drone Integration
    • 1.4.3 Market Opportunities
      • 1.4.3.1 Drone Swarming for Agricultural Operations
      • 1.4.3.2 Surge in Adoption of Drone-as-a-Service
      • 1.4.3.3 Drone Modules for Vertical and Indoor Farming
  • 1.5 Start-Up Landscape
  • 1.6 Technology Adoption Matrix
  • 1.7 Cost Analysis of Drone Adoption

2 Region

  • 2.1 Regional Summary
  • 2.2 Asia-Pacific
    • 2.2.1 Regional Overview
    • 2.2.2 Driving Factors for Market Growth
    • 2.2.3 Factors Challenging the Market
    • 2.2.4 Asia-Pacific Market
      • 2.2.4.1 Application
      • 2.2.4.2 Product
    • 2.2.5 China
      • 2.2.5.1 Application
      • 2.2.5.2 Product
    • 2.2.6 Japan
      • 2.2.6.1 Application
      • 2.2.6.2 Product
    • 2.2.7 India
      • 2.2.7.1 Application
      • 2.2.7.2 Product
    • 2.2.8 South Korea
      • 2.2.8.1 Application
      • 2.2.8.2 Product
    • 2.2.9 Rest-of-Asia-Pacific
      • 2.2.9.1 Application
      • 2.2.9.2 Product

3 Competitive Benchmarking and Company Profiles

  • 3.1 DJI
    • 3.1.1 Overview
    • 3.1.2 Top Products/Product Portfolio
    • 3.1.3 Top Competitors
    • 3.1.4 Target Customers
    • 3.1.5 Key Personal
    • 3.1.6 Analyst View
    • 3.1.7 Market Share, 2024
  • 3.2 XAG Co., Ltd.
    • 3.2.1 Overview
    • 3.2.2 Top Products/Product Portfolio
    • 3.2.3 Top Competitors
    • 3.2.4 Target Customers
    • 3.2.5 Key Personal
    • 3.2.6 Analyst View
    • 3.2.7 Market Share, 2024
  • 3.3 Yamaha Motor Co., Ltd.
    • 3.3.1 Overview
    • 3.3.2 Top Products/Product Portfolio
    • 3.3.3 Top Competitors
    • 3.3.4 Target Customers
    • 3.3.5 Key Personal
    • 3.3.6 Analyst View
    • 3.3.7 Market Share, 2024
  • 3.4 Garuda Aerospace Pvt. Ltd.
    • 3.4.1 Overview
    • 3.4.2 Top Products/Product Portfolio
    • 3.4.3 Top Competitors
    • 3.4.4 Target Customers
    • 3.4.5 Key Personal
    • 3.4.6 Analyst View
    • 3.4.7 Market Share, 2024
  • 3.5 Nileworks Inc.
    • 3.5.1 Overview
    • 3.5.2 Top Products/Product Portfolio
    • 3.5.3 Top Competitors
    • 3.5.4 Target Customers
    • 3.5.5 Key Personal
    • 3.5.6 Analyst View
    • 3.5.7 Market Share, 2024
  • 3.6 Marut Dronetech Pvt. Ltd.
    • 3.6.1 Overview
    • 3.6.2 Top Products/Product Portfolio
    • 3.6.3 Top Competitors
    • 3.6.4 Target Customers
    • 3.6.5 Key Personal
    • 3.6.6 Analyst View
    • 3.6.7 Market Share, 2024
  • 3.7 Suzhou Eavision Robotic Technologies Co., Ltd.
    • 3.7.1 Overview
    • 3.7.2 Top Products/Product Portfolio
    • 3.7.3 Top Competitors
    • 3.7.4 Target Customers
    • 3.7.5 Key Personal
    • 3.7.6 Analyst View
    • 3.7.7 Market Share, 2024

4 Research Methodology

  • 4.1 Data Sources
    • 4.1.1 Primary Data Sources
    • 4.1.2 Secondary Data Sources
    • 4.1.3 Data Triangulation
  • 4.2 Market Estimation and Forecast
»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦