½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1363819

¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : ±â¼ú À¯Çüº°, ¿ëµµº° ¹× Áö¿ªº° ºÐ¼®(2023-2030³â)

Global Wearable Robotic Exoskeleton Market Size study & Forecast, by Technology Type (Powered, Passive), by Application (Healthcare, Industrial, Defense & Aerospace, Others) and Regional Analysis, 2023-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀåÀº 2022³â ¾à 9¾ï 6,442¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, ¿¹Ãø ±â°£ÀÎ 2023-2030³â¿¡´Â 43.60% ÀÌ»óÀÇ °ÇÀüÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀåÀº Àΰ£ÀÇ ¿îµ¿ ´É·Â°ú ½Åü ´É·ÂÀ» °­È­ ¹× Áö¿øÇÏ´Â ¿þ¾î·¯ºí ·Îº¿ ÀåÄ¡ÀÇ ¼³°è, °³¹ß, Á¦Á¶, ¹èÆ÷¿Í °ü·ÃµÈ »ê¾÷À» ¸»ÇÕ´Ï´Ù. ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°ÝÀº ´Ù¾çÇÑ ¿ëµµ·Î °³ÀÎÀÇ Ã¼·Â, Áö±¸·Â, ¿îµ¿ ´É·ÂÀ» °­È­Çϱâ À§ÇØ Âø¿ëÇÏ´Â ¿ÜºÎ ±â°è ±¸Á¶¹°ÀÔ´Ï´Ù. ¼¼°è ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀåÀÇ ÁÖ¿ä ÃËÁø¿äÀÎÀº ÀÇ·á »ê¾÷¿¡¼­ ¿Ü°ñ°Ý ÀåÄ¡ÀÇ Ã¤Åà Áõ°¡¿Í Á¤ºÎÀÇ Áö¿ø À̴ϼÅƼºêÀÔ´Ï´Ù. ¶ÇÇÑ, ·Îº¿ °øÇÐ, ¼¾¼­ ±â¼úÀÇ ¹ßÀü, °í·ÉÈ­ Àα¸ Áõ°¡´Â 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå¿¡ À¯¸®ÇÑ ¼ºÀå ±âȸ¸¦ âÃâÇÏ°í ÀÖ½À´Ï´Ù.

¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°ÝÀº ºÎ»óÀ̳ª ¼ö¼ú ÈÄ È¯ÀÚÀÇ ¿îµ¿ ´É·Â°ú ü·Â ȸº¹À» µ½±â À§ÇØ ÀçÈ° ¹× ¹°¸®Ä¡·á ÇöÀå¿¡¼­ Á¡Á¡ ´õ ¸¹ÀÌ »ç¿ëµÇ°í ÀÖ½À´Ï´Ù. ¹Ì±¹½ÉÀåÇùȸ¿¡ µû¸£¸é ³úÁ¹ÁßÀº »ó´ç¼öÀÇ °³Àο¡°Ô ¿µÇâÀ» ¹ÌÄ¡¸ç, ¼ö¹é¸¸ ¸íÀÇ ¹Ì±¹ÀÎÀÌ ³úÁ¹ÁßÀ» °æÇèÇÏ°í ¸Å³â »õ·Î¿î »ç·Ê°¡ Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ³úÁ¹Áß »ýÁ¸ÀÚÀÇ »ó´ç¼ö°¡ ÇϹݽŠÀå¾Ö¸¦ °æÇèÇÏ°í ÀÖÀ¸¸ç, º¸Çà°ú À̵¿¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. ÇコÄÉ¾î ¾÷°è¿¡¼­´Â ÁÖ¿ä ±â¾÷µéÀÌ ±â¼úÀûÀ¸·Î Áøº¸µÈ ±â±â¸¦ µµÀÔÇÏ¿© ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ °­È­Çϱâ À§ÇØ Àû±ØÀûÀ¸·Î ³ë·ÂÇÏ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Àü·«Àû Á¢±ÙÀº ¼¼°è ½ÃÀå¿¡¼­ °æÀï·ÂÀ» À¯ÁöÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¿¹¸¦ µé¾î, 2020³â 1¿ù Á¦³×·º½º Å×Å©³î·ÎÁö½º´Â ¸¶ºñ, ³úÁ¹Áß, ô¼ö ¼Õ»óÀ¸·Î °íÅë¹Þ´Â »ç¶÷µéÀ» À§ÇØ ¼³°èµÈ ¿Ü°ñ°Ý ¿þ¾î·¯ºí ±â±â Á¦Á¶¿¡ Âø¼öÇÑ´Ù°í ¹àÇû½À´Ï´Ù. ÀÌ È¸»ç°¡ °³¹ßÇÑ ¿Ü°ñ°Ý ÀåÄ¡´Â ÀÌ »ç¶÷µéÀÇ »çÁö ±â´ÉÀ» °­È­ÇÏ¿© ¿îµ¿ ´É·Â ȸº¹°ú »îÀÇ ÁúÀ» Çâ»ó½Ãų ¼ö ÀÖ´Â ÀáÀç·ÂÀ» °¡Áö°í ÀÖ½À´Ï´Ù. ÀÌ¿Í ÇÔ²² °í·ÉÈ­ Àα¸ Áõ°¡´Â 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÁÖµµÇÏ°í ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, ¼¼°èÀºÇà¿¡ µû¸£¸é 2018³â ºê¶óÁúÀÇ ³ëÀÎ Àα¸´Â 1,86,90,608¸íÀ̸ç 2020³â¿¡´Â 2,03,89,282¸íÀ¸·Î Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°ÝÀÇ ³ôÀº ºñ¿ëÀº 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÒ °ÍÀÔ´Ï´Ù.

¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä« µîÀÔ´Ï´Ù. ºÏ¹Ì´Â 2022³â ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°ÝÀÇ ÁÖ¿ä ½ÃÀåÀÔ´Ï´Ù. ÀÌ Áö¿ªÀÇ Æ¯Â¡Àº ¿¬±¸°³¹ß¿¡ ´ëÇÑ ¸·´ëÇÑ ÅõÀÚ, °­·ÂÇÑ ÀÇ·á ÀÎÇÁ¶ó, ±â¼ú ¹ßÀü¿¡ ´ëÇÑ ÁýÁßÀÔ´Ï´Ù. ¹Ì±¹°ú ij³ª´Ù´Â ÀÇ·á, ±º»ç ¹× »ê¾÷ ºÐ¾ßÀÇ ¿Ü°ñ°Ý ¼ö¿ä¿¡ ÈûÀÔ¾î ½ÃÀå ¼ºÀå¿¡ Å©°Ô ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº Âø¿ëÇü ·Îº¿ ¿Ü°ñ°Ý ½ÃÀåÀÌ ºü¸£°Ô ¼ºÀåÇÏ°í ÀÖ½À´Ï´Ù. ÀϺ», Çѱ¹, Áß±¹ µîÀÇ ±¹°¡µéÀÌ ¿Ü°ñ°Ý ±â¼ú äÅÿ¡ ¾ÕÀå¼­°í ÀÖ½À´Ï´Ù. ÀÌ Áö¿ªÀº ¿Ü°ñ°Ý Á¦Á¶¾÷üÀÇ Á¸Àç°¨ÀÌ °­ÇÏ°í Á¦Á¶, ¹°·ù, ÇコÄÉ¾î µîÀÇ »ê¾÷¿¡¼­ ¿Ü°ñ°Ý¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù. ¿¬±¸°³¹ß¿¡ ´ëÇÑ ÅõÀÚ Áõ°¡¿Í Á¤ºÎÀÇ Áö¿ø Á¤Ã¥ÀÌ ½ÃÀå ¼ºÀå¿¡ ±â¿©ÇÏ°í ÀÖ½À´Ï´Ù.

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÃÖ±Ù ¸î ³âµ¿¾È ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ ½ÃÀå ±Ô¸ð¸¦ Á¤ÀÇÇÏ°í ÇâÈÄ ¸î ³âµ¿¾ÈÀÇ °¡Ä¡¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼­´Â Á¶»ç ´ë»ó ±¹°¡ÀÇ »ê¾÷ÀÇ ÁúÀû/¾çÀû Ãø¸éÀ» ¸ðµÎ Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú °úÁ¦¿Í °°Àº Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸µµ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä ±â¾÷ÀÇ °æÀï ±¸µµ¿Í ±â¼ú À¯Çüº° Á¦°ø¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚ°¡ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀåÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇÔÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

  • Á¶»ç ¸ñÀû
  • ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
    • »ê¾÷ ¹ßÀü
    • Á¶»ç ¹üÀ§
  • Á¶»ç ´ë»ó³â
  • ÅëÈ­ ȯ»êÀ²

Á¦3Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå ¿ªÇÐ

  • ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå ¿µÇ⠺м®(2020-2030³â)
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
    • ½ÃÀå ±âȸ

Á¦4Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's Five Forces ¸ðµ¨
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ¹ÙÀ̾îÀÇ ±³¼··Â
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • Porter's Five Forces ¿µÇ⠺м®
  • PEST ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ȯ°æ
    • ¹ý·ü
  • ÁÖ¿ä ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«
  • COVID-19ÀÇ ¿µÇ⠺м®
  • Æı«Àû µ¿Çâ
  • ¾÷°è Àü¹®°¡ÀÇ °ßÇØ
  • ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð ¹× Á¦¾È

Á¦5Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå : ±â¼ú À¯Çüº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå : ±â¼ú À¯Çüº°, ½ÇÀû-°¡´É¼º ºÐ¼®
  • ¿þ¾î·¯ºí ·Îº¿ Çü ¿Ü°ñ°Ý ¼¼°è ½ÃÀå : ±â¼ú À¯Çüº° ÃßÁ¤¡¤¿¹Ãø2020-2030³â
  • ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • µ¿·ÂÇü
    • Æнúê

Á¦6Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå : ¿ëµµº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå : ¿ëµµº°, ½ÇÀû-°¡´É¼º ºÐ¼®
  • ¿þ¾î·¯ºí ·Îº¿ Çü ¿Ü°ñ°Ý ¼¼°è ½ÃÀå : ¿ëµµº° ÃßÁ¤¡¤¿¹Ãø2020-2030³â
  • ¿þ¾î·¯ºí ·Îº¿ Çü ¿Ü°ñ°Ý ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • ÇコÄɾî
    • »ê¾÷¿ë
    • ¹æÀ§¡¤Ç×°ø¿ìÁÖ
    • ±âŸ

Á¦7Àå ¼¼°èÀÇ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå, Áö¿ª ºÐ¼®

  • ÁÖ¿ä ±¹°¡
  • ÁÖ¿ä ½ÅÈï ±¹°¡
  • ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå, Áö¿ªº° ½ÃÀå ÇöȲ
  • ºÏ¹Ì
    • ¹Ì±¹
      • ±â¼ú À¯Çü ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • ¿ëµµ ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
    • ij³ª´Ù
  • À¯·´ ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå ÇöȲ
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå ÇöȲ
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä« ¿þ¾î·¯ºí ·Îº¿ ¿Ü°ñ°Ý ½ÃÀå ÇöȲ
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦8Àå °æÀï Á¤º¸

  • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • CYBERDYNE, INC.(Japan)
      • ÁÖ¿ä Á¤º¸
      • °³¿ä
      • À繫(µ¥ÀÌÅÍ ÀÔ¼ö°¡ °¡´ÉÇÑ °æ¿ì)
      • Á¦Ç° °³¿ä
      • ÃÖ±Ù µ¿Çâ
    • Ekso Bionics(U.S.)
    • Hocoma(Switzerland)
    • ReWalk Robotics Inc(U.S.)
    • Bionik Laboratories Corp.(Canada)
    • ExoAtlet(Luxembourg)
    • Lockheed Martin Inc(U.S.)
    • Rex Bionics Pty Ltd.(U.S.)
    • Sarcos Technology and Robotics Corporation
    • Wearable Robotics Srl(Italy)

Á¦9Àå Á¶»ç °úÁ¤

  • Á¶»ç °úÁ¤
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • °ËÁõ
    • ÃâÆÇ
  • Á¶»ç ¼Ó¼º
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç
LSH 23.10.25

Global Wearable Robotic Exoskeleton Market is valued at approximately USD 964.42 million in 2022 and is anticipated to grow with a healthy growth rate of more than 43.60% over the forecast period 2023-2030. The wearable robotic exoskeleton market refers to the industry involved in the design, development, manufacturing, and deployment of wearable robotic devices that enhance and support human mobility and physical capabilities. Wearable robotic exoskeletons are external mechanical structures worn by individuals to augment their strength, endurance, and mobility for various applications. The major driving factors for the Global Wearable Robotic Exoskeleton Market are the increasing adoption of exoskeleton devices in medical industry and supportive government initiatives. Moreover, advances in robotics, sensor technologies and an increasing aging population are creating lucrative growth opportunities for the market over the forecast period 2023-2030.

A Wearable robotic exoskeletons are increasingly being used in rehabilitation and physical therapy settings to assist patients with regaining mobility and strength after injuries or surgeries. According to the American Heart Association, stroke affects a considerable number of individuals, with millions of Americans having experienced a stroke and a projected increase in new cases each year. Furthermore, a significant portion of stroke survivors experience lower-limb disabilities, making walking and mobility challenging. In the healthcare industry, major companies are actively working to solidify their market positions by introducing technologically advanced devices. This strategic approach enables them to remain competitive in the global market. For example, in January 2020, GenElex Technologies revealed its commitment to manufacturing external wearable devices designed for individuals affected by paralysis, stroke, and spinal cord injuries. The exoskeleton devices developed by the company have the potential to enhance the limbic capabilities of these individuals, assisting them in regaining mobility and improving their quality of life. Along with this, the rising aging population is driving the growth of the market over the forecast period 2023-2030. For instance, according to The World Bank, in 2018, the aged population in Brazil was 1,86,90,608 which increased up to 2,03,89,282 in 2020. However, the high cost of Wearable Robotic Exoskeleton stifles market growth throughout the forecast period of 2023-2030.

The key regions considered for the Global Wearable Robotic Exoskeleton Market study includes Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America is a leading market for wearable robotic exoskeletons in 2022. The region is characterized by significant investments in research and development, strong healthcare infrastructure, and a focus on technological advancements. The United States and Canada are the key contributors to the market growth, driven by the demand for exoskeletons in the healthcare, military, and industrial sectors. The Asia Pacific region is witnessing rapid growth in the wearable robotic exoskeleton market. Countries such Japan, South Korea, and China are at the forefront of adopting exoskeleton technology. The region showcases a strong presence of exoskeleton manufacturers and a growing demand for exoskeletons in industries such as manufacturing, logistics, and healthcare. Increasing investment in research and development and supportive government policies contribute to market growth.

Major market player included in this report are:

  • CYBERDYNE, INC. (Japan)
  • Ekso Bionics (U.S.)
  • Hocoma (Switzerland)
  • ReWalk Robotics Inc (U.S.)
  • Bionik Laboratories Corp. (Canada)
  • ExoAtlet (Luxembourg)
  • Lockheed Martin Inc(U.S.)
  • Rex Bionics Pty Ltd. (U.S.)
  • Sarcos Technology and Robotics Corporation
  • Wearable Robotics Srl (Italy)

Recent Developments in the Market:

  • In August 2021, Cyberdyne Inc. and J-Workout Inc. will launch a new service called Neuro HALFIT as a result of their business partnership. The service uses Wearable Cyborg HAL technology to start the brain's nervous system's activation loop. Neuro HALFIT aims to support the functional improvement of patients with decreased motor functions.
  • In March 2021, Ekso Bionics entered into a collaboration with the American Physiatry Society to educate doctors about the clinical benefits of the EksoNR exoskeleton. This collaboration focuses on raising awareness among physicians and therapists regarding Ekso Bionics' technology and the proper integration of robots into rehabilitation programs.

Global Wearable Robotic Exoskeleton Market Report Scope:

  • Historical Data: 2020 - 2021
  • Base Year for Estimation: 2022
  • Forecast period: 2023-2030
  • Report Coverage: Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Segments Covered: Technology Type, Application, Region
  • Regional Scope: North America; Europe; Asia Pacific; Latin America; Middle East & Africa
  • Customization Scope: Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and Technology Type offerings of key players. The detailed segments and sub-segment of the market are explained below.

By Technology Type:

  • Powered
  • Passive

By Application:

  • Healthcare
  • Industrial
  • Defense & Aerospace
  • Others

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Table of Contents

Chapter 1. Executive Summary

  • 1.1. Market Snapshot
  • 1.2. Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Million)
    • 1.2.1. Wearable Robotic Exoskeleton Market, by Region, 2020-2030 (USD Million)
    • 1.2.2. Wearable Robotic Exoskeleton Market, by Technology Type, 2020-2030 (USD Million)
    • 1.2.3. Wearable Robotic Exoskeleton Market, by Application, 2020-2030 (USD Million)
  • 1.3. Key Trends
  • 1.4. Estimation Methodology
  • 1.5. Research Assumption

Chapter 2. Global Wearable Robotic Exoskeleton Market Definition and Scope

  • 2.1. Objective of the Study
  • 2.2. Market Definition & Scope
    • 2.2.1. Industry Evolution
    • 2.2.2. Scope of the Study
  • 2.3. Years Considered for the Study
  • 2.4. Currency Conversion Rates

Chapter 3. Global Wearable Robotic Exoskeleton Market Dynamics

  • 3.1. Wearable Robotic Exoskeleton Market Impact Analysis (2020-2030)
    • 3.1.1. Market Drivers
      • 3.1.1.1. Increasing Adoption of Exoskeleton Devices
      • 3.1.1.2. Supportive government initiatives
      • 3.1.1.3. Rising investment in the industry
    • 3.1.2. Market Challenges
      • 3.1.2.1. High Cost of Wearable Robotic Exoskeleton
    • 3.1.3. Market Opportunities
      • 3.1.3.1. Advances in Robotics and Sensor Technologies
      • 3.1.3.2. Increasing Aging Population

Chapter 4. Global Wearable Robotic Exoskeleton Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Porter's 5 Force Impact Analysis
  • 4.3. PEST Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
    • 4.3.5. Environmental
    • 4.3.6. Legal
  • 4.4. Top investment opportunity
  • 4.5. Top winning strategies
  • 4.6. COVID-19 Impact Analysis
  • 4.7. Disruptive Trends
  • 4.8. Industry Expert Perspective
  • 4.9. Analyst Recommendation & Conclusion

Chapter 5. Global Wearable Robotic Exoskeleton Market, by Technology Type

  • 5.1. Market Snapshot
  • 5.2. Global Wearable Robotic Exoskeleton Market by Technology Type, Performance - Potential Analysis
  • 5.3. Global Wearable Robotic Exoskeleton Market Estimates & Forecasts by Technology Type 2020-2030 (USD Million)
  • 5.4. Wearable Robotic Exoskeleton Market, Sub Segment Analysis
    • 5.4.1. Powered
    • 5.4.2. Passive

Chapter 6. Global Wearable Robotic Exoskeleton Market, by Application

  • 6.1. Market Snapshot
  • 6.2. Global Wearable Robotic Exoskeleton Market by Application, Performance - Potential Analysis
  • 6.3. Global Wearable Robotic Exoskeleton Market Estimates & Forecasts by Application 2020-2030 (USD Million)
  • 6.4. Wearable Robotic Exoskeleton Market, Sub Segment Analysis
    • 6.4.1. Healthcare
    • 6.4.2. Industrial
    • 6.4.3. Defense & Aerospace
    • 6.4.4. Others

Chapter 7. Global Wearable Robotic Exoskeleton Market, Regional Analysis

  • 7.1. Top Leading Countries
  • 7.2. Top Emerging Countries
  • 7.3. Wearable Robotic Exoskeleton Market, Regional Market Snapshot
  • 7.4. North America Wearable Robotic Exoskeleton Market
    • 7.4.1. U.S. Wearable Robotic Exoskeleton Market
      • 7.4.1.1. Technology Type breakdown estimates & forecasts, 2020-2030
      • 7.4.1.2. Application breakdown estimates & forecasts, 2020-2030
    • 7.4.2. Canada Wearable Robotic Exoskeleton Market
  • 7.5. Europe Wearable Robotic Exoskeleton Market Snapshot
    • 7.5.1. U.K. Wearable Robotic Exoskeleton Market
    • 7.5.2. Germany Wearable Robotic Exoskeleton Market
    • 7.5.3. France Wearable Robotic Exoskeleton Market
    • 7.5.4. Spain Wearable Robotic Exoskeleton Market
    • 7.5.5. Italy Wearable Robotic Exoskeleton Market
    • 7.5.6. Rest of Europe Wearable Robotic Exoskeleton Market
  • 7.6. Asia-Pacific Wearable Robotic Exoskeleton Market Snapshot
    • 7.6.1. China Wearable Robotic Exoskeleton Market
    • 7.6.2. India Wearable Robotic Exoskeleton Market
    • 7.6.3. Japan Wearable Robotic Exoskeleton Market
    • 7.6.4. Australia Wearable Robotic Exoskeleton Market
    • 7.6.5. South Korea Wearable Robotic Exoskeleton Market
    • 7.6.6. Rest of Asia Pacific Wearable Robotic Exoskeleton Market
  • 7.7. Latin America Wearable Robotic Exoskeleton Market Snapshot
    • 7.7.1. Brazil Wearable Robotic Exoskeleton Market
    • 7.7.2. Mexico Wearable Robotic Exoskeleton Market
  • 7.8. Middle East & Africa Wearable Robotic Exoskeleton Market
    • 7.8.1. Saudi Arabia Wearable Robotic Exoskeleton Market
    • 7.8.2. South Africa Wearable Robotic Exoskeleton Market
    • 7.8.3. Rest of Middle East & Africa Wearable Robotic Exoskeleton Market

Chapter 8. Competitive Intelligence

  • 8.1. Key Company SWOT Analysis
    • 8.1.1. Company 1
    • 8.1.2. Company 2
    • 8.1.3. Company 3
  • 8.2. Top Market Strategies
  • 8.3. Company Profiles
    • 8.3.1. CYBERDYNE, INC. (Japan)
      • 8.3.1.1. Key Information
      • 8.3.1.2. Overview
      • 8.3.1.3. Financial (Subject to Data Availability)
      • 8.3.1.4. Product Summary
      • 8.3.1.5. Recent Developments
    • 8.3.2. Ekso Bionics (U.S.)
    • 8.3.3. Hocoma (Switzerland)
    • 8.3.4. ReWalk Robotics Inc (U.S.)
    • 8.3.5. Bionik Laboratories Corp. (Canada)
    • 8.3.6. ExoAtlet (Luxembourg)
    • 8.3.7. Lockheed Martin Inc (U.S.)
    • 8.3.8. Rex Bionics Pty Ltd. (U.S.)
    • 8.3.9. Sarcos Technology and Robotics Corporation
    • 8.3.10. Wearable Robotics Srl (Italy)

Chapter 9. Research Process

  • 9.1. Research Process
    • 9.1.1. Data Mining
    • 9.1.2. Analysis
    • 9.1.3. Market Estimation
    • 9.1.4. Validation
    • 9.1.5. Publishing
  • 9.2. Research Attributes
  • 9.3. Research Assumption
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦