½ÃÀ庸°í¼­
»óǰÄÚµå
1279882

¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : Â÷·® À¯Çüº°, ÃÖÁ¾»ç¿ëÀÚº°, Çϵå¿þ¾î À¯Çüº°, Áö¿ªº° ºÐ¼®(2023-2030³â)

Global Automotive Predictive Technology Market Size study & Forecast, by Vehicle Type by End User, by Hardware Type and Regional Analysis, 2023-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀåÀº 2022³â ¾à 639¾ï 4,000¸¸ ´Þ·¯·Î Æò°¡µÇ¸ç, ¿¹Ãø ±â°£ÀÎ 2023-2030³â¿¡´Â 8.21% ÀÌ»óÀÇ °ÇÀüÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÚµ¿Â÷ ¿¹Ãø ±â¼úÀº ÀÚµ¿Â÷ »ê¾÷ÀÇ ´Ù¾çÇÑ Ãø¸éÀ» ¿¹ÃøÇϱâ À§ÇØ °í±Þ ºÐ¼® ¹× ¿¹Ãø ¸ðµ¨¸µ ±â¼úÀ» »ç¿ëÇÏ´Â °ÍÀ» ¸»ÇÕ´Ï´Ù. ÀÚµ¿Â÷ ¼¾¼­, °ú°Å ±â·Ï, ½ÃÀå µ¿Çâ, °í°´ Çൿ µî ´Ù¾çÇÑ ÃâóÀÇ µ¥ÀÌÅ͸¦ Ȱ¿ëÇÏ¿© ÀÚµ¿Â÷ »ýŰèÀÇ ´Ù¾çÇÑ Ãø¸é¿¡ ´ëÇÑ Á¤º¸¿¡ ÀÔ°¢ÇÑ ¿¹ÃøÀ» ¼öÇàÇÕ´Ï´Ù. ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀåÀº ÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ(ADAS) µµÀÔ È®´ë, ¿¬±¸°³¹ß(R&D) Ȱµ¿ ÅõÀÚ È®´ë µîÀÇ ¿äÀÎÀ¸·Î È®´ëµÇ°í ÀÖ½À´Ï´Ù.

ÃÖ±Ù ¼ö³â°£ ÀÚµ¿Â÷ ¾÷°è´Â ADAS ½Ã½ºÅÛ °­È­¸¦ À§ÇÑ ¿¬±¸°³¹ßÀ» ÃßÁøÇϰí ÀÖ½À´Ï´Ù. ±× °á°ú Â÷¼± ÀÌÅ» °æº¸ ½Ã½ºÅÛ, Ä«¸Þ¶ó, RADAR ¹× ±âŸ ¼¾¼­¿¡ ´ëÇÑ ¼ö¿ä°¡ ³ô°í, ÀÚµ¿Â÷¿¡ žÀçµÇ´Â ¼Óµµ°¡ »¡¶óÁö°í ÀÖ½À´Ï´Ù. À̴ ÷´Ü ¿îÀü º¸Á¶ ½Ã½ºÅÛÀÇ ÁøÈ­¸¦ ´õ¿í ÃËÁøÇϰí ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ±â¾÷µéÀº ÀÌ·¯ÇÑ ±â¼úÀ» Ȱ¿ëÇÑ Á¦Ç° °³¹ß¿¡ ÁýÁßÇÏ¿© ¾÷°è ¼ö¿ä¸¦ È®´ëÇÏ°í ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ÀÏ·Ê·Î Çö´ëÀÚµ¿Â÷´Â 2021³â »êŸÆäÀÇ ¾÷±×·¹ÀÌµå ¸ðµ¨À» ¹ßÇ¥Çß½À´Ï´Ù. Çö´ë »êŸÆä´Â ´Ù¾çÇÑ Ä«¸Þ¶ó, ·¹ÀÌ´õ, ¿òÁ÷ÀÓ °¨Áö ±â¼úÀ» Æ÷ÇÔÇÑ SmartSense ¾ÈÀü ½Ã½ºÅÛÀ» žÀçÇØ Àü¹æÀÇ Â÷·®, º¸ÇàÀÚ, ÀÚÀü°Å¸¦ ½Äº°ÇÏ´Â Àü¹æ Ãæµ¹¹æÁö º¸Á¶(FCA) µî ´Ù¾çÇÑ ¾ÈÀü ±â´ÉÀ» žÀçÇϰí ÀÖ½À´Ï´Ù. 2021³â 4¿ù, Åä¿äŸ ÀÚµ¿Â÷´Â ÀϺ»¿¡¼­ 'Åä¿äŸ ¹Ì¶óÀÌ'¿Í '·º¼­½º LS'ÀÇ ¾÷µ¥ÀÌÆ® ¸ðµ¨À» ¹ßÇ¥Çß½À´Ï´Ù. µÎ Â÷·® ¸ðµÎ ·¹º§ 2 ¼öÁØÀÇ ÀÚÀ²ÁÖÇà ÷´Ü µå¶óÀ̺긦 žÀçÇØ Â÷¼± À¯Áö, ´Ù¸¥ Â÷·®°úÀÇ ¾ÈÀü°Å¸® È®º¸, Â÷¼± º¯°æ, °í±Þ ¿îÀü Áö¿ø µîÀ» Áö¿øÇÕ´Ï´Ù. ¶ÇÇÑ µµ¿äŸ´Â ¸®ÇÁÆ®ÀÇ ÀÚÀ²ÁÖÇàÂ÷ ºÎ¹®À» ÀμöÇϱâ À§ÇØ 5¾ï 5,000¸¸ ´Þ·¯¸¦ ÁöºÒÇÒ ÀÇÇâÀÌ ÀÖ´Ù°í ¹àÇû½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀû Áøº¸°¡ ½ÃÀå ¼ºÀåÀ» °ßÀÎÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ IoT ¹× AI¿Í °°Àº ÷´Ü ±â¼úÀ» äÅÃÇϱâ À§ÇÑ ±â¾÷ÀÇ ÅõÀÚ Áõ°¡¿Í Á¤ºÎÀÇ »ê¾÷ Áö¿ø Áõ°¡·Î ÀÎÇØ ½ÃÀå ¼ºÀå¿¡ À¯¸®ÇÏ°Ô ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÚµ¿Â÷ ¿¹Ãø ±â¼úÀÇ ³ôÀº ºñ¿ëÀº 2023-2030³âÀÇ ¿¹Ãø ±â°£ Áß ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÔ´Ï´Ù. ºÏ¹Ì´Â ÁÖ¿ä ½ÃÀå ±â¾÷ÀÇ Á¸Àç, ÀÚÀ²ÁÖÇà ±â¼ú ½Ã½ºÅÛÀÇ Ã¤Åà Áõ°¡, ÀÌ Áö¿ªÀÇ ±â¼ú ¹ßÀüÀ¸·Î ÀÎÇØ 2022³â ½ÃÀåÀ» Áö¹èÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº Àü±âÀÚµ¿Â÷ »ý»ê·® Áõ°¡, ¿¹Ãø ±â¼ú µµÀÔÀ» À§ÇÑ ³ë·Â Áõ°¡ µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ¿¹Ãø ±â°£ Áß Å« ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÃÖ±Ù ¼ö³â°£ ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ ½ÃÀå ±Ô¸ð¸¦ ÆÄ¾ÇÇϰí ÇâÈÄ ¼ö³â°£ ½ÃÀå ±Ô¸ð¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼­´Â Á¶»ç ´ë»ó ±¹°¡ÀÇ »ê¾÷ÀÇ ÁúÀû, ¾çÀû Ãø¸éÀ» ¸ðµÎ Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú °úÁ¦ µî Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸µµ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ ÁÖ¿ä ±â¾÷ÀÇ °æÀï ȯ°æ°ú ½ÃÀå »óȲ¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚ°¡ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀå¿¡¼­ÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇԵ˴ϴÙ.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

  • ½ÃÀå ½º³À¼ô
  • ¼¼°è ½ÃÀ塤ºÎ¹®º° ½ÃÀå Ã߻ꡤ¿¹Ãø, 2020-2030³â
    • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Áö¿ªº°, 2020-2030³â
    • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Â÷Á¾º°, 2020-2030³â
    • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°, 2020-2030³â
    • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Çϵå¿þ¾î À¯Çüº°, 2020-2030³â
  • ÁÖ¿ä µ¿Çâ
  • Á¶»ç ¹æ¹ý
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç

Á¦2Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

  • Á¶»ç ¸ñÀû
  • ½ÃÀåÀÇ Á¤ÀÇ¿Í ½ºÄÚÇÁ
    • »ê¾÷ÀÇ ÁøÈ­
    • º» Á¶»çÀÇ ´ë»ó ¹üÀ§
  • Á¶»ç ´ë»ó³â
  • ÅëÈ­ ȯ»êÀ²

Á¦3Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå ¿ªÇÐ

  • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå ¿µÇ⠺м®(2020-2030³â)
    • ½ÃÀå ÃËÁø¿äÀÎ
      • ADAS(÷´Ü¿îÀüÀÚº¸Á¶½Ã½ºÅÛ) žÀçÀÇ Áõ°¡
      • ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ È®´ë
    • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
      • ÀÚµ¿Â÷ ¿¹Ãø ±â¼úÀÇ °íºñ¿ë
    • ½ÃÀå ±âȸ
      • IoT³ª AI µîÀÇ Ã·´Ü ±â¼úÀ» µµÀÔÇϱâ À§ÇÑ ±â¾÷¿¡ ÀÇÇÑ ÅõÀÚÀÇ Áõ°¡
      • »ê¾÷°è¿¡ ´ëÇÑ Á¤ºÎ Áö¿øÀÇ °­È­

Á¦4Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's 5 Force ¸ðµ¨
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ±¸¸ÅÀÚÀÇ ±³¼··Â
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • Porter's 5 Force ¿µÇ⠺м®
  • PEST ºÐ¼®
    • Á¤Ä¡Àû
    • °æÁ¦Àû
    • »çȸÀû
    • ±â¼úÀû
    • ȯ°æ
    • ¹ý·ü
  • ÁÖ¿ä ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«
  • COVID-19 ¿µÇ⠺м®
  • ÆÄ±«Àû µ¿Çâ
  • ¾÷°è Àü¹®°¡ÀÇ ½ÃÁ¡
  • ¾Ö³Î¸®½ºÆ®ÀÇ Á¦¾È°ú °á·Ð

Á¦5Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Â÷Á¾º°

  • ½ÃÀå ½º³À¼ô
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Â÷Á¾º°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå, Â÷Á¾º° ÃßÁ¤¡¤¿¹Ãø(2020-2030³â
  • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå, ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ½Â¿ëÂ÷
    • »ó¿ëÂ÷

Á¦6Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº°

  • ½ÃÀå ½º³À¼ô
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚº° ½ÇÀû¡¤ÀáÀç·Â ºÐ¼®
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå, ÃÖÁ¾»ç¿ëÀÚº° ÃßÁ¤¡¤¿¹Ãø 2020-2030³â
  • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå, ÇÏÀ§ ºÎ¹® ºÐ¼®
    • Çø´ ¿À³Ê
    • º¸Çèȸ»ç
    • ±âŸ ÃÖÁ¾»ç¿ëÀÚ

Á¦7Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Çϵå¿þ¾î À¯Çüº°

  • ½ÃÀå ½º³À¼ô
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Çϵå¿þ¾î À¯Çüº°, ½ÇÀû - ÀáÀç·Â ºÐ¼®
  • ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå, Çϵå¿þ¾î À¯Çüº° ÃßÁ¤¡¤¿¹Ãø 2020-2030³â
  • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • ADAS
    • ¿Âº¸µå Áø´Ü
    • ±âŸ Çϵå¿þ¾î À¯Çü

Á¦8Àå ¼¼°èÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå : Áö¿ªº° ºÐ¼®

  • »óÀ§ÀÇ ÁÖ¿ä ±¹°¡
  • »óÀ§ ½ÅÈï ±¹°¡
  • ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå, Áö¿ªº° ½ÃÀå ½º³À¼ô
  • ºÏ¹Ì
    • ¹Ì±¹
      • Â÷Á¾º° ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • ÃÖÁ¾»ç¿ëÀÚº° ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • Çϵå¿þ¾î À¯Çüº° ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
    • ij³ª´Ù
  • À¯·´ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå ½º³À¼ô
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå ½º³À¼ô
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ ÀÚµ¿Â÷ ¿¹Ãø ±â¼ú ½ÃÀå ½º³À¼ô
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå °æÀï Á¤º¸

  • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • Continental AG
      • ÁÖ¿ä Á¤º¸
      • °³¿ä
      • À繫 Á¤º¸(µ¥ÀÌÅÍ ÀÔ¼ö°¡ °¡´ÉÇÑ °æ¿ì¸¸)
      • Á¦Ç° °³¿ä
      • ÃÖ±Ù µ¿Çâ
    • Aptiv PLC
    • Garrett Motion Inc.
    • Harman International Industries Incorporated
    • Visteon Corporation
    • ZF Friedrichshafen AG
    • Valeo SA
    • Robert Bosch GmbH
    • Verizon
    • Infineon Technologies AG

Á¦10Àå Á¶»ç ÇÁ·Î¼¼½º

  • Á¶»ç ÇÁ·Î¼¼½º
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • ¹ë¸®µ¥À̼Ç
    • ÃâÆÇ
  • Á¶»çÀÇ Æ¯Â¡
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç
KSA 23.06.12

Global Automotive Predictive Technology Market is valued at approximately USD 63.94 billion in 2022 and is anticipated to grow with a healthy growth rate of more than 8.21% over the forecast period 2023-2030. Automotive Predictive Technology refers to the use of advanced analytics and predictive modeling techniques to anticipate and forecast various aspects of the automotive industry. It leverages data from various sources, such as vehicle sensors, historical records, market trends, and customer behavior, to make informed predictions about different aspects of the automotive ecosystem. The Automotive Predictive Technology market is expanding because of factors such as increasing installation of advanced driver-assistance systems (ADAS) and growing investment in research and development activities.

The automotive industry has been driving research and development in recent years to enhance ADAS systems. As a result, lane departure warning systems, cameras, RADAR, and other sensors are in high demand and are being integrated into vehicles at a rapid rate. This led to additional advancements in advanced driving aid systems. Companies, therefore, keep focusing on developing products utilising these technologies to increase demand in the industry which is driving the market growth. As an example, in the year 2021 Hyundai unveiled its upgraded Santafee model. Along with safety features, the car is loaded with numerous features. The Hyundai Santafee comes with SmartSense safety systems, which include a variety of cameras, radars, and motion detection technologies like Forward Collision-Avoidance Assist (FCA), meant to identify cars, pedestrians, or cyclists who are directly in front of the car. In April 2021, Toyota Motor Corp. unveiled updated models of the Toyota Mirai and Lexus LS in Japan. Both cars are equipped with Level 2 autonomous Advanced Drive, which helps with lane keeping, keeping a safe distance from other cars, lane changes, and advanced driver assistance. Additionally, Toyota has made known that it intends to pay USD 550 million to buy Lyft's autonomous vehicle division. Such technological advancement is driving the market growth. In addition, rising investments by the companies to adopt advanced technologies such as IoT and AI and rising government support to the industry is creating lucrative growth to the market. However, the high cost of Automotive Predictive Technology stifles market growth throughout the forecast period of 2023-2030.

The key regions considered for the Global Automotive Predictive Technology Market study includes Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market in 2022 owing to presence of key market players, rising adoption of self-driving technology system, and rising technological advancement in the region. Asia Pacific is expected to grow significantly during the forecast period, owing to factors such as increasing production of electric vehicles, rising initiatives for implementation of predictive technology.

Major market players included in this report are:

  • Continental AG
  • Aptiv PLC
  • Garrett Motion Inc.
  • Harman International Industries Incorporated
  • Visteon Corporation
  • ZF Friedrichshafen AG
  • Valeo SA
  • Robert Bosch GmbH
  • Verizon
  • Infineon Technologies AG

Recent Developments in the Market:

  • In July 2021, ZF launched its brand-new ZF ProAI supercomputer. This system offers the most recent security measures against cyber threats by providing tailored computing power for cars of any level of automation. It is equipped with control units, software, sensors, and actuators for software-defined vehicles.
  • In January 2021, HARMAN introduced HARMAN Turbo Connect (TBOT), a brand-new intelligent software agent that foresees and corrects on-the-road connectivity issues for vehicles. When combined with 5G-enabled technologies like HARMAN's Smart Conformal Antenna and complete 5G or 5G-ready Telecommunications Control Units (TCU), the HARMAN TBOT meets the current demand for high-speed connectivity with low latency.

Global Automotive Predictive Technology Market Report Scope:

  • Historical Data: - 2020 - 2021
  • Base Year for Estimation: - 2022
  • Forecast period: - 2023-2030
  • Report Coverage: - Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Segments Covered: - Vehicle Type, End User, Hardware Type, Region
  • Regional Scope: - North America; Europe; Asia Pacific; Latin America; Middle East & Africa
  • Customization Scope: - Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and Vehicle Type offerings of key players. The detailed segments and sub-segment of the market are explained below.

By Vehicle Type:

  • Passenger Vehicles
  • Commercial Vehicles

By End User:

  • Fleet Owners
  • Insurers
  • Other End Users

By Hardware Type:

  • ADAS
  • On-board Diagnosis
  • Other Hardware Types

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Table of Contents

Chapter 1. Executive Summary

  • 1.1. Market Snapshot
  • 1.2. Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Billion)
    • 1.2.1. Automotive Predictive Technology Market, by Region, 2020-2030 (USD Billion)
    • 1.2.2. Automotive Predictive Technology Market, by Vehicle Type, 2020-2030 (USD Billion)
    • 1.2.3. Automotive Predictive Technology Market, by End User, 2020-2030 (USD Billion)
    • 1.2.4. Automotive Predictive Technology Market, by Hardware Type, 2020-2030 (USD Billion)
  • 1.3. Key Trends
  • 1.4. Estimation Methodology
  • 1.5. Research Assumption

Chapter 2. Global Automotive Predictive Technology Market Definition and Scope

  • 2.1. Objective of the Study
  • 2.2. Market Definition & Scope
    • 2.2.1. Industry Evolution
    • 2.2.2. Scope of the Study
  • 2.3. Years Considered for the Study
  • 2.4. Currency Conversion Rates

Chapter 3. Global Automotive Predictive Technology Market Dynamics

  • 3.1. Automotive Predictive Technology Market Impact Analysis (2020-2030)
    • 3.1.1. Market Drivers
      • 3.1.1.1. Increasing installation of advanced driver-assistance systems (ADAS)
      • 3.1.1.2. Growing investment in research and development activities
    • 3.1.2. Market Challenges
      • 3.1.2.1. High Cost of Automotive Predictive Technology
    • 3.1.3. Market Opportunities
      • 3.1.3.1. Rising investments by the companies to adopt advanced technologies such as IoT and AI
      • 3.1.3.2. Rising government support to the industry

Chapter 4. Global Automotive Predictive Technology Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Porter's 5 Force Impact Analysis
  • 4.3. PEST Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
    • 4.3.5. Environmental
    • 4.3.6. Legal
  • 4.4. Top investment opportunity
  • 4.5. Top winning strategies
  • 4.6. COVID-19 Impact Analysis
  • 4.7. Disruptive Trends
  • 4.8. Industry Expert Perspective
  • 4.9. Analyst Recommendation & Conclusion

Chapter 5. Global Automotive Predictive Technology Market, by Vehicle Type

  • 5.1. Market Snapshot
  • 5.2. Global Automotive Predictive Technology Market by Vehicle Type, Performance - Potential Analysis
  • 5.3. Global Automotive Predictive Technology Market Estimates & Forecasts by Vehicle Type 2020-2030 (USD Billion)
  • 5.4. Automotive Predictive Technology Market, Sub Segment Analysis
    • 5.4.1. Passenger Vehicles
    • 5.4.2. Commercial Vehicles

Chapter 6. Global Automotive Predictive Technology Market, by End User

  • 6.1. Market Snapshot
  • 6.2. Global Automotive Predictive Technology Market by End User, Performance - Potential Analysis
  • 6.3. Global Automotive Predictive Technology Market Estimates & Forecasts by End User 2020-2030 (USD Billion)
  • 6.4. Automotive Predictive Technology Market, Sub Segment Analysis
    • 6.4.1. Fleet Owners
    • 6.4.2. Insurers
    • 6.4.3. Other End Users

Chapter 7. Global Automotive Predictive Technology Market, by Hardware Type

  • 7.1. Market Snapshot
  • 7.2. Global Automotive Predictive Technology Market by Hardware Type, Performance - Potential Analysis
  • 7.3. Global Automotive Predictive Technology Market Estimates & Forecasts by Hardware Type 2020-2030 (USD Billion)
  • 7.4. Automotive Predictive Technology Market, Sub Segment Analysis
    • 7.4.1. ADAS
    • 7.4.2. On-board Diagnosis
    • 7.4.3. Other Hardware Types

Chapter 8. Global Automotive Predictive Technology Market, Regional Analysis

  • 8.1. Top Leading Countries
  • 8.2. Top Emerging Countries
  • 8.3. Automotive Predictive Technology Market, Regional Market Snapshot
  • 8.4. North America Automotive Predictive Technology Market
    • 8.4.1. U.S. Automotive Predictive Technology Market
      • 8.4.1.1. Vehicle Type breakdown estimates & forecasts, 2020-2030
      • 8.4.1.2. End User breakdown estimates & forecasts, 2020-2030
      • 8.4.1.3. Hardware Type breakdown estimates & forecasts, 2020-2030
    • 8.4.2. Canada Automotive Predictive Technology Market
  • 8.5. Europe Automotive Predictive Technology Market Snapshot
    • 8.5.1. U.K. Automotive Predictive Technology Market
    • 8.5.2. Germany Automotive Predictive Technology Market
    • 8.5.3. France Automotive Predictive Technology Market
    • 8.5.4. Spain Automotive Predictive Technology Market
    • 8.5.5. Italy Automotive Predictive Technology Market
    • 8.5.6. Rest of Europe Automotive Predictive Technology Market
  • 8.6. Asia-Pacific Automotive Predictive Technology Market Snapshot
    • 8.6.1. China Automotive Predictive Technology Market
    • 8.6.2. India Automotive Predictive Technology Market
    • 8.6.3. Japan Automotive Predictive Technology Market
    • 8.6.4. Australia Automotive Predictive Technology Market
    • 8.6.5. South Korea Automotive Predictive Technology Market
    • 8.6.6. Rest of Asia Pacific Automotive Predictive Technology Market
  • 8.7. Latin America Automotive Predictive Technology Market Snapshot
    • 8.7.1. Brazil Automotive Predictive Technology Market
    • 8.7.2. Mexico Automotive Predictive Technology Market
  • 8.8. Middle East & Africa Automotive Predictive Technology Market
    • 8.8.1. Saudi Arabia Automotive Predictive Technology Market
    • 8.8.2. South Africa Automotive Predictive Technology Market
    • 8.8.3. Rest of Middle East & Africa Automotive Predictive Technology Market

Chapter 9. Competitive Intelligence

  • 9.1. Key Company SWOT Analysis
    • 9.1.1. Company 1
    • 9.1.2. Company 2
    • 9.1.3. Company 3
  • 9.2. Top Market Strategies
  • 9.3. Company Profiles
    • 9.3.1. Continental AG
      • 9.3.1.1. Key Information
      • 9.3.1.2. Overview
      • 9.3.1.3. Financial (Subject to Data Availability)
      • 9.3.1.4. Product Summary
      • 9.3.1.5. Recent Developments
    • 9.3.2. Aptiv PLC
    • 9.3.3. Garrett Motion Inc.
    • 9.3.4. Harman International Industries Incorporated
    • 9.3.5. Visteon Corporation
    • 9.3.6. ZF Friedrichshafen AG
    • 9.3.7. Valeo SA
    • 9.3.8. Robert Bosch GmbH
    • 9.3.9. Verizon
    • 9.3.10. Infineon Technologies AG

Chapter 10. Research Process

  • 10.1. Research Process
    • 10.1.1. Data Mining
    • 10.1.2. Analysis
    • 10.1.3. Market Estimation
    • 10.1.4. Validation
    • 10.1.5. Publishing
  • 10.2. Research Attributes
  • 10.3. Research Assumption
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦