½ÃÀ庸°í¼­
»óǰÄÚµå
1297827

¼¼°èÀÇ µ¥ÀÌÅÍ ÅëÇÕ ½ÃÀå(2023-2030³â)

Global Data Integration Market - 2023-2030

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: DataM Intelligence | ÆäÀÌÁö Á¤º¸: ¿µ¹® 210 Pages | ¹è¼Û¾È³» : 1-2ÀÏ (¿µ¾÷ÀÏ ±âÁØ)

    
    
    




¡á º¸°í¼­¿¡ µû¶ó ÃֽŠÁ¤º¸·Î ¾÷µ¥ÀÌÆ®ÇÏ¿© º¸³»µå¸³´Ï´Ù. ¹è¼ÛÀÏÁ¤Àº ¹®ÀÇÇØ Áֽñ⠹ٶø´Ï´Ù.

½ÃÀå °³¿ä

¼¼°è µ¥ÀÌÅÍ ÅëÇÕ ½ÃÀåÀº 2022³â 116¾ï ´Þ·¯, 2030³â¿¡´Â 263¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, 2023-2030³âÀÇ ¿¹Ãø ±â°£ µ¿¾È 10.8%ÀÇ ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR)À» ³ªÅ¸³¾ °ÍÀ¸·Î Àü¸ÁµË´Ï´Ù. ¼¼°è µ¥ÀÌÅÍ ÅëÇÕ ½ÃÀåÀº ½ÅÈï±¹ÀÇ Á¤ºÎ ¼­ºñ½º µðÁöÅÐÈ­°¡ ÁøÇàµÊ¿¡ µû¶ó Áö¼ÓÀûÀÎ ¼ºÀåÀ» º¸ÀÏ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù. Á¤ºÎ°¡ ½Ã¹ÎµéÀÇ °ø°ø ¼­ºñ½º¿¡ ´ëÇÑ Á¢±Ù¼ºÀ» °³¼±ÇÏ°í ºÎÆÐ¸¦ ÁÙÀ̱â À§ÇØ ³ë·ÂÇÔ¿¡ µû¶ó ´Ù¾çÇÑ ÃâóÀÇ ´Ù¾çÇÑ µ¥ÀÌÅ͸¦ ÅëÇÕÇÏ´Â °ÍÀÌ Áß¿äÇØÁö°í ÀÖ½À´Ï´Ù. ÀÌ¿¡ µû¶ó ¸ÂÃãÇü µ¥ÀÌÅÍ ÅëÇÕ µµ±¸¿Í ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡ÇÒ °ÍÀÔ´Ï´Ù.

¼¼°è µ¥ÀÌÅÍ ÅëÇÕ ½ÃÀåÀº Ä¡¿­ÇÑ °æÀïÀÌ ¹ú¾îÁö°í ÀÖ½À´Ï´Ù. ÁÖ¿ä ±â¾÷µéÀº ½ÃÀå¿¡¼­ÀÇ ÀÔÁö¸¦ ±»È÷±â À§ÇØ Àü·«Àû Àμö¸¦ ÁøÇàÇϰí ÀÖ½À´Ï´Ù. ¿¹¸¦ µé¾î, 2023³â 5¿ù ¹Ì±¹ ¼ÒÇÁÆ®¿þ¾î ±â¾÷ QlikÀº ¹Ì±¹ÀÇ µ¥ÀÌÅÍ ÅëÇÕ ±â¼ú Àü¹® ±â¾÷ Talend Inc. À̹ø Àμö·Î QlikÀÌ Á¦°øÇÏ´Â µ¥ÀÌÅÍ ÅëÇÕ Ç÷§ÆûÀÇ Ç°ÁúÀÌ Å©°Ô Çâ»óµÉ °ÍÀ¸·Î ±â´ëµË´Ï´Ù.

½ÃÀå ¿ªÇÐ

ºñÁî´Ï½º ÇÁ·Î¼¼½º ÀÚµ¿È­ÀÇ ºÎ»ó

¾÷¹«¸¦ °£¼ÒÈ­Çϰí, È¿À²¼ºÀ» ³ôÀ̰í, ¼öÀÛ¾÷À» ÁÙÀ̱â À§ÇØ ºñÁî´Ï½º ÇÁ·Î¼¼½º ÀÚµ¿È­¸¦ µµÀÔÇÏ´Â ±â¾÷ÀÌ ´Ã°í ÀÖ½À´Ï´Ù. ±â¾÷µéÀº Àü»çÀûÀÚ¿ø°ü¸®(ERP), °í°´°ü°è°ü¸®(CRM), °ø±Þ¸Á°ü¸®(SCM), Àλç°ü¸®(HRM) ½Ã½ºÅÛ µî ´Ù¾çÇÑ ÀÚµ¿È­ ½Ã½ºÅÛÀ» µµÀÔÇÏ¿© ¾÷¹«¸¦ ÃÖÀûÈ­Çϰí ÀÖ½À´Ï´Ù.

µ¥ÀÌÅÍ ÅëÇÕÀº ´Ù¾çÇÑ ÀÚµ¿È­ ½Ã½ºÅÛ, ¿ëµµ ¹× ¿öÅ©Ç÷ο쿡 °ÉÃÄ µ¥ÀÌÅ͸¦ ¿¬°áÇϰí ÅëÇÕÇÏ¿© ºñÁî´Ï½º ÇÁ·Î¼¼½º ÀÚµ¿È­¿¡ Áß¿äÇÑ ¿ªÇÒÀ» ÇÕ´Ï´Ù. ÅëÇÕµÈ µ¥ÀÌÅÍ´Â ¼­·Î ´Ù¸¥ ÇÁ·Î¼¼½º °£ÀÇ ¿øÈ°ÇÑ Á¤º¸ È帧À» °¡´ÉÇÏ°Ô ÇÏ¿© Á¶Á÷ÀÌ ¿£µå Åõ ¿£µå ºñÁî´Ï½º ÇÁ·Î¼¼½º¸¦ ÀÚµ¿È­ÇÏ°í ´õ ³ôÀº ¿î¿µ È¿À²¼ºÀ» ´Þ¼ºÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

µ¥ÀÌÅÍ ÅëÇÕÀº ÀÚµ¿È­ ½Ã½ºÅÛ °£¿¡ È帣´Â µ¥ÀÌÅÍÀÇ Àϰü¼º°ú Á¤È®¼ºÀ» º¸ÀåÇÕ´Ï´Ù. µ¥ÀÌÅÍ ÅëÇÕ¿¡´Â µ¥ÀÌÅÍ Çü½Ä, ±¸Á¶ ¹× Àǹ̷ÐÀ» ÀÏÄ¡½ÃŰ´Â µ¥ÀÌÅÍ °ËÁõ, Á¤È­, º¯È¯ ¹× ¸ÅÇÎÀÌ Æ÷ÇԵ˴ϴÙ. ÅëÇÕÀ» ÅëÇØ µ¥ÀÌÅÍÀÇ Àϰü¼º°ú Á¤È®¼ºÀ» À¯ÁöÇÔÀ¸·Î½á ±â¾÷Àº ÀÇ»ç°áÁ¤, º¸°í, ÄÄÇöóÀ̾𽺠¹× ±âŸ Áß¿äÇÑ ºñÁî´Ï½º ÇÁ·Î¼¼½º¿¡¼­ ½Å·ÚÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ¿¡ ÀÇÁ¸ÇÒ ¼ö ÀÖ½À´Ï´Ù.

½Ç½Ã°£ ÀλçÀÌÆ®¿¡ ´ëÇÑ ¼ö¿ä Áõ°¡

½Ç½Ã°£ ÅëÂû·ÂÀ» ÅëÇØ Á¶Á÷Àº Àû½Ã¿¡ Á¤º¸¿¡ ÀÔ°¢ÇÑ ÀÇ»ç°áÁ¤À» ³»¸± ¼ö ÀÖ½À´Ï´Ù. ºü¸£°Ô º¯È­ÇÏ´Â Çö´ë ºñÁî´Ï½º ȯ°æ¿¡¼­ ±â¾÷Àº ½ÃÀå º¯È­, °í°´ ¿ä±¸, »õ·Î¿î ºñÁî´Ï½º ±âȸ¿¡ ½Å¼ÓÇÏ°Ô ´ëÀÀÇϱâ À§ÇØ ´Ù¾çÇÑ ¼Ò½º¿¡¼­ ÃֽŠÁ¤º¸¿¡ Á¢±ÙÇØ¾ß ÇÕ´Ï´Ù. µ¥ÀÌÅÍ ÅëÇÕÀº ½Ç½Ã°£À¸·Î µ¥ÀÌÅ͸¦ ¼öÁý, Áý°è ¹× ºÐ¼®ÇÏ´Â µ¥ Áß¿äÇÑ ¿ªÇÒÀ» Çϸç, Á¶Á÷ÀÌ È¿°úÀûÀÎ ÀÇ»ç °áÁ¤À» ³»¸± ¼ö ÀÖµµ·Ï Á¾ÇÕÀûÀ̰í Á¤È®ÇÑ ¾÷¹« ÆÄ¾ÇÀ» ÇÒ ¼ö ÀÖµµ·Ï ÇÕ´Ï´Ù.

½Ç½Ã°£ ÀλçÀÌÆ®¸¦ ÅëÇØ Á¶Á÷Àº Áö¼ÓÀûÀ¸·Î ¼º°ú¸¦ ¸ð´ÏÅ͸µÇϰí ÃÖÀûÈ­ÇÒ ¼ö ÀÖ½À´Ï´Ù. ¿©·¯ ¼Ò½ºÀÇ µ¥ÀÌÅ͸¦ ½Ç½Ã°£À¸·Î ÅëÇÕÇÔÀ¸·Î½á Á¶Á÷Àº ¿î¿µ, °í°´°úÀÇ »óÈ£ ÀÛ¿ë, °ø±Þ¸Á ¹× ±âŸ Áß¿äÇÑ ¿µ¿ª¿¡ ´ëÇÑ Á¾ÇÕÀûÀÎ ½Ã°¢À» È®º¸ÇÒ ¼ö ÀÖ½À´Ï´Ù. ½Ç½Ã°£ °¡½Ã¼ºÀ» ÅëÇØ º´¸ñÇö»óÀ» ÆÄ¾ÇÇϰí, Ãß¼¼¸¦ ÆÄ¾ÇÇÏ¿© È¿À²¼ºÀ» °³¼±Çϰí, ºñ¿ëÀ» Àý°¨Çϰí, ÀÚ¿ø ¹èºÐÀ» ÃÖÀûÈ­Çϰí, Àü¹ÝÀûÀÎ ¼º°ú¸¦ °³¼±Çϱâ À§ÇÑ Àû±ØÀûÀÎ Á¶Ä¡¸¦ ÃëÇÒ ¼ö ÀÖ½À´Ï´Ù.

»óÈ£¿î¿ë¼ºÀÇ ºÎÁ·

µ¥ÀÌÅÍ ÅëÇÕÀº ´Ù¾çÇÑ ½Ã½ºÅÛ, ¿ëµµ, Ç÷§ÆûÀÇ µ¥ÀÌÅ͸¦ ¿¬°áÇϰí ÅëÇÕÇÏ´Â °ÍÀ» Æ÷ÇÔÇÕ´Ï´Ù. ±×·¯³ª ½Ã½ºÅÛ¸¶´Ù »ç¿ëÇÏ´Â µ¥ÀÌÅÍ Çü½Ä, ÇÁ·ÎÅäÄÝ, Ç¥ÁØÀÌ ´Ù¸£±â ¶§¹®¿¡ µ¥ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô ±³È¯Çϰí ÅëÇÕÇÏ´Â °ÍÀº ½±Áö ¾Ê½À´Ï´Ù. ½Ã½ºÅÛ °£ »óÈ£¿î¿ë¼º ºÎÁ·Àº µ¥ÀÌÅÍ ÅëÇÕ ÇÁ·Î¼¼½ºÀÇ Àå¾Ö¹°ÀÌ µÇ¾î ¼­·Î ´Ù¸¥ ȯ°æ °£ÀÇ ¿øÈ°ÇÑ µ¥ÀÌÅÍ È帧À» ¹æÇØÇÕ´Ï´Ù.

¸¹Àº Á¶Á÷ÀÌ ¿ÂÇÁ·¹¹Ì½º ½Ã½ºÅÛ°ú Ŭ¶ó¿ìµå Ç÷§Æû ¹× Ÿ»ç ¿ëµµ¸¦ °áÇÕÇÑ ÇÏÀ̺긮µå IT ȯ°æ¿¡¼­ ¿î¿µµÇ°í ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÀÌÁ¾ ȯ°æ °£ÀÇ »óÈ£¿î¿ë¼º ºÎÁ·À¸·Î ÀÎÇØ ÅëÇÕ¿¡ ¾î·Á¿òÀ» °Þ°í ÀÖ½À´Ï´Ù. µ¥ÀÌÅÍ ÅëÇÕ ¼Ö·ç¼ÇÀº µ¥ÀÌÅÍÀÇ Àϰü¼º°ú Á¢±Ù¼ºÀ» º¸ÀåÇϱâ À§ÇØ ÀÌ·¯ÇÑ ´Ù¾çÇÑ È¯°æ °£¿¡ µ¥ÀÌÅ͸¦ ¿øÈ°ÇÏ°Ô ¿¬°áÇϰí ÅëÇÕÇÒ ¼ö ÀÖ¾î¾ß ÇÕ´Ï´Ù. »óÈ£¿î¿ë¼ºÀÇ ºÎÁ·Àº ÇÏÀ̺긮µå ȯ°æ¿¡¼­ÀÇ µ¥ÀÌÅÍ ÅëÇÕÀ» ¹æÇØÇÕ´Ï´Ù.

¸¹Àº Á¶Á÷ÀÌ Æ¯Á¤ º¥´õÀÇ °íÀ¯ÇÑ ±â¼ú, Çü½Ä ¶Ç´Â Ç÷§Æû¿¡ ÀÇÁ¸ÇÏ°Ô µË´Ï´Ù. ÀÌ·Î ÀÎÇØ ´Ù¸¥ ½Ã½ºÅÛ ¹× Ç÷§Æû°úÀÇ µ¥ÀÌÅÍ ÅëÇÕ ¼Ö·ç¼ÇÀÇ »óÈ£¿î¿ë¼ºÀÌ Á¦ÇÑµÉ ¼ö ÀÖ½À´Ï´Ù. Á¶Á÷Àº ȣȯ¼º ¹®Á¦·Î ÀÎÇØ ¼­·Î ´Ù¸¥ º¥´õÀÇ µ¥ÀÌÅ͸¦ ÅëÇÕÇϰųª º¥´õ °£ µ¥ÀÌÅ͸¦ ¸¶À̱׷¹À̼ÇÇÏ´Â µ¥ ¾î·Á¿òÀ» °ÞÀ» ¼ö ÀÖ½À´Ï´Ù. º¥´õ Á¾¼Ó ¿ì·Á´Â µ¥ÀÌÅÍ ÅëÇÕ ¼Ö·ç¼Ç äÅÃÀ» ¾ïÁ¦ÇÏ´Â ¿äÀÎÀ¸·Î ÀÛ¿ëÇÒ ¼ö ÀÖ½À´Ï´Ù.

COVID-19ÀÇ ¿µÇ⠺м®

Äڷγª19ÀÇ ÆÒµ¥¹ÍÀ¸·Î ÀÎÇØ ±â¾÷µéÀº ¿ø°Ý±Ù¹«, ¿Â¶óÀÎ ¾÷¹«, °í°´ Çൿ º¯È­¿¡ ÀûÀÀÇϱâ À§ÇØ µðÁöÅÐ ÀüȯÀ» °¡¼ÓÈ­ÇØ¾ß ÇÏ´Â »óȲ¿¡ Á÷¸éÇß½À´Ï´Ù. ÀÌ¿¡ µû¶ó ´Ù¾çÇÑ ½Ã½ºÅÛÀÇ µ¥ÀÌÅ͸¦ ¿¬°áÇϰí ÅëÇÕÇÏ¿© ºÐ»êµÈ ȯ°æ¿¡¼­ ¿øÈ°ÇÏ°Ô ¿î¿µÇÒ ¼ö ÀÖ´Â µ¥ÀÌÅÍ ÅëÇÕ ¼Ö·ç¼Ç¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ ºÒÈ®½Ç¼ºÀº ÀÇ»ç°áÁ¤À» À§ÇÑ ½Ç½Ã°£ ÀλçÀÌÆ®ÀÇ Á߿伺À» ºÎ°¢½ÃÄ×½À´Ï´Ù. ÆÒµ¥¹ÍÀ¸·Î ÀÎÇÑ Å« º¯È­´Â ÆÒµ¥¹Í ÀÌÈÄ ´õ¿í °¡¼ÓÈ­µÆ½À´Ï´Ù. ÆÒµ¥¹Í ÀÌÈÄ ¼¼°è ÁÖ¿ä »ê¾÷¿¡¼­ µ¥ÀÌÅÍ ÅëÇÕÀÇ µµÀÔÀÌ ´õ¿í °¡¼ÓÈ­µÉ °ÍÀ¸·Î º¸ÀÔ´Ï´Ù.

AIÀÇ ¿µÇâ·Â ºÐ¼®

¸Ó½Å·¯´×, ÀÚ¿¬¾î ó¸® µî AI ±â¼úÀÌ µ¥ÀÌÅÍ ÅëÇÕ ¼Ö·ç¼Ç¿¡ ÅëÇյǰí ÀÖÀ¸¸ç, AI¸¦ Ȱ¿ëÇÑ µ¥ÀÌÅÍ ÅëÇÕÀº Áö´ÉÇü µ¥ÀÌÅÍ ¸ÅÇÎ, µ¥ÀÌÅÍ Á¤Á¦, µ¥ÀÌÅÍ º¯È¯À» ÅëÇØ ÅëÇÕ ÇÁ·Î¼¼½ºÀÇ È¿À²¼º°ú Á¤È®¼ºÀ» Çâ»ó½Ãų ¼ö ÀÖ½À´Ï´Ù.

AI´Â µ¥ÀÌÅÍ ÅëÇÕÀÇ ¹Ýº¹ÀûÀÎ ÀÛ¾÷À» ÀÚµ¿È­ÇÏ¿© ¼öÀÛ¾÷À» ÁÙÀ̰í ÅëÇÕ ÇÁ·Î¼¼½º ¼Óµµ¸¦ ³ôÀ̸ç, AI ¾Ë°í¸®ÁòÀº µ¥ÀÌÅÍ ±¸Á¶¸¦ ºÐ¼®ÇÏ¿© ÃÖÀûÀÇ ÅëÇÕ ¿öÅ©Ç÷ο츦 Á¦¾ÈÇϰí, ÅëÇÕ ÆÄÀÌÇÁ¶óÀÎÀÇ °³¹ß ¹× À¯Áöº¸¼ö¸¦ °£¼ÒÈ­Çϸç, AI´Â ÅëÇÕ µ¥ÀÌÅÍÀÇ ÆÐÅÏ, ÀÌ»ó ¡ÈÄ, »ó°ü°ü°è¸¦ ÆÄ¾ÇÇÏ¿© Àΰ£ÀÇ ´É·ÂÀ» È®ÀåÇÕ´Ï´Ù. ÆÐÅÏ, ÀÌ»ó ¡ÈÄ, »ó°ü°ü°è¸¦ ½Äº°ÇÏ¿© Àΰ£ÀÇ ´É·ÂÀ» È®ÀåÇϰí Á¶Á÷ÀÌ °¡Ä¡ ÀÖ´Â ÀλçÀÌÆ®¸¦ µµÃâÇÒ ¼ö ÀÖµµ·Ï µ½½À´Ï´Ù.

·¯½Ã¾Æ-¿ìÅ©¶óÀ̳ª ºÐÀïÀÇ ¿µÇâ

ºÐÀïÀ¸·Î ÀÎÇØ ¿ìÅ©¶óÀ̳ªÀÇ µ¥ÀÌÅÍ ÅëÇÕ ½ÃÀåÀÌ È¥¶õ¿¡ ºüÁ³½À´Ï´Ù. ¸¹Àº ¿ìÅ©¶óÀ̳ª ¹Î°£ ±â¾÷ÀÌ ÇØ¿Ü·Î ÁøÃâÇÏ°í ±â¾÷ÀÇ ¿¬¼Ó¼ºÀ» º¸ÀåÇϱâ À§ÇØ µ¥ÀÌÅÍ ÅëÇÕ µµ±¸¿Í ¼­ºñ½º¿¡ ´ëÇÑ ¼ö¿ä°¡ ÀϽÃÀûÀ¸·Î Áõ°¡Çß½À´Ï´Ù. ¶ÇÇÑ, ¿ìÅ©¶óÀ̳ª Á¤ºÎµµ ÀüÀï Áß¿¡µµ Áß¿äÇÑ Á¤ºÎ ¼­ºñ½º¸¦ À¯ÁöÇÏ·Á Ç߱⠶§¹®¿¡ ¼ö¿ä°¡ Áõ°¡Çß½À´Ï´Ù.

ºÐÀï ÀÌÈÄ ¼­¹æ ±¹°¡µéÀÌ ·¯½Ã¾Æ¿¡ ºÎ°úÇÑ Á¦Àç·Î ÀÎÇØ ·¯½Ã¾Æ µ¥ÀÌÅÍ ÅëÇÕ ½ÃÀåÀº Å« È¥¶õ¿¡ ºüÁ³½À´Ï´Ù. Á¦Àç·Î ÀÎÇØ ¼­À¯·´ ±â¾÷µéÀÌ »ç¾÷À» Áß´ÜÇϸ鼭 ·¯½Ã¾ÆÀÇ ¸¹Àº »ê¾÷ÀÌ µ¥ÀÌÅÍ ÅëÇÕ µµ±¸¿Í ¼­ºñ½º¸¦ »©¾Ñ°å½À´Ï´Ù. ÀÌ¿¡ µû¶ó ±¹³» ¼ÒÇÁÆ®¿þ¾î °ø±Þ¾÷ü¿¡ ´ëÇÑ ¼ö¿ä°¡ Áõ°¡Çϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý°ú Á¶»ç ¹üÀ§

Á¦2Àå Á¤ÀÇ¿Í °³¿ä

Á¦3Àå ÁÖ¿ä ¿ä¾à

Á¦4Àå ½ÃÀå ¿ªÇÐ

  • ¿µÇâ¿äÀÎ
    • ¼ºÀå ÃËÁø¿äÀÎ
    • ¼ºÀå ¾ïÁ¦¿äÀÎ
    • ±âȸ
    • ¿µÇ⠺м®

Á¦5Àå ¾÷°è ºÐ¼®

  • PorterÀÇ Five Forces ºÐ¼®
  • °ø±Þ¸Á ºÐ¼®
  • °¡°Ý ºÐ¼®
  • ±ÔÁ¦ ºÐ¼®

Á¦6Àå COVID-19 ºÐ¼®

Á¦7Àå Àü°³ ¹æ¹ýº°

  • ¿ÂÇÁ·¹¹Ì½º
  • ¿Âµð¸Çµå

Á¦8Àå ÄÄÆ÷³ÍÆ®º°

  • ¼­ºñ½º
  • Åø

Á¦9Àå ¿ëµµº°

  • Àλç(HR)
  • ¸¶ÄÉÆÃ ¹× ¼¼ÀÏÁî
  • ¿ÀÆÛ·¹À̼Ç

Á¦10Àå ÃÖÁ¾»ç¿ëÀÚº°

  • ÀºÇà/±ÝÀ¶¼­ºñ½º/º¸Çè(BFSI)
  • Á¤ºÎ ¹× ¹æÀ§
  • IT ¹× Åë½Å
  • ÇコÄÉ¾î ¹× »ý¸í°úÇÐ
  • ±âŸ

Á¦11Àå Áö¿ªº°

  • ºÏ¹Ì
    • ¹Ì±¹
    • ij³ª´Ù
    • ¸ß½ÃÄÚ
  • À¯·´
    • µ¶ÀÏ
    • ¿µ±¹
    • ÇÁ¶û½º
    • ÀÌÅ»¸®¾Æ
    • ½ºÆäÀÎ
    • ±âŸ À¯·´
  • ³²¹Ì
    • ºê¶óÁú
    • ¾Æ¸£ÇîÆ¼³ª
    • ±âŸ ³²¹Ì
  • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áß±¹
    • Àεµ
    • ÀϺ»
    • È£ÁÖ
    • ±âŸ ¾Æ½Ã¾ÆÅÂÆò¾ç
  • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«

Á¦12Àå °æÀï ±¸µµ

  • °æÀï ½Ã³ª¸®¿À
  • ½ÃÀå ÇöȲ/Á¡À¯À² ºÐ¼®
  • M&AºÐ¼®

Á¦13Àå ±â¾÷ °³¿ä

  • Cisco Systems, Inc.
    • ±â¾÷ °³¿ä
    • Àü°³ ¹æ¹ý Æ÷Æ®Æú¸®¿À¿Í ¼³¸í
    • À繫 °³¿ä
    • ÃÖ±Ù µ¿Çâ
  • IBM
  • Oracle Corporation
  • SAP SE
  • Microsoft
  • Precisely
  • QlikTech International AB
  • Informatica Inc.
  • SAS Institute Inc.
  • Actian Corporation

Á¦14Àå ºÎ·Ï

LSH 23.07.10

Market Overview

The Global Data Integration Market reached US$ 11.6 billion in 2022 and is expected to reach US$ 26.3 billion by 2030, growing with a CAGR of 10.8% during the forecast period 2023-2030. The global data integration market will witness continued growth with the ongoing digitization of government services in developing countries. As governments are striving to improve access to public services for citizens and reduce corruption, the integration of various data points from different sources attains importance. It will lead to an increase in demand for customized data integration tools and services.

The global data integration market is witnessing intense competition. Major players are undertaking strategic acquisitions to consolidate their position in the market. For instance, in May 2023, Qlik, a U.S.-based software company, announced the acquisition of Talend Inc., another U.S.-based company specializing in data integration technologies. The acquisition is expected to significantly improve the quality of Qlik's data integration platform offerings.

Market Dynamics

Rise in Business Process Automation

Organizations are increasingly adopting business process automation to streamline operations, improve efficiency, and reduce manual effort. Organizations implement various automated systems, such as enterprise resource planning (ERP), customer relationship management (CRM), supply chain management (SCM), and human resources management (HRM) systems, to optimize their operations.

Data integration plays a crucial role in business process automation by connecting and integrating data across various automated systems, applications, and workflows. Integrated data enables seamless information flow between different processes, allowing organizations to automate end-to-end business processes and achieve greater operational efficiency.

Data integration ensures that data flowing between automated systems is consistent and accurate. It involves data validation, cleansing, transformation, and mapping to align data formats, structures, and semantics. By maintaining data consistency and accuracy through integration, organizations can rely on reliable data for decision making, reporting, compliance, and other critical business processes.

Increasing Demand For Real-Time Insights

Real-time insights enable organizations to make timely and informed decisions. In the modern fast-paced business environment, organizations need access to up-to-date information from various sources to respond quickly to market changes, customer needs, and emerging opportunities. Data integration plays a crucial role in collecting, aggregating, and analyzing data in real time, ensuring that organizations have a comprehensive and accurate view of their operations for effective decision making.

Real-time insights empower organizations to monitor and optimize their business performance continuously. By integrating data from multiple sources in real time, organizations can gain a holistic view of their operations, customer interactions, supply chain, and other key areas. The real-time visibility allows them to identify bottlenecks, spot trends, and take proactive actions to improve efficiency, reduce costs, optimize resource allocation, and enhance overall business performance.

Lack of Interoperability

Data integration involves connecting and integrating data from various systems, applications, and platforms. However, different systems often use different data formats, protocols, and standards, making it difficult to seamlessly exchange and integrate data. The lack of interoperability between systems creates obstacles in the data integration process and hampers the smooth flow of data across different environments.

Many organizations operate in hybrid IT environments, combining on-premises systems with cloud platforms and third-party applications. The lack of interoperability between these disparate environments creates integration challenges. Data integration solutions must be able to seamlessly connect and integrate data across these diverse environments to ensure data consistency and accessibility. The absence of interoperability impedes the integration of data in hybrid environments.

Many organizations become dependent on a specific vendor's proprietary technologies, formats, or platforms. It can limit the interoperability of data integration solutions with other systems or platforms. Organizations may face challenges in integrating data from different vendors or transitioning between vendors due to compatibility issues. The fear of vendor lock-in acts as a deterrent to adopting data integration solutions.

COVID-19 Impact Analysis

The COVID-19 pandemic forced organizations to accelerate their digital transformation initiatives to adapt to remote work, online operations, and changing customer behaviors. It led to an increased demand for data integration solutions to connect and integrate data from various systems and enable seamless operations in a distributed environment.

The uncertainty caused by the pandemic highlighted the importance of real-time insights for decision-making. The profound changes caused by the pandemic only accelerated in the post-pandemic period. The post-pandemic period is likely to witness increasing adoption of data integration by major industries globally.

AI Impact Analysis

AI technologies, such as machine learning and natural language processing, are being integrated into data integration solutions. AI-powered data integration enables intelligent data mapping, data cleansing, and data transformation, improving the efficiency and accuracy of the integration process.

AI automates repetitive tasks in data integration, reducing manual effort and speeding up the integration process. AI algorithms can analyze data structures and suggest optimal integration workflows, simplifying the development and maintenance of integration pipelines. AI also augments human capabilities by identifying patterns, anomalies, and correlations in integrated data, enabling organizations to derive valuable insights.

Russia- Ukraine War Impact

The conflict disrupted the data integration market in Ukraine. Many private Ukrainian businesses established themselves abroad which led to a temporary rise in demand for data integration tools and services as businesses sought to ensure continuity. Furthermore, increased demand was also witnessed by the Ukrainian government as it sought to maintain some critical government services during the war.

Sanctions imposed on Russia by Western countries in the wake of the conflict have led to major disruptions in the Russian data integration market. Many Russian industries have been deprived of data integration tools and services as western companies ceased operations due to sanctions. It has led to increased demand from domestic software vendors.

Segment Analysis

The global data integration market is segmented based on deployment method, component, application, end-user and region.

Data Integration Tools are the Most Widely Used Component of the Global Market

Data integration tools provide the necessary software and infrastructure to facilitate the integration of data from various sources. The tools offer features like data extraction, transformation, cleansing, mapping, and loading (ETL), data synchronization, data virtualization, and data replication. The tools provide a user-friendly interface and a range of functionalities to support the integration process.

Data integration tools cater to a wide range of use cases, making them applicable across industries and business functions. The tools support integration requirements for data warehousing, business intelligence, cloud migration, application integration, master data management, data governance, and more. The versatility of data integration tools makes them widely adopted by organizations across various sectors.

Geographical Analysis

Asia-Pacific is Expected to Grow at a Faster Pace During the Forecast Period

The Asia-Pacific data integration market is expected to grow at a faster CAGR of 12.5% during the forecast period. Asia-Pacific is witnessing robust economic growth, with countries like China, India, Vietnam and Malaysia having some of the highest growth rates. The rapid economic growth is expected to create new growth opportunities for the data integration market.

Asia-Pacific is embracing digital transformation initiatives across various industries. Organizations are adopting advanced technologies such as cloud computing, big data analytics, AI, and IoT to drive efficiency, innovation, and customer-centricity. Data integration is playing a critical role in connecting and integrating data from different sources and systems, enabling organizations to leverage the utility of these technologies.

The adoption of cloud computing is witnessing a significant rise in Asia-Pacific. Organizations are leveraging cloud-based data integration solutions to overcome infrastructure limitations, improve scalability, and reduce IT costs. The region's expanding cloud infrastructure and investment in data centers is also contributing to the growth of the Asia-Pacific data integration market.

Competitive Landscape

The major global players include: Cisco Systems, Inc., IBM, Oracle Corporation, SAP SE, Microsoft, Precisely, QlikTech International AB, Informatica Inc., SAS Institute Inc. and Actian Corporation.

Why Purchase the Report?

  • To visualize the global data integration market segmentation based on deployment method, component, application, end-user and region, as well as understand key commercial assets and players.
  • Identify commercial opportunities by analyzing trends and co-development.
  • Excel data sheet with numerous data points of data integration market-level with all segments.
  • PDF report consists of a comprehensive analysis after exhaustive qualitative interviews and an in-depth study.
  • Product mapping available as Excel consisting of key products of all the major players.

The global data integration market report would provide approximately 64 tables, 67 figures and 210 Pages.

Target Audience 2023

  • Data-Driven Businesses
  • Data Management System Companies
  • Industry Investors/Investment Bankers
  • Research Professionals

Table of Contents

1. Methodology and Scope

  • 1.1. Research Methodology
  • 1.2. Research Objective and Scope of the Report

2. Definition and Overview

3. Executive Summary

  • 3.1. Snippet by Deployment Method
  • 3.2. Snippet by Component
  • 3.3. Snippet by Application
  • 3.4. Snippet by End-User
  • 3.5. Snippet by Region

4. Dynamics

  • 4.1. Impacting Factors
    • 4.1.1. Drivers
      • 4.1.1.1. Growing Need for Data-Driven Decision Making
      • 4.1.1.2. Increasing Adoption of Digital Transformation Initiatives
      • 4.1.1.3. Rise in Business Process Automation
      • 4.1.1.4. Increasing Demand for Real-Time Insights
    • 4.1.2. Restraints
      • 4.1.2.1. Growing Concerns about Data Security and Privacy
      • 4.1.2.2. Lack of Interoperability
    • 4.1.3. Opportunity
    • 4.1.4. Impact Analysis

5. Industry Analysis

  • 5.1. Porter's Five Force Analysis
  • 5.2. Supply Chain Analysis
  • 5.3. Pricing Analysis
  • 5.4. Regulatory Analysis

6. COVID-19 Analysis

  • 6.1. Analysis of COVID-19
    • 6.1.1. Scenario Before COVID
    • 6.1.2. Scenario During COVID
    • 6.1.3. Scenario Post COVID
  • 6.2. Pricing Dynamics Amid COVID-19
  • 6.3. Demand-Supply Spectrum
  • 6.4. Government Initiatives Related to the Market During Pandemic
  • 6.5. Manufacturers Strategic Initiatives
  • 6.6. Conclusion

7. By Deployment Method

  • 7.1. Introduction
    • 7.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Method
    • 7.1.2. Market Attractiveness Index, By Deployment Method
  • 7.2. On-premises*
    • 7.2.1. Introduction
    • 7.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 7.3. On-demand

8. By Component

  • 8.1. Introduction
    • 8.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 8.1.2. Market Attractiveness Index, By Component
  • 8.2. Services*
    • 8.2.1. Introduction
    • 8.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 8.3. Tools

9. By Application

  • 9.1. Introduction
    • 9.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 9.1.2. Market Attractiveness Index, By Application
  • 9.2. Human Resources (HR)*
    • 9.2.1. Introduction
    • 9.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 9.3. Marketing & Sales
  • 9.4. Operations

10. By End-User

  • 10.1. Introduction
    • 10.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 10.1.2. Market Attractiveness Index, By End-User
  • 10.2. BFSI*
    • 10.2.1. Introduction
    • 10.2.2. Market Size Analysis and Y-o-Y Growth Analysis (%)
  • 10.3. Government & Defence
  • 10.4. IT and Telecommunications
  • 10.5. Healthcare & Life Sciences
  • 10.6. Others

11. By Region

  • 11.1. Introduction
    • 11.1.1. Market Size Analysis and Y-o-Y Growth Analysis (%), By Region
    • 11.1.2. Market Attractiveness Index, By Region
  • 11.2. North America
    • 11.2.1. Introduction
    • 11.2.2. Key Region-Specific Dynamics
    • 11.2.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Method
    • 11.2.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.2.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.2.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.2.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.2.7.1. The U.S.
      • 11.2.7.2. Canada
      • 11.2.7.3. Mexico
  • 11.3. Europe
    • 11.3.1. Introduction
    • 11.3.2. Key Region-Specific Dynamics
    • 11.3.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Method
    • 11.3.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.3.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.3.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.3.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.3.7.1. Germany
      • 11.3.7.2. The UK
      • 11.3.7.3. France
      • 11.3.7.4. Italy
      • 11.3.7.5. Spain
      • 11.3.7.6. Rest of Europe
  • 11.4. South America
    • 11.4.1. Introduction
    • 11.4.2. Key Region-Specific Dynamics
    • 11.4.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Method
    • 11.4.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.4.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.4.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.4.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.4.7.1. Brazil
      • 11.4.7.2. Argentina
      • 11.4.7.3. Rest of South America
  • 11.5. Asia-Pacific
    • 11.5.1. Introduction
    • 11.5.2. Key Region-Specific Dynamics
    • 11.5.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Method
    • 11.5.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.5.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.5.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User
    • 11.5.7. Market Size Analysis and Y-o-Y Growth Analysis (%), By Country
      • 11.5.7.1. China
      • 11.5.7.2. India
      • 11.5.7.3. Japan
      • 11.5.7.4. Australia
      • 11.5.7.5. Rest of Asia-Pacific
  • 11.6. Middle East and Africa
    • 11.6.1. Introduction
    • 11.6.2. Key Region-Specific Dynamics
    • 11.6.3. Market Size Analysis and Y-o-Y Growth Analysis (%), By Deployment Method
    • 11.6.4. Market Size Analysis and Y-o-Y Growth Analysis (%), By Component
    • 11.6.5. Market Size Analysis and Y-o-Y Growth Analysis (%), By Application
    • 11.6.6. Market Size Analysis and Y-o-Y Growth Analysis (%), By End-User

12. Competitive Landscape

  • 12.1. Competitive Scenario
  • 12.2. Market Positioning/Share Analysis
  • 12.3. Mergers and Acquisitions Analysis

13. Company Profiles

  • 13.1. Cisco Systems, Inc.*
    • 13.1.1. Company Overview
    • 13.1.2. Deployment Method Portfolio and Description
    • 13.1.3. Financial Overview
    • 13.1.4. Recent Developments
  • 13.2. IBM
  • 13.3. Oracle Corporation
  • 13.4. SAP SE
  • 13.5. Microsoft
  • 13.6. Precisely
  • 13.7. QlikTech International AB
  • 13.8. Informatica Inc.
  • 13.9. SAS Institute Inc.
  • 13.10. Actian Corporation

LIST NOT EXHAUSTIVE

14. Appendix

  • 14.1. About Us and Services
  • 14.2. Contact Us
ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦