½ÃÀ庸°í¼­
»óÇ°ÄÚµå
1363862

¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø, À¯Çüº°, ÃÖÁ¾ »ç¿ëÀÚ »ê¾÷º°, ¹èÆ÷ ¹× Áö¿ªº° ºÐ¼®(2023-2030³â)

Global Anomaly Detection Market Size study & Forecast, by Type (Solutions, Service), by End-user Industry (BFSI, Manufacturing, Healthcare, IT and Telecommunications, Others), by Deployment (On-premise, Cloud) and Regional Analysis, 2023-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óÇ°Àº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ÀÌ»ó ¡ÈÄ Å½Áö ½ÃÀåÀº ¿¹Ãø ±â°£ÀÎ 2023³âºÎÅÍ 2030³â±îÁö 15.30% ÀÌ»óÀÇ °ß½ÇÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¾Æ³ë¸»¸® ŽÁö´Â µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ ¿¹»óµÇ´Â µ¿ÀÛÀ̳ª ÀϹÝÀûÀÎ ÆÐÅÏ¿¡¼­ Å©°Ô ¹þ¾î³­ ÆÐÅÏÀ̳ª °üÂûÀ» ½Äº°ÇÏ´Â °úÁ¤À» ¸»ÇÕ´Ï´Ù. ±ÝÀ¶, »çÀ̹ö º¸¾È, Á¦Á¶, ÀÇ·á µî ´Ù¾çÇÑ ºÐ¾ß¿¡¼­ ºÎÁ¤, ¿À·ù, ÀÌ»óÀ» ³ªÅ¸³¾ ¼ö ÀÖ´Â ºñÁ¤»óÀûÀ̰ųª Àǽɽº·¯¿î ÇൿÀ» ŽÁöÇϱâ À§ÇØ ÀϹÝÀûÀ¸·Î »ç¿ëµË´Ï´Ù. Ä¿³ØƼµå µð¹ÙÀ̽º Áõ°¡, ¸Ó½Å·¯´×°ú ÀΰøÁö´ÉÀÇ µµÀÔ È®´ë µîÀÇ ¿äÀÎÀ¸·Î ÀÎÇØ ÀÌ»ó ŽÁö ½ÃÀåÀÌ È®´ëµÇ°í ÀÖ½À´Ï´Ù. ³ë¸Ö ŽÁöÀÇ ¸ñÀûÀº Á¤»ó µ¿ÀÛ°ú ºñÁ¤»ó ¶Ç´Â ºñÁ¤»óÀûÀÎ µ¿ÀÛÀ» ºÐ¸®ÇÏ´Â °ÍÀÔ´Ï´Ù. ŽÁö ¹æ¹ýÀº µ¥ÀÌÅÍÀÇ Æ¯¼º°ú ƯÁ¤ ¹®Á¦ ¿µ¿ª¿¡ µû¶ó ´Þ¶óÁý´Ï´Ù. 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ±× Á߿伺ÀÌ Á¡Â÷ Áõ°¡ÇÏ°í ÀÖ½À´Ï´Ù.

Ä¿³ØƼµå µð¹ÙÀ̽º´Â ȯ°æ ¼¾¼­, ±â°è ¼¾¼­, ¿þ¾î·¯ºí µð¹ÙÀ̽º µî ´Ù¾çÇÑ ¼Ò½º¿¡¼­ Áö¼ÓÀûÀ¸·Î µ¥ÀÌÅ͸¦ ¼öÁýÇÏ°í ÀÖ½À´Ï´Ù. Statista¿¡ µû¸£¸é, 2030³â¿¡´Â ¼¼°èÀûÀ¸·Î 170¾ï °³ÀÇ Ä¿³ØƼµå µð¹ÙÀ̽º°¡ ¿¬°áµÉ °ÍÀ¸·Î ¿¹»óµÇ¸ç, »ç¹°ÀÎÅͳݿ¡ ¿¬°áµÈ µð¹ÙÀ̽º Áß ¼ÒºñÀÚ ºÎ¹®ÀÌ ¾ÐµµÀûÀ¸·Î ¸¹À» °ÍÀ¸·Î ¿¹»óÇÏ°í ÀÖ½À´Ï´Ù. ¼ÒºñÀÚ ºÎ¹®ÀÌ ¾ÐµµÀûÀ¸·Î ¸¹À» °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, ¼¼°è »ç¹°ÀÎÅÍ³Ý ¿¬°á ±â±âÀÇ ÃÑ ¼³Ä¡ ¼ö´Â 2021³â 138¾ï °³¿¡¼­ 2025³â 309¾ï °³¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÃÀåÀ» ÁÖµµÇÏ´Â ¶Ç ´Ù¸¥ Áß¿äÇÑ ¿ä¼Ò´Â ¸Ó½Å·¯´×°ú ÀΰøÁö´ÉÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ°í ÀÖ´Ù´Â Á¡ÀÔ´Ï´Ù. ¸Ó½Å·¯´×°ú AI ±â¼úÀº ÆÐÅÏ ÀνÄ, Åë°èÀû ¸ðµ¨¸µ, ¾Ó»óºí ±â¹ý, Áö¼ÓÀû ÇнÀÀ» °¡´ÉÇÏ°Ô ÇÔÀ¸·Î½á ¾Æ³ª³ë¹Ì ŽÁö¸¦ À§ÇÑ °­·ÂÇÑ µµ±¸¸¦ Á¦°øÇÕ´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº º¹ÀâÇÑ µ¥ÀÌÅÍ ¼¼Æ®ÀÇ ÀÌ»ó ¡Èĸ¦ °¨ÁöÇÏ´Â ´É·ÂÀ» Çâ»ó½ÃÅ°°í, Á¤È®µµ¸¦ ³ôÀÌ°í, º¯È­ÇÏ´Â ÆÐÅÏ¿¡ ÀûÀÀÇÔÀ¸·Î½á ´Ù¾çÇÑ »ê¾÷°ú ¿ëµµ¿¡¼­ ÀÌ»ó ¡Èĸ¦ º¸´Ù È¿À²ÀûÀÌ°í È¿°úÀûÀ¸·Î °¨ÁöÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù. Á¡À¯À²·Î ¼¼°è ¸Ó½Å·¯´× ¾÷°è¸¦ ¼±µµÇÏ°í, ÅÙ¼­Ç÷οì(TensorFlow)¿Í ÅäÄ¡(Torch)°¡ ±× µÚ¸¦ ÀÕ°í ÀÖ½À´Ï´Ù. ¶ÇÇÑ Next Move Strategy Consulting¿¡ µû¸£¸é ÀΰøÁö´É ºÐ¾ß´Â ÇâÈÄ 10³â°£ ºü¸£°Ô ¼ºÀåÇÒ °ÍÀÔ´Ï´Ù. ÇöÀç ¾à 1,000¾ï ´Þ·¯ÀÇ °¡Ä¡´Â 2030³â±îÁö µÎ ¹è ÀÌ»ó Áõ°¡ÇÏ¿© ¾à 2Á¶ ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ¶ÇÇÑ, »çÀ̹ö º¸¾È »ç·Ê Áõ°¡¿Í Ŭ¶ó¿ìµå ±â¼ú äÅÃÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ½ÃÀåÀÌ À¯¸®ÇÏ°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÇÏÁö¸¸, ³ôÀº ¾Æ³ª¸ð¸® ŽÁö ºñ¿ëÀº 2023³âºÎÅÍ 2030³â±îÁö ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

¾Æ³ë¸»¸® ŽÁö ¼¼°è ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÔ´Ï´Ù. ºÏ¹Ì´Â ½º¸¶Æ® Ä¿³ØƼµå µð¹ÙÀ̽ºÀÇ »ç¿ë Áõ°¡¿Í ÀÌ Áö¿ª¿¡¼­ÀÇ »ç¹° ÀÎÅͳÝÀÇ ¿ìÀ§·Î ÀÎÇØ 2022³â ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, Statista¿¡ µû¸£¸é 2020³â ¼¼°è ÀÀ´äÀÚÀÇ 59%´Â NetFlow ±â¹Ý ºÐ¼®±â°¡ ºÐ»êÇü ¼­ºñ½º °ÅºÎ °ø°Ý¿¡ ¸Å¿ì È¿°úÀûÀÎ µµ±¸¶ó°í ´äÇß½À´Ï´Ù.¿¡ ´ëÇØ ¸Å¿ì È¿°úÀûÀÎ µµ±¸¶ó°í Æò°¡Çß½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ´Â Ä¿³ØƼµå µð¹ÙÀ̽º Áõ°¡·Î ÀÎÇÑ ÀÌ»ó ¡ÈÄ Áõ°¡¿Í »ç¹°ÀÎÅͳÝÀ¸·Î ÀÎÇØ ½ÃÀå °ø°£¿¡¼­ ½Ã½ºÅÛ Ä§ÀÔ °¡´É¼ºÀÌ ³ô¾ÆÁ³±â ¶§¹®À¸·Î ºÐ¼®µË´Ï´Ù.

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÃÖ±Ù ¸î ³âµ¿¾È ´Ù¾çÇÑ ºÎ¹® ¹× ±¹°¡º° ½ÃÀå ±Ô¸ð¸¦ Á¤ÀÇÇÏ°í ÇâÈÄ ¸î ³âµ¿¾È ½ÃÀå ±Ô¸ð¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼­´Â Á¶»ç ´ë»ó ±¹°¡ÀÇ »ê¾÷À» ÁúÀû/¾çÀû Ãø¸éÀ» ¸ðµÎ Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú °úÁ¦¿Í °°Àº Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸µµ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä ±â¾÷ÀÇ °æÀï ±¸µµ¿Í Á¦Ç° Á¦°ø¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚµéÀÌ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀå¿¡¼­ÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇÔÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

  • Á¶»ç ¸ñÀû
  • ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
    • ¾÷°è ÁøÈ­
    • Á¶»ç ¹üÀ§
  • Á¶»ç ´ë»ó ³âµµ
  • ÅëÈ­ ȯ»êÀ²

Á¦3Àå ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå ¿ªÇÐ

  • ÀÌ»ó ŽÁö ½ÃÀå ¿µÇ⠺м®(2020³â-2030³â)
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
    • ½ÃÀå ±âȸ

Á¦4Àå ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's Five Forces ¸ðµ¨
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ¹ÙÀ̾îÀÇ ±³¼··Â
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • Porter's Five ForcesÀÇ ¿µÇ⠺м®
  • PEST ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ȯ°æ
    • ¹ý·ü
  • ÁÖ¿ä ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«
  • COVID-19ÀÇ ¿µÇ⠺м®
  • Æı«Àû µ¿Çâ
  • ¾÷°è Àü¹®°¡ÀÇ °ßÇØ
  • ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð ¹× Á¦¾È

Á¦5Àå ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : À¯Çüº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : À¯Çüº°, ½ÇÀû¡¤°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : À¯Çüº°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
  • ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • ¼Ö·ç¼Ç
    • ¼­ºñ½º

Á¦6Àå ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º°, ½ÇÀû¡¤°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
  • ÀÌ»ó ŽÁö ½ÃÀå ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
    • Á¦Á¶¾÷
    • ÀÇ·á
    • IT ¹× Åë½Å
    • ±âŸ

Á¦7Àå ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : Àü°³ Çüź°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : Àü°³ Çüź°, ½ÇÀû¡¤°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : Àü°³ Çüź°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
  • ÀÌ»ó ŽÁö ½ÃÀå ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ¿ÂÇÁ·¹¹Ì½º
    • Ŭ¶ó¿ìµå

Á¦8Àå ¼¼°èÀÇ ÀÌ»ó ŽÁö ½ÃÀå : Áö¿ªº° ºÐ¼®

  • ÁÖ¿ä ±¹°¡
  • ÁÖ¿ä ½ÅÈï ±¹°¡
  • ÀÌ»ó ŽÁö ½ÃÀå Áö¿ªº° ½ÃÀå ÇöȲ
  • ºÏ¹Ì
    • ¹Ì±¹
      • À¯Çüº°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • ÃÖÁ¾»ç¿ëÀÚ »ê¾÷º°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • Àü°³ Çüź°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
    • ij³ª´Ù
  • À¯·´ ÀÌ»ó ŽÁö ½ÃÀå ÇöȲ
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾ç ÀÌ»ó ŽÁö ½ÃÀå ÇöȲ
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä« ÀÌ»ó ŽÁö ½ÃÀå ÇöȲ
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦9Àå °æÀï Á¤º¸

  • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • Splunk, Inc
      • ÁÖ¿ä Á¤º¸
      • °³¿ä
      • À繫(µ¥ÀÌÅÍ ÀÔ¼ö°¡ °¡´ÉÇÑ °æ¿ì)
      • Á¦Ç° °³¿ä
    • Dell Inc
    • Securonix, Inc
    • The International Business Machines Corporation
    • Gen Digital Inc
    • Wipro Limited
    • Cisco Systems, Inc
    • SAS Institute, Inc
    • Hewlett Packard Enterprise Development LP
    • Trend Micro, Inc

Á¦10Àå Á¶»ç °úÁ¤

  • Á¶»ç °úÁ¤
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • °ËÁõ
    • ÃâÆÇ
  • Á¶»ç ¼Ó¼º
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç
LSH 23.11.06

Global Anomaly Detection Market is anticipated to grow with a healthy growth rate of more than 15.30% over the forecast period 2023-2030. Anomaly detection refers to the process of identifying patterns or observations that deviate significantly from the expected behavior or normal patterns within a dataset. It is commonly used in various fields such as finance, cybersecurity, manufacturing, and healthcare to detect unusual or suspicious activities that may indicate fraud, errors, or anomalies. The Anomaly Detection market is expanding because of factors such as the increasing number of connected devices and the growing adoption of machine learning and artificial intelligence. The goal of anomaly detection is to separate normal behavior from abnormal or anomalous behavior. The detection methods, depending on the nature of the data and the specific problem domain. Its importance has progressively increased during the forecast period 2023-2030.

Connected devices continuously collect data from various sources, such as environmental sensors, machine sensors, and wearable devices. Anomaly detection algorithms can analyze this real-time data to identify unusual patterns or deviations from expected behavior. According to Statista, with 17 billion connected devices worldwide in 2030, the consumer sector is expected to dominate in terms of the number of Internet of Things connected devices. Furthermore, the total installed base of Internet of Things connected devices globally is predicted to reach 30.9 billion units by 2025, up from 13.8 billion units in 2021. Another important factor that drives the market is the increased adoption of machine learning and artificial intelligence. Machine learning and AI techniques provide powerful tools for anomaly detection by enabling pattern recognition, statistical modeling, ensemble methods, and continuous learning. These techniques enhance the ability to detect anomalies in complex datasets, improve accuracy, and adapt to changing patterns, making anomaly detection more efficient and effective across various industries and applications. As per Statista, Newsle led the global machine learning industry in 2021 with an 88.71% market share, followed by TensorFlow and Torch. In addition, According to Next Move Strategy Consulting, the artificial intelligence sector increase rapidly over the next decade. Its current worth of roughly USD 100 billion is predicted to more than double by 2030, reaching nearly USD 2 trillion. Also, the growing number of cybersecurity cases and rising adoption of cloud technology would create a lucrative growth prospectus for the market over the forecast period. However, the high cost of Anomaly Detection stifles market growth throughout the forecast period of 2023-2030.

The key regions considered for the Global Anomaly Detection Market study includes Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market in 2022 owing to the dominance of increased use of smart linked devices, and the Industrial Internet of Things in the region. According to Statista, In 2020, 59% of respondents worldwide rated NetFlow-based analyzers as a very effective tool against distributed denial of service assaults. Asia Pacific is expected to grow significantly during the forecast period, owing to factors such as an increase in anomalies as a result of connected devices and the Internet of Things has raised the possibility of a system intrusion in the market space.

Major market player included in this report are:

  • Splunk, Inc
  • Dell Inc
  • Securonix, Inc
  • The International Business Machines Corporation
  • Gen Digital Inc
  • Wipro Limited
  • Cisco Systems, Inc
  • SAS Institute, Inc
  • Hewlett Packard Enterprise Development LP
  • Trend Micro, Inc

Recent Developments in the Market:

  • In June 2023, CAE, a Canadian aerospace technology business, has announced the delivery of its Magnetic Anomaly Detection Extended Role system to Mitsubishi Electric Corporation of Japan. The Japanese business will install the technology on the Japan Maritime Self-Defense Force's P1 Maritime Patrol Aircraft.

Global Anomaly Detection Market Report Scope:

  • Historical Data: 2020 - 2021
  • Base Year for Estimation: 2022
  • Forecast period: 2023-2030
  • Report Coverage: Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Segments Covered: Type, End-user Industry, Deployment, Region
  • Regional Scope: North America; Europe; Asia Pacific; Latin America; Middle East & Africa
  • Customization Scope: Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below.

By Type

  • Solutions
  • Service

By End-user Industry

  • BFSI
  • Manufacturing
  • Healthcare
  • IT and Telecommunications
  • Others

By Deployment

  • On-premise
  • Cloud

By Region:

  • North America
  • U.S.
  • Canada
  • Europe
  • UK
  • Germany
  • France
  • Spain
  • Italy
  • ROE
  • Asia Pacific
  • China
  • India
  • Japan
  • Australia
  • South Korea
  • RoAPAC
  • Latin America
  • Brazil
  • Mexico
  • Middle East & Africa
  • Saudi Arabia
  • South Africa
  • Rest of Middle East & Africa

Table of Contents

Chapter 1. Executive Summary

  • 1.1. Market Snapshot
  • 1.2. Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Billion)
    • 1.2.1. Anomaly Detection Market, by Region, 2020-2030 (USD Billion)
    • 1.2.2. Anomaly Detection Market, by Type, 2020-2030 (USD Billion)
    • 1.2.3. Anomaly Detection Market, by End-user Industry, 2020-2030 (USD Billion)
    • 1.2.4. Anomaly Detection Market, by Deployment, 2020-2030 (USD Billion)
  • 1.3. Key Trends
  • 1.4. Estimation Methodology
  • 1.5. Research Assumption

Chapter 2. Global Anomaly Detection Market Definition and Scope

  • 2.1. Objective of the Study
  • 2.2. Market Definition & Scope
    • 2.2.1. Industry Evolution
    • 2.2.2. Scope of the Study
  • 2.3. Years Considered for the Study
  • 2.4. Currency Conversion Rates

Chapter 3. Global Anomaly Detection Market Dynamics

  • 3.1. Anomaly Detection Market Impact Analysis (2020-2030)
    • 3.1.1. Market Drivers
      • 3.1.1.1. Increasing number of connected devices
      • 3.1.1.2. Growing adoption of machine learning and artificial intelligence
    • 3.1.2. Market Challenges
      • 3.1.2.1. High Cost of Anomaly Detection
    • 3.1.3. Market Opportunities
      • 3.1.3.1. Growing number of cybersecurity cases
      • 3.1.3.2. Rising adoption of cloud technology

Chapter 4. Global Anomaly Detection Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Porter's 5 Force Impact Analysis
  • 4.3. PEST Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
    • 4.3.5. Environmental
    • 4.3.6. Legal
  • 4.4. Top investment opportunity
  • 4.5. Top winning strategies
  • 4.6. COVID-19 Impact Analysis
  • 4.7. Disruptive Trends
  • 4.8. Industry Expert Perspective
  • 4.9. Analyst Recommendation & Conclusion

Chapter 5. Global Anomaly Detection Market, by Type

  • 5.1. Market Snapshot
  • 5.2. Global Anomaly Detection Market by Type, Performance - Potential Analysis
  • 5.3. Global Anomaly Detection Market Estimates & Forecasts by Type 2020-2030 (USD Billion)
  • 5.4. Anomaly Detection Market, Sub Segment Analysis
    • 5.4.1. Solutions
    • 5.4.2. Service

Chapter 6. Global Anomaly Detection Market, by End-user Industry

  • 6.1. Market Snapshot
  • 6.2. Global Anomaly Detection Market by End-user Industry, Performance - Potential Analysis
  • 6.3. Global Anomaly Detection Market Estimates & Forecasts by End-user Industry 2020-2030 (USD Billion)
  • 6.4. Anomaly Detection Market, Sub Segment Analysis
    • 6.4.1. BFSI
    • 6.4.2. Manufacturing
    • 6.4.3. Healthcare
    • 6.4.4. IT and Telecommunications
    • 6.4.5. Others

Chapter 7. Global Anomaly Detection Market, by Deployment

  • 7.1. Market Snapshot
  • 7.2. Global Anomaly Detection Market by Deployment, Performance - Potential Analysis
  • 7.3. Global Anomaly Detection Market Estimates & Forecasts by Deployment 2020-2030 (USD Billion)
  • 7.4. Anomaly Detection Market, Sub Segment Analysis
    • 7.4.1. On-premise
    • 7.4.2. Cloud

Chapter 8. Global Anomaly Detection Market, Regional Analysis

  • 8.1. Top Leading Countries
  • 8.2. Top Emerging Countries
  • 8.3. Anomaly Detection Market, Regional Market Snapshot
  • 8.4. North America Anomaly Detection Market
    • 8.4.1. U.S. Anomaly Detection Market
      • 8.4.1.1. Type breakdown estimates & forecasts, 2020-2030
      • 8.4.1.2. End-user Industry breakdown estimates & forecasts, 2020-2030
      • 8.4.1.3. Deployment breakdown estimates & forecasts, 2020-2030
    • 8.4.2. Canada Anomaly Detection Market
  • 8.5. Europe Anomaly Detection Market Snapshot
    • 8.5.1. U.K. Anomaly Detection Market
    • 8.5.2. Germany Anomaly Detection Market
    • 8.5.3. France Anomaly Detection Market
    • 8.5.4. Spain Anomaly Detection Market
    • 8.5.5. Italy Anomaly Detection Market
    • 8.5.6. Rest of Europe Anomaly Detection Market
  • 8.6. Asia-Pacific Anomaly Detection Market Snapshot
    • 8.6.1. China Anomaly Detection Market
    • 8.6.2. India Anomaly Detection Market
    • 8.6.3. Japan Anomaly Detection Market
    • 8.6.4. Australia Anomaly Detection Market
    • 8.6.5. South Korea Anomaly Detection Market
    • 8.6.6. Rest of Asia Pacific Anomaly Detection Market
  • 8.7. Latin America Anomaly Detection Market Snapshot
    • 8.7.1. Brazil Anomaly Detection Market
    • 8.7.2. Mexico Anomaly Detection Market
  • 8.8. Middle East & Africa Anomaly Detection Market
    • 8.8.1. Saudi Arabia Anomaly Detection Market
    • 8.8.2. South Africa Anomaly Detection Market
    • 8.8.3. Rest of Middle East & Africa Anomaly Detection Market

Chapter 9. Competitive Intelligence

  • 9.1. Key Company SWOT Analysis
    • 9.1.1. Company 1
    • 9.1.2. Company 2
    • 9.1.3. Company 3
  • 9.2. Top Market Strategies
  • 9.3. Company Profiles
    • 9.3.1. Splunk, Inc
      • 9.3.1.1. Key Information
      • 9.3.1.2. Overview
      • 9.3.1.3. Financial (Subject to Data Availability)
      • 9.3.1.4. Product Summary
      • 9.3.1.5. Recent Developments
    • 9.3.2. Dell Inc
    • 9.3.3. Securonix, Inc
    • 9.3.4. The International Business Machines Corporation
    • 9.3.5. Gen Digital Inc
    • 9.3.6. Wipro Limited
    • 9.3.7. Cisco Systems, Inc
    • 9.3.8. SAS Institute, Inc
    • 9.3.9. Hewlett Packard Enterprise Development LP
    • 9.3.10. Trend Micro, Inc

Chapter 10. Research Process

  • 10.1. Research Process
    • 10.1.1. Data Mining
    • 10.1.2. Analysis
    • 10.1.3. Market Estimation
    • 10.1.4. Validation
    • 10.1.5. Publishing
  • 10.2. Research Attributes
  • 10.3. Research Assumption
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óÇ°À» ¼±Åà Áß
»óÇ° ºñ±³Çϱâ
Àüü»èÁ¦