½ÃÀ庸°í¼­
»óǰÄÚµå
1389174

¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ±Ô¸ð Á¶»ç ¹× ¿¹Ãø : ¹èÆ÷, ±â¾÷ À¯Çü, ¿ëµµ, »ê¾÷ ¹× Áö¿ªº° ºÐ¼®(2023-2030³â)

Global Data Mining Tools Market Size Study & Forecast, by Deployment, By Enterprise Type, By Application, By Industry, and Regional Analysis, 2023-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Bizwit Research & Consulting LLP | ÆäÀÌÁö Á¤º¸: ¿µ¹® | ¹è¼Û¾È³» : 2-3ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀåÀº 2022³â ¾à 9¾ï 70¸¸ ´Þ·¯·Î Æò°¡µÇ¾ú°í, ¿¹Ãø ±â°£ÀÎ 2023³âºÎÅÍ 2030³â±îÁö 13.2% ÀÌ»óÀÇ °ß½ÇÇÑ ¼ºÀå·ü·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀº ´ë±Ô¸ð µ¥ÀÌÅÍ ¼¼Æ®¿¡¼­ °¡Ä¡ ÀÖ´Â ÅëÂû·Â°ú ÆÐÅÏÀ» ÃßÃâÇÏ´Â °úÁ¤À» ÃËÁøÇÏ´Â ¼ÒÇÁÆ®¿þ¾î ¿ëµµ ¶Ç´Â Ç÷§ÆûÀÔ´Ï´Ù. ÀÌ·¯ÇÑ µµ±¸´Â ´Ù¾çÇÑ ±â¹ý°ú ¾Ë°í¸®ÁòÀ» »ç¿ëÇÏ¿© µ¥ÀÌÅ͸¦ Ž»ö, Á¶»ç ¹× ºÐ¼®ÇÏ¿© ¿¹Ãø ¹× ÀÇ»ç°áÁ¤¿¡ µµ¿òÀÌ µÇ´Â ¹ÌÈ®ÀÎµÈ ¿¬°ü¼º, ÆÐÅÏ ¹× Ãß¼¼¸¦ ½Äº°ÇÏ´Â °ÍÀ» ¸ñÇ¥·Î Çϸç, ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI), ÀÇ·á, ¼Ò¸Å, IT ¹× Åë½Å, Á¦Á¶, ±³À°, Á¤ºÎ µî ¸¹Àº »ê¾÷¿¡¼­ µ¥ÀÌÅÍ ¸¶ÀÌ´× ±â¼úÀ» Á¤±âÀûÀ¸·Î äÅÃÇϰí ÀÖ½À´Ï´Ù. À» Á¤±âÀûÀ¸·Î äÅÃÇϰí ÀÖ½À´Ï´Ù. ¿¹Ãø ºÐ¼®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡, ÀºÇà »ê¾÷¿¡¼­ µ¥ÀÌÅÍ ¸¶ÀÌ´× ÅøÀÇ »ç¿ë Áõ°¡, Á¶Á÷ÀÇ È¿À²¼ºÀ» ³ôÀ̱â À§ÇØ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø¿¡ ´ëÇÑ ¼±È£µµ Áõ°¡, µ¥ÀÌÅÍ ¾çÀÇ ´ëÆøÀûÀÎ Áõ°¡´Â ¼¼°èÀûÀ¸·Î ½ÃÀå ¼ö¿ä¸¦ ÃËÁøÇÏ´Â °¡Àå µÎµå·¯Áø ¿äÀÎÀÔ´Ï´Ù.

¶ÇÇÑ, Ŭ¶ó¿ìµå ±â¼úÀÇ ºÎ»óµµ ¼¼°è ½ÃÀå ¼ºÀå¿¡ ±àÁ¤ÀûÀÎ ¿µÇâÀ» ¹ÌÄ¡°í ÀÖ½À´Ï´Ù. Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀº ±â¾÷ÀÌ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø¿¡ ´õ ½±°í Àú·ÅÇÏ°Ô Á¢±ÙÇÒ ¼ö ÀÖ°Ô ÇØÁÝ´Ï´Ù. ¿¹¸¦ µé¾î, IEEE ComSoc¿¡ µû¸£¸é 2021³â Ŭ¶ó¿ìµå ÄÄÇ»ÆÃ¿¡ ´ëÇÑ ¼¼°è °ø°ø ÁöÃâÀº 3,323¾ï ´Þ·¯·Î 2020³â 2,700¾ï ´Þ·¯¿¡¼­ ¾à 23.1% Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ¿¡ µû¶ó Ŭ¶ó¿ìµå ÄÄÇ»ÆÃÀÇ Ã¤ÅÃÀÌ Áõ°¡ÇÏ¿© ´Ù¾çÇÑ ±â¾÷¿¡ ½ÃÀåÀ» Á¦°øÇÏ°í ½ÃÀå ¼ºÀåÀ» ÁÖµµÇϰí ÀÖ½À´Ï´Ù. ¶ÇÇÑ, °¡¿ëÇÑ µ¥ÀÌÅÍ ÀÚ»êÀ» Ȱ¿ëÇÏ·Á´Â ±â¾÷ÀÇ ÀνÄÀÌ ³ô¾ÆÁö°í µ¥ÀÌÅÍ ¸¶ÀÌ´× ¹× ¸Ó½Å·¯´× ¼Ö·ç¼ÇÀÇ µµÀÔÀÌ Áõ°¡ÇÔ¿¡ µû¶ó ¿¹Ãø ±â°£ µ¿¾È ´Ù¾çÇÑ À¯¸®ÇÑ ±âȸ¸¦ âÃâÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ±×·¯³ª µ¥ÀÌÅÍ ÇÁ¶óÀ̹ö½Ã, º¸¾È, ½Å·Ú¼º¿¡ ´ëÇÑ ¿ì·Á¿Í ¼÷·ÃµÈ ±â¼ú Àη¿¡ ´ëÇÑ ¿ä±¸´Â 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È ½ÃÀå ¼ºÀåÀ» ÀúÇØÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇϰí ÀÖ½À´Ï´Ù.

¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå Á¶»ç¿¡¼­ °í·ÁµÈ ÁÖ¿ä Áö¿ªÀº ¾Æ½Ã¾ÆÅÂÆò¾ç, ºÏ¹Ì, À¯·´, ¶óƾ¾Æ¸Þ¸®Ä«, Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«ÀÔ´Ï´Ù. ºÏ¹Ì´Â ÀΰøÁö´É, ¸Ó½Å·¯´×, »ç¹°ÀÎÅÍ³Ý µî Çõ½ÅÀûÀÎ ±â¼úÀÇ °³Ã´°ú Áö¿ø ÀÎÇÁ¶ó°¡ Àß °®Ãß¾îÁ® ÀÖ¾î 2022³â ½ÃÀåÀ» ÁÖµµÇÒ °ÍÀ¸·Î ¿¹»óÇß½À´Ï´Ù. ¹Ý¸é, ¾Æ½Ã¾ÆÅÂÆò¾çÀº ¿¹Ãø ±â°£ µ¿¾È °¡Àå ³ôÀº CAGR·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, IT ÀÎÇÁ¶ó °³¹ß ÁöÃâ Áõ°¡, ¼Ò±Ô¸ð ±â¾÷ÀÇ ±ÞÁõ, ¸¹Àº ±â¾÷ÀÇ »ó¾÷Àû ÅõÀÚ Áõ°¡·Î ÀÎÇØ ÀÌ Áö¿ª Àüü ½ÃÀå ¼ö¿ä°¡ Å©°Ô Áõ°¡ÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÀÌ ¿¬±¸ÀÇ ¸ñÀûÀº ÃÖ±Ù ¸î ³âµ¿¾È ´Ù¾çÇÑ ºÎ¹®°ú ±¹°¡ ½ÃÀå ±Ô¸ð¸¦ ÆÄ¾ÇÇϰí ÇâÈÄ ¸î ³âµ¿¾È ½ÃÀå ±Ô¸ð¸¦ ¿¹ÃøÇÏ´Â °ÍÀÔ´Ï´Ù. ÀÌ º¸°í¼­´Â Á¶»ç ´ë»ó ±¹°¡ÀÇ »ê¾÷ÀÇ ÁúÀû/¾çÀû Ãø¸éÀ» Æ÷ÇÔÇϵµ·Ï ¼³°èµÇ¾ú½À´Ï´Ù.

¶ÇÇÑ ½ÃÀåÀÇ ¹Ì·¡ ¼ºÀåÀ» ±ÔÁ¤ÇÏ´Â ÃËÁø¿äÀΰú °úÁ¦¿Í °°Àº Áß¿äÇÑ Ãø¸é¿¡ ´ëÇÑ ÀÚ¼¼ÇÑ Á¤º¸µµ Á¦°øÇÕ´Ï´Ù. ¶ÇÇÑ, ÁÖ¿ä ±â¾÷ÀÇ °æÀï ±¸µµ¿Í Á¦Ç° Á¦°ø¿¡ ´ëÇÑ »ó¼¼ÇÑ ºÐ¼®°ú ÇÔ²² ÀÌÇØ°ü°èÀÚµéÀÌ ÅõÀÚÇÒ ¼ö ÀÖ´Â ¹Ì½ÃÀû ½ÃÀå¿¡¼­ÀÇ ÀáÀçÀû ±âȸµµ Æ÷ÇÔÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

Á¦2Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§

  • Á¶»ç ¸ñÀû
  • ½ÃÀå Á¤ÀÇ¿Í ¹üÀ§
    • ¾÷°è ÁøÈ­
    • Á¶»ç ¹üÀ§
  • Á¶»ç ´ë»ó³âµµ
  • ÅëÈ­ ȯ»êÀ²

Á¦3Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ¿ªÇÐ

  • µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ¿µÇ⠺м®(2020³â-2030³â)
    • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
    • ½ÃÀå ±âȸ

Á¦4Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå »ê¾÷ ºÐ¼®

  • Porter's Five Forces ¸ðµ¨
    • °ø±Þ ±â¾÷ÀÇ ±³¼··Â
    • ¹ÙÀ̾îÀÇ ±³¼··Â
    • ½Å±Ô ÁøÃâ¾÷üÀÇ À§Çù
    • ´ëüǰÀÇ À§Çù
    • °æÀï ±â¾÷°£ °æÀï °ü°è
  • Porter's Five ForcesÀÇ ¿µÇ⠺м®
  • PEST ºÐ¼®
    • Á¤Ä¡
    • °æÁ¦
    • »çȸ
    • ±â¼ú
    • ȯ°æ
    • ¹ý·ü
  • ÁÖ¿ä ÅõÀÚ ±âȸ
  • ÁÖ¿ä ¼º°ø Àü·«
  • COVID-19ÀÇ ¿µÇ⠺м®
  • ÆÄ±«Àû µ¿Çâ
  • ¾÷°è Àü¹®°¡ÀÇ °ßÇØ
  • ¾Ö³Î¸®½ºÆ®ÀÇ °á·Ð ¹× Á¦¾È

Á¦5Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Àü°³ Çüź°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Àü°³ Çüź°, ½ÇÀû¡¤°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Àü°³ Çüź°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • ¿ÂÇÁ·¹¹Ì½º
    • Ŭ¶ó¿ìµå

Á¦6Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ±â¾÷ À¯Çüº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ±â¾÷ À¯Çüº°, ½ÇÀû¡¤°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ±â¾÷ À¯Çüº°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • ´ë±â¾÷
    • Áß¼Ò±â¾÷

Á¦7Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ¿ëµµº°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ¿ëµµº°, ½ÇÀû¡¤°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : ¿ëµµº°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå, ÇÏÀ§ ºÎ¹® ºÐ¼®
    • ¸¶ÄÉÆÃ
    • °ø±Þ¸Á ¹× Á¶´Þ
    • ħÀÔ Å½Áö
    • ºñÁî´Ï½º °Å·¡
    • ±âŸ

Á¦8Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : »ê¾÷º°

  • ½ÃÀå ÇöȲ
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : »ê¾÷º° ½ÇÀû-°¡´É¼º ºÐ¼®
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : »ê¾÷º°, ÃßÁ¤¡¤¿¹Ãø 2020-2030³â
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå, ÇÏÀ§ ºÎ¹®º° ºÐ¼®
    • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
    • ÀÇ·á
    • ¼Ò¸Å
    • IT ¹× Åë½Å
    • Á¦Á¶¾÷
    • ±³À°
    • Á¤ºÎ±â°ü
    • ±âŸ

Á¦9Àå ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå, Áö¿ª ºÐ¼®

  • ÁÖ¿ä ±¹°¡
  • ÁÖ¿ä ½ÅÈï ±¹°¡
  • ¼¼°èÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå : Áö¿ªº° ½ÃÀå ÇöȲ
  • ºÏ¹Ì
    • ¹Ì±¹
      • Àü°³ Çüź°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • ±â¾÷ À¯Çüº°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • ¿ëµµº°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
      • »ê¾÷º°, ÃßÁ¤¡¤¿¹Ãø, 2020-2030³â
    • ij³ª´Ù
  • À¯·´ÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ÇöȲ
    • ¿µ±¹
    • µ¶ÀÏ
    • ÇÁ¶û½º
    • ½ºÆäÀÎ
    • ÀÌÅ»¸®¾Æ
    • ±âŸ À¯·´
  • ¾Æ½Ã¾ÆÅÂÆò¾çÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ÇöȲ
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • Çѱ¹
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • ¶óƾ¾Æ¸Þ¸®Ä«ÀÇ µ¥ÀÌÅÍ ¸¶ÀÌ´× Åø ½ÃÀå ÇöȲ
    • ºê¶óÁú
    • ¸ß½ÃÄÚ
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • »ç¿ìµð¾Æ¶óºñ¾Æ
    • ³²¾ÆÇÁ¸®Ä«°øÈ­±¹
    • ±âŸ Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦10Àå °æÀï Á¤º¸

  • ÁÖ¿ä ±â¾÷ÀÇ SWOT ºÐ¼®
  • ÁÖ¿ä ½ÃÀå Àü·«
  • ±â¾÷ °³¿ä
    • Oracle Corporation(¹Ì±¹)
    • IBM Corporation(¹Ì±¹)
    • KNIME AG(½ºÀ§½º)
    • Altair Engineering Inc.(RapidMiner)(¹Ì±¹)
    • Orange(Ljubljana)
    • Rattle GUI(Togaware Pty Ltd)(È£ÁÖ)
    • Sisense Inc.(¹Ì±¹)
    • Kaggle(Google LLC)(¹Ì±¹)
    • SAS Institute Inc.(¹Ì±¹)
    • Teradata Corporation(¹Ì±¹)

Á¦11Àå Á¶»ç °úÁ¤

  • Á¶»ç °úÁ¤
    • µ¥ÀÌÅÍ ¸¶ÀÌ´×
    • ºÐ¼®
    • ½ÃÀå ÃßÁ¤
    • °ËÁõ
    • ÃâÆÇ
  • Á¶»ç ¼Ó¼º
  • Á¶»çÀÇ ÀüÁ¦Á¶°Ç
LSH 23.12.13

Global Data Mining Tools Market is valued at approximately USD 900.7 million in 2022 and is anticipated to grow with a healthy growth rate of more than 13.2% over the forecast period 2023-2030. Data mining tools are software applications or platforms that facilitate the process of extracting valuable insights and patterns from large datasets. These tools utilize a variety of methods and algorithms to explore, examine, and analyze data, frequently with the aim of identifying unobserved connections, patterns, and trends that aid in prediction and decision-making. Many industries, including BFSI, healthcare, retail, IT & telecom, manufacturing, education, government, and others, regularly employ data mining techniques. The growing demand for predictive analysis, rising use of data mining tools in the banking industry, rising inclination towards data mining tools to improve organizational efficiency, and a significant increase in data volume are the most prominent factors that are propelling the market demand across the globe.

In addition, the rising emergence of cloud technology is also exhibiting a positive influence on market growth worldwide. Cloud computing is making it easier and more affordable for businesses to access data mining tools. For instance, according to the IEEE ComSoc, in 2021, the global public spending on cloud computing has reached USD 332.3 billion with a rise of nearly 23.1 % from USD 270 billion in 2020. Accordingly, the rising adoption of cloud computing is offering the market to a wider range of businesses and is driving growth in the market. Moreover, the growing awareness among enterprises to leverage the available data assets, as well as the rising incorporation of data mining and machine learning solutions presents various lucrative opportunities over the forecasting years. However, the concern associated with data privacy, security, and reliability, along with the requirement for skilled technical resources are hindering the market growth throughout the forecast period of 2023-2030.

The key regions considered for the Global Data Mining Tools Market study include Asia Pacific, North America, Europe, Latin America, and Middle East & Africa. North America dominated the market in 2022 because of the development of innovative technologies like artificial intelligence, machine learning, the Internet of Things, and more, as well as sufficient availability of supporting infrastructure. Whereas, Asia Pacific is expected to grow at the highest CAGR over the forecast years. The growing expenditure for the development of IT infrastructure, surging number of small-scale businesses, and rising commercial investments by numerous companies are significantly propelling the market demand across the region.

Major market players included in this report are:

  • Oracle Corporation (U.S.)
  • IBM Corporation (U.S.)
  • KNIME AG (Switzerland)
  • Altair Engineering Inc. (RapidMiner) (U.S.)
  • Orange (Ljubljana)
  • Rattle GUI (Togaware Pty Ltd) (Australia)
  • Sisense Inc. (U.S.)
  • Kaggle (Google LLC) (U.S.)
  • SAS Institute Inc. (U.S.)
  • Teradata Corporation (U.S.)

Recent Developments in the Market:

  • In May 2023, WiMi Hologram Cloud Inc. announced the launch of a novel data interaction system that is developed by integrating data mining and neural network technologies. The system has the ability to provide secure and reliable information transfer through real-time interaction.
  • In May 2023, U.S. Data Mining Group, Inc., a bitcoin mining company, announced a hosting agreement to distribute 150,000 bitcoins in collaboration with prominent companies including TeslaWatt, Sphere 3D, Marathon Digital, and others. The company provides complete industrial turnkey solutions for accounting, customer service, and management.
  • In April 2023, One Biosciences- an Artificial intelligence and single-cell biotech analytics company declared the launch of a single cell data mining algorithm named 'MAYA'. The algorithm is for cancer patients to detect therapeutic vulnerabilities. The algorithm is used to identify treatment vulnerabilities in cancer patients.

Global Data Mining Tools Market Report Scope:

  • Historical Data: 2020 - 2021
  • Base Year for Estimation: 2022
  • Forecast period: 2023-2030
  • Report Coverage: Revenue forecast, Company Ranking, Competitive Landscape, Growth factors, and Trends
  • Segments Covered: Deployment, Enterprise Type, Application, Industry, Region
  • Regional Scope: North America; Europe; Asia Pacific; Latin America; Middle East & Africa
  • Customization Scope: Free report customization (equivalent up to 8 analyst's working hours) with purchase. Addition or alteration to country, regional & segment scope*

The objective of the study is to define market sizes of different segments & countries in recent years and to forecast the values to the coming years. The report is designed to incorporate both qualitative and quantitative aspects of the industry within countries involved in the study.

The report also caters detailed information about the crucial aspects such as driving factors & challenges which will define the future growth of the market. Additionally, it also incorporates potential opportunities in micro markets for stakeholders to invest along with the detailed analysis of competitive landscape and product offerings of key players. The detailed segments and sub-segment of the market are explained below:

By Deployment:

  • On-Premise
  • Cloud

By Enterprise Type:

  • Large Enterprises
  • Small & Medium Enterprises

By Application:

  • Marketing
  • Supply Chain & Procurement
  • Intrusion Detection
  • Business Transaction
  • Others

By Industry:

  • BFSI
  • Healthcare
  • Retail
  • IT & Telecom
  • Manufacturing
  • Education
  • Government
  • Others

By Region:

  • North America
    • U.S.
    • Canada
  • Europe
    • UK
    • Germany
    • France
    • Spain
    • Italy
    • ROE
  • Asia Pacific
    • China
    • India
    • Japan
    • Australia
    • South Korea
    • RoAPAC
  • Latin America
    • Brazil
    • Mexico
  • Middle East & Africa
    • Saudi Arabia
    • South Africa
    • Rest of Middle East & Africa

Table of Contents

Chapter 1. Executive Summary

  • 1.1. Market Snapshot
  • 1.2. Global & Segmental Market Estimates & Forecasts, 2020-2030 (USD Million)
    • 1.2.1. Data Mining Tools Market, by Region, 2020-2030 (USD Million)
    • 1.2.2. Data Mining Tools Market, by Deployment, 2020-2030 (USD Million)
    • 1.2.3. Data Mining Tools Market, by Enterprise Type, 2020-2030 (USD Million)
    • 1.2.4. Data Mining Tools Market, by Application, 2020-2030 (USD Million)
    • 1.2.5. Data Mining Tools Market, by Industry, 2020-2030 (USD Million)
  • 1.3. Key Trends
  • 1.4. Estimation Methodology
  • 1.5. Research Assumption

Chapter 2. Global Data Mining Tools Market Definition and Scope

  • 2.1. Objective of the Study
  • 2.2. Market Definition & Scope
    • 2.2.1. Industry Evolution
    • 2.2.2. Scope of the Study
  • 2.3. Years Considered for the Study
  • 2.4. Currency Conversion Rates

Chapter 3. Global Data Mining Tools Market Dynamics

  • 3.1. Data Mining Tools Market Impact Analysis (2020-2030)
    • 3.1.1. Market Drivers
      • 3.1.1.1. Growing demand for predictive analysis
      • 3.1.1.2. Rising emergence of cloud technology
    • 3.1.2. Market Challenges
      • 3.1.2.1. Concern associated with data privacy, security, and reliability
      • 3.1.2.2. Requirement of skilled technical resources
    • 3.1.3. Market Opportunities
      • 3.1.3.1. Growing awareness among enterprises to leverage the available data assets
      • 3.1.3.2. Rising incorporation of data mining and machine learning solutions

Chapter 4. Global Data Mining Tools Market Industry Analysis

  • 4.1. Porter's 5 Force Model
    • 4.1.1. Bargaining Power of Suppliers
    • 4.1.2. Bargaining Power of Buyers
    • 4.1.3. Threat of New Entrants
    • 4.1.4. Threat of Substitutes
    • 4.1.5. Competitive Rivalry
  • 4.2. Porter's 5 Force Impact Analysis
  • 4.3. PEST Analysis
    • 4.3.1. Political
    • 4.3.2. Economical
    • 4.3.3. Social
    • 4.3.4. Technological
    • 4.3.5. Environmental
    • 4.3.6. Legal
  • 4.4. Top investment opportunity
  • 4.5. Top winning strategies
  • 4.6. COVID-19 Impact Analysis
  • 4.7. Disruptive Trends
  • 4.8. Industry Expert Perspective
  • 4.9. Analyst Recommendation & Conclusion

Chapter 5. Global Data Mining Tools Market, by Deployment

  • 5.1. Market Snapshot
  • 5.2. Global Data Mining Tools Market by Deployment, Performance - Potential Analysis
  • 5.3. Global Data Mining Tools Market Estimates & Forecasts by Deployment 2020-2030 (USD Million)
  • 5.4. Data Mining Tools Market, Sub Segment Analysis
    • 5.4.1. On-Premises
    • 5.4.2. Cloud

Chapter 6. Global Data Mining Tools Market, by Enterprise Type

  • 6.1. Market Snapshot
  • 6.2. Global Data Mining Tools Market by Enterprise Type, Performance - Potential Analysis
  • 6.3. Global Data Mining Tools Market Estimates & Forecasts by Enterprise Type 2020-2030 (USD Million)
  • 6.4. Data Mining Tools Market, Sub Segment Analysis
    • 6.4.1. Large Enterprises
    • 6.4.2. Small & Medium Enterprises

Chapter 7. Global Data Mining Tools Market, by Application

  • 7.1. Market Snapshot
  • 7.2. Global Data Mining Tools Market by Application, Performance - Potential Analysis
  • 7.3. Global Data Mining Tools Market Estimates & Forecasts by Application 2020-2030 (USD Million)
  • 7.4. Data Mining Tools Market, Sub Segment Analysis
    • 7.4.1. Marketing
    • 7.4.2. Supply Chain & Procurement
    • 7.4.3. Intrusion Detection
    • 7.4.4. Business Transaction
    • 7.4.5. Others

Chapter 8. Data Mining Tools Market, by Industry

  • 8.1. Market Snapshot
  • 8.2. Global Data Mining Tools Market by Industry, Performance - Potential Analysis
  • 8.3. Global Data Mining Tools Market Estimates & Forecasts by Industry 2020-2030 (USD Million)
  • 8.4. Data Mining Tools Market, Sub Segment Analysis
    • 8.4.1. BFSI
    • 8.4.2. Healthcare
    • 8.4.3. Retail
    • 8.4.4. IT & Telecom
    • 8.4.5. Manufacturing
    • 8.4.6. Education
    • 8.4.7. Government
    • 8.4.8. Others

Chapter 9. Global Data Mining Tools Market, Regional Analysis

  • 9.1. Top Leading Countries
  • 9.2. Top Emerging Countries
  • 9.3. Data Mining Tools Market, Regional Market Snapshot
  • 9.4. North America Data Mining Tools Market
    • 9.4.1. U.S. Data Mining Tools Market
      • 9.4.1.1. Deployment breakdown estimates & forecasts, 2020-2030
      • 9.4.1.2. Enterprise Type breakdown estimates & forecasts, 2020-2030
      • 9.4.1.3. Application breakdown estimates & forecasts, 2020-2030
      • 9.4.1.4. Industry breakdown estimates & forecasts, 2020-2030
    • 9.4.2. Canada Data Mining Tools Market
  • 9.5. Europe Data Mining Tools Market Snapshot
    • 9.5.1. U.K. Data Mining Tools Market
    • 9.5.2. Germany Data Mining Tools Market
    • 9.5.3. France Data Mining Tools Market
    • 9.5.4. Spain Data Mining Tools Market
    • 9.5.5. Italy Data Mining Tools Market
    • 9.5.6. Rest of Europe Data Mining Tools Market
  • 9.6. Asia-Pacific Data Mining Tools Market Snapshot
    • 9.6.1. China Data Mining Tools Market
    • 9.6.2. India Data Mining Tools Market
    • 9.6.3. Japan Data Mining Tools Market
    • 9.6.4. Australia Data Mining Tools Market
    • 9.6.5. South Korea Data Mining Tools Market
    • 9.6.6. Rest of Asia Pacific Data Mining Tools Market
  • 9.7. Latin America Data Mining Tools Market Snapshot
    • 9.7.1. Brazil Data Mining Tools Market
    • 9.7.2. Mexico Data Mining Tools Market
  • 9.8. Middle East & Africa Data Mining Tools Market
    • 9.8.1. Saudi Arabia Data Mining Tools Market
    • 9.8.2. South Africa Data Mining Tools Market
    • 9.8.3. Rest of Middle East & Africa Data Mining Tools Market

Chapter 10. Competitive Intelligence

  • 10.1. Key Company SWOT Analysis
    • 10.1.1. Company 1
    • 10.1.2. Company 2
    • 10.1.3. Company 3
  • 10.2. Top Market Strategies
  • 10.3. Company Profiles
    • 10.3.1. Oracle Corporation (U.S.)
      • 10.3.1.1. Key Information
      • 10.3.1.2. Overview
      • 10.3.1.3. Financial (Subject to Data Availability)
      • 10.3.1.4. Product Summary
      • 10.3.1.5. Recent Developments
    • 10.3.2. IBM Corporation (U.S.)
    • 10.3.3. KNIME AG (Switzerland)
    • 10.3.4. Altair Engineering Inc. (RapidMiner) (U.S.)
    • 10.3.5. Orange (Ljubljana)
    • 10.3.6. Rattle GUI (Togaware Pty Ltd) (Australia)
    • 10.3.7. Sisense Inc. (U.S.)
    • 10.3.8. Kaggle (Google LLC) (U.S.)
    • 10.3.9. SAS Institute Inc. (U.S.)
    • 10.3.10. Teradata Corporation (U.S.)

Chapter 11. Research Process

  • 11.1. Research Process
    • 11.1.1. Data Mining
    • 11.1.2. Analysis
    • 11.1.3. Market Estimation
    • 11.1.4. Validation
    • 11.1.5. Publishing
  • 11.2. Research Attributes
  • 11.3. Research Assumption
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦