시장보고서
상품코드
1180561

세계의 바이오 기반 재료 시장(2023-2033년)

The Global Market for Bio-based Materials 2023-2033

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 1071 Pages, 296 Figures, 202 Tables | 배송안내 : 즉시배송

※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문목차를 참고해주시기 바랍니다.

세계의 플라스틱 생산량을 지속가능한 대체품으로 보충할 필요성과 이용 가능한 재생 플라스틱이 적기 때문에 많은 생산업체가 바이오 기반 대체품에 관심을 가지고 있습니다.

세계의 바이오 기반 재료(Bio-based Materials) 시장을 조사했으며, 바이오 기반 화학제품·원료, 재료, 폴리머, 바이오플라스틱, 바이오연료, 페인트·코팅 생산능력, 시장 규모 추정과 예측, 주요 동향, 주요 기업 개요 등을 정리했습니다.

목차

제1장 조사 방법

제2장 바이오 기반 화학제품·원료

  • 종류
  • 생산능력
  • 바이오 기반 아디프산
  • 11-아미노운데칸산(11-AA)
  • 1,4-부탄디올(1,4-BDO)
  • 도데칸이산(DDDA)
  • 에피클로로히드린(ECH)
  • 에틸렌
  • 푸르푸랄
  • 5-하이드록시메틸푸르푸랄(HMF)
  • 5-클로로메틸푸르푸랄(5-CMF)
  • 2,5-푸란디카르복실산(2,5-FDCA)
  • 푸란디카르복실산 메틸 에스테르(FDME)
  • 이소소르비드
  • 이타콘산
  • 3-하이드록시프로피온산(3-HP)
  • 5 하이드록시메틸 푸르푸랄(HMF)
  • 젖산(D-LA)
  • 젖산-L-젖산(L-LA)
  • 락티드
  • 레보글루코세논
  • 레불린산
  • 모노에틸렌 글리콜(MEG)
  • 모노프로필렌 글리콜(MPG)
  • 뮤콘산
  • 바이오 나프타
  • 펜타메틸렌 디이소시아네이트
  • 1,3-프로판디올(1,3-PDO)
  • 세바신산
  • 숙신산(SA)

제3장 바이오 기반 재료·플라스틱·폴리머

  • 바이오 기반 또는 재생 플라스틱
  • 생분해성 및 퇴비화 가능한 플라스틱
  • 장점과 단점
  • 바이오 기반 및/또는 생분해성 플라스틱 종류
  • 시장 리더 : 바이오 기반 및/또는 생분해성 플라스틱 종류별
  • 지역/국가의 생산능력 : 주요 종류별
  • 합성 바이오 기반 폴리머
  • 천연 바이오 기반 폴리머
  • 바이오 기반 및 생분해성 플라스틱 생산 : 지역별
  • 바이오플라스틱 시장 내역
  • 천연섬유
  • 리그닌
  • 바이오 기반 재료·플라스틱·폴리머 기업 개요(492개사)

제4장 바이오 기반 연료

  • 바이오연료
  • 전자연료(E-FUEL)
  • 그린 암모니아
  • 바이오 기반 연료 기업 개요(114개사)

제5장 바이오 기반 페인트·코팅

  • 세계의 페인트·코팅 시장
  • 바이오 기반 페인트·코팅
  • 바이오 기반 페인트·코팅 과제
  • 바이오 기반 코팅 및 재료 종류
  • 바이오 기반 페인트·코팅 시장
  • 바이오 기반 페인트·코팅 기업 개요(130개사)

제6장 참고문헌

KSM 23.01.19

With the need to supplement global plastics production with sustainable alternatives, and the dearth of available recycled plastic (~9% of the world's plastic is recycled), many producers are turning to bio-based alternatives. Bio-based materials refer to products that mainly consist of a substance (or substances) derived from living matter (biomass) and either occur naturally or are synthesized, or it may refer to products made by processes that use biomass. Materials from biomass sources include bulk chemicals, platform chemicals, solvents, polymers, and biocomposites. The many processes to convert biomass components to value-added products and fuels can be classified broadly as biochemical or thermochemical. In addition, biotechnological processes that rely mainly on plant breeding, fermentation, and conventional enzyme isolation also are used. New bio-based materials that may compete with conventional materials are emerging continually, and the opportunities to use them in existing and novel products are explored in this publication.

There is growing consumer demand and regulatory push for bio-based chemicals, materials, polymers, plastics, paints, coatings and fuels with high performance, good recyclability and biodegradable properties to underpin transition towards more sustainable manufacturing and products.

“The Global Market for Bio-based Materials to 2033” presents a complete picture of the current market and future outlooks, covering bio-based chemicals and feedstocks, materials, polymers, bio-plastics, bio-fuels and bio-based paints and coatings.

Contents include:

  • In depth market analysis of bio-based chemical feedstocks, biopolymers, bioplastics, natural fibers and lignin, biofuels and bio-based coatings and paints.
  • Global production capacities, market volumes and trends, current and forecast to 2033.
  • Analysis of bio-based chemical including 11-Aminoundecanoic acid (11-AA), 1,4-Butanediol (1,4-BDO), Dodecanedioic acid (DDDA), Epichlorohydrin (ECH), Ethylene, Furan derivatives, 5-Chloromethylfurfural (5-CMF), 2,5-Furandicarboxylic acid (2,5-FDCA), Furandicarboxylic methyl ester (FDME), Isosorbide, Itaconic acid, 5 Hydroxymethyl furfural (HMF), Lactic acid (D-LA), Lactic acid - L-lactic acid (L-LA), Lactide, Levoglucosenone, Levulinic acid, Monoethylene glycol (MEG), Monopropylene glycol (MPG), Muconic acid, Naphtha, 1,5-Pentametylenediamine (DN5), 1,3-Propanediol (1,3-PDO), Sebacic acid and Succinic acid.
  • Analysis of synthetic bio-polymers and bio-plastics market including Polylactic acid (Bio-PLA), Polyethylene terephthalate (Bio-PET), Polytrimethylene terephthalate (Bio-PTT), Polyethylene furanoate (Bio-PEF), Polyamides (Bio-PA), Poly(butylene adipate-co-terephthalate) (Bio-PBAT), Polybutylene succinate (PBS) and copolymers, Polyethylene (Bio-PE), Polypropylene (Bio-PP)
  • Analysis of naturally produced bio-based polymers including Polyhydroxyalkanoates (PHA), Polysaccharides, Microfibrillated cellulose (MFC), Cellulose nanocrystals, Cellulose nanofibers, Protein-based bioplastics, Algal and fungal materials.
  • Analysis of market for bio-fuels.
  • Analysis of types of natural fibers including plant fibers, animal fibers including alternative leather, wool, silk fiber and down and polysaccharides.
  • Markets for natural fibers, including composites, aerospace, automotive, construction & building, sports & leisure, textiles, consumer products and packaging.
  • Production capacities of lignin producers.
  • In depth analysis of biorefinery lignin production.
  • Analysis of the market for bio-based, sustainable paints and coatings.
  • Analysis of types of bio-coatings and paints market. Including Alkyd coatings, Polyurethane coatings, Epoxy coatings, Acrylate resins, Polylactic acid (Bio-PLA), Polyhydroxyalkanoates (PHA), Cellulose, Rosins, Biobased carbon black, Lignin, Edible coatings, Protein-based biomaterials for coatings, Alginate etc.
  • Profiles of over 800 companies. Companies profiled include NatureWorks, Total Corbion, Danimer Scientific, Novamont, Mitsubishi Chemicals, Indorama, Braskem, Avantium, Borealis, Cathay, Dupont, BASF, Arkema, DuPont, BASF, AMSilk GmbH, Loliware, Bolt Threads, Ecovative, Bioform Technologies, Algal Bio, Kraig Biocraft Laboratories, Biotic Circular Technologies Ltd., Full Cycle Bioplastics, Stora Enso Oyj, Spiber, Traceless Materials GmbH, CJ Biomaterials, Natrify, Plastus, Humble Bee Bio, B'ZEOS, Ecovative, Notpla, Smartfiber, Keel Labs and MycoWorks.

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

2. BIO-BASED CHEMICALS AND FEEDSTOCKS

  • 2.1. Types
  • 2.2. Production capacities
  • 2.3. Bio-based adipic acid
    • 2.3.1. Applications and production
  • 2.4. 11-Aminoundecanoic acid (11-AA)
    • 2.4.1. Applications and production
  • 2.5. 1,4-Butanediol (1,4-BDO)
    • 2.5.1. Applications and production
  • 2.6. Dodecanedioic acid (DDDA)
    • 2.6.1. Applications and production
  • 2.7. Epichlorohydrin (ECH)
    • 2.7.1. Applications and production
  • 2.8. Ethylene
    • 2.8.1. Applications and production
  • 2.9. Furfural
    • 2.9.1. Applications and production
  • 2.10. 5-Hydroxymethylfurfural (HMF)
    • 2.10.1. Applications and production
  • 2.11. 5-Chloromethylfurfural (5-CMF)
    • 2.11.1. Applications and production
  • 2.12. 2,5-Furandicarboxylic acid (2,5-FDCA)
    • 2.12.1. Applications and production
  • 2.13. Furandicarboxylic methyl ester (FDME)
  • 2.14. Isosorbide
    • 2.14.1. Applications and production
  • 2.15. Itaconic acid
    • 2.15.1. Applications and production
  • 2.16. 3-Hydroxypropionic acid (3-HP)
    • 2.16.1. Applications and production
  • 2.17. 5 Hydroxymethyl furfural (HMF)
    • 2.17.1. Applications and production
  • 2.18. Lactic acid (D-LA)
    • 2.18.1. Applications and production
  • 2.19. Lactic acid - L-lactic acid (L-LA)
    • 2.19.1. Applications and production
  • 2.20. Lactide
    • 2.20.1. Applications and production
  • 2.21. Levoglucosenone
    • 2.21.1. Applications and production
  • 2.22. Levulinic acid
    • 2.22.1. Applications and production
  • 2.23. Monoethylene glycol (MEG)
    • 2.23.1. Applications and production
  • 2.24. Monopropylene glycol (MPG)
    • 2.24.1. Applications and production
  • 2.25. Muconic acid
    • 2.25.1. Applications and production
  • 2.26. Bio-Naphtha
    • 2.26.1. Applications and production
    • 2.26.2. Production capacities
    • 2.26.3. Bio-naptha producers
  • 2.27. Pentamethylene diisocyanate
    • 2.27.1. Applications and production
  • 2.28. 1,3-Propanediol (1,3-PDO)
    • 2.28.1. Applications and production
  • 2.29. Sebacic acid
    • 2.29.1. Applications and production
  • 2.30. Succinic acid (SA)
    • 2.30.1. Applications and production

3. BIO-BASED MATERIALS, PLASTICS AND POLYMERS

  • 3.1. Bio-based or renewable plastics
    • 3.1.1. Drop-in bio-based plastics
    • 3.1.2. Novel bio-based plastics
  • 3.2. Biodegradable and compostable plastics
    • 3.2.1. Biodegradability
    • 3.2.2. Compostability
  • 3.3. Advantages and disadvantages
  • 3.4. Types of Bio-based and/or Biodegradable Plastics
  • 3.5. Market leaders by biobased and/or biodegradable plastic types
  • 3.6. Regional/country production capacities, by main types
    • 3.6.1. Bio-based Polyethylene (Bio-PE) production capacities, by country
    • 3.6.2. Bio-based Polyethylene terephthalate (Bio-PET) production capacities, by country
    • 3.6.3. Bio-based polyamides (Bio-PA) production capacities, by country
    • 3.6.4. Bio-based Polypropylene (Bio-PP) production capacities, by country
    • 3.6.5. Bio-based Polytrimethylene terephthalate (Bio-PTT) production capacities, by country
    • 3.6.6. Bio-based Poly(butylene adipate-co-terephthalate) (PBAT) production capacities, by country
    • 3.6.7. Bio-based Polybutylene succinate (PBS) production capacities, by country
    • 3.6.8. Bio-based Polylactic acid (PLA) production capacities, by country
    • 3.6.9. Polyhydroxyalkanoates (PHA) production capacities, by country
    • 3.6.10. Starch blends production capacities, by country
  • 3.7. SYNTHETIC BIO-BASED POLYMERS
    • 3.7.1. Polylactic acid (Bio-PLA)
      • 3.7.1.1. Market analysis
      • 3.7.1.2. Production
      • 3.7.1.3. Producers and production capacities, current and planned
        • 3.7.1.3.1. Lactic acid producers and production capacities
        • 3.7.1.3.2. PLA producers and production capacities
        • 3.7.1.3.3. Polylactic acid (Bio-PLA) production capacities 2019-2033 (1,000 tons)
    • 3.7.2. Polyethylene terephthalate (Bio-PET)
      • 3.7.2.1. Market analysis
      • 3.7.2.2. Producers and production capacities
      • 3.7.2.3. Polyethylene terephthalate (Bio-PET) production capacities 2019-2033 (1,000 tons)
    • 3.7.3. Polytrimethylene terephthalate (Bio-PTT)
      • 3.7.3.1. Market analysis
      • 3.7.3.2. Producers and production capacities
      • 3.7.3.3. Polytrimethylene terephthalate (PTT) production capacities 2019-2033 (1,000 tons)
    • 3.7.4. Polyethylene furanoate (Bio-PEF)
      • 3.7.4.1. Market analysis
      • 3.7.4.2. Comparative properties to PET
      • 3.7.4.3. Producers and production capacities
        • 3.7.4.3.1. FDCA and PEF producers and production capacities
        • 3.7.4.3.2. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons)
    • 3.7.5. Polyamides (Bio-PA)
      • 3.7.5.1. Market analysis
      • 3.7.5.2. Producers and production capacities
      • 3.7.5.3. Polyamides (Bio-PA) production capacities 2019-2033 (1,000 tons)
    • 3.7.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)
      • 3.7.6.1. Market analysis
      • 3.7.6.2. Producers and production capacities
      • 3.7.6.3. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production capacities 2019-2033 (1,000 tons)
    • 3.7.7. Polybutylene succinate (PBS) and copolymers
      • 3.7.7.1. Market analysis
      • 3.7.7.2. Producers and production capacities
      • 3.7.7.3. Polybutylene succinate (PBS) production capacities 2019-2033 (1,000 tons)
    • 3.7.8. Polyethylene (Bio-PE)
      • 3.7.8.1. Market analysis
      • 3.7.8.2. Producers and production capacities
      • 3.7.8.3. Polyethylene (Bio-PE) production capacities 2019-2033 (1,000 tons)
    • 3.7.9. Polypropylene (Bio-PP)
      • 3.7.9.1. Market analysis
      • 3.7.9.2. Producers and production capacities
      • 3.7.9.3. Polypropylene (Bio-PP) production capacities 2019-2033 (1,000 tons)
  • 3.8. NATURAL BIO-BASED POLYMERS
    • 3.8.1. Polyhydroxyalkanoates (PHA)
      • 3.8.1.1. Technology description
      • 3.8.1.2. Types
        • 3.8.1.2.1. PHB
        • 3.8.1.2.2. PHBV
      • 3.8.1.3. Synthesis and production processes
      • 3.8.1.4. Market analysis
      • 3.8.1.5. Commercially available PHAs
      • 3.8.1.6. Markets for PHAs
        • 3.8.1.6.1. Packaging
        • 3.8.1.6.2. Cosmetics
          • 3.8.1.6.2.1. PHA microspheres
        • 3.8.1.6.3. Medical
          • 3.8.1.6.3.1. Tissue engineering
          • 3.8.1.6.3.2. Drug delivery
        • 3.8.1.6.4. Agriculture
          • 3.8.1.6.4.1. Mulch film
          • 3.8.1.6.4.2. Grow bags
      • 3.8.1.7. Producers and production capacities
      • 3.8.1.8. PHA production capacities 2019-2033 (1,000 tons)
    • 3.8.2. Polysaccharides
      • 3.8.2.1. Microfibrillated cellulose (MFC)
        • 3.8.2.1.1. Market analysis
        • 3.8.2.1.2. Producers and production capacities
      • 3.8.2.2. Nanocellulose
        • 3.8.2.2.1. Cellulose nanocrystals
          • 3.8.2.2.1.1. Synthesis
          • 3.8.2.2.1.2. Properties
          • 3.8.2.2.1.3. Production
          • 3.8.2.2.1.4. Applications
          • 3.8.2.2.1.5. Market analysis
          • 3.8.2.2.1.6. Producers and production capacities
        • 3.8.2.2.2. Cellulose nanofibers
          • 3.8.2.2.2.1. Applications
          • 3.8.2.2.2.2. Market analysis
          • 3.8.2.2.2.3. Producers and production capacities
        • 3.8.2.2.3. Bacterial Nanocellulose (BNC)
          • 3.8.2.2.3.1. Production
          • 3.8.2.2.3.2. Applications
    • 3.8.3. Protein-based bioplastics
      • 3.8.3.1. Types, applications and producers
    • 3.8.4. Algal and fungal
      • 3.8.4.1. Algal
        • 3.8.4.1.1. Advantages
        • 3.8.4.1.2. Production
        • 3.8.4.1.3. Producers
      • 3.8.4.2. Mycelium
        • 3.8.4.2.1. Properties
        • 3.8.4.2.2. Applications
        • 3.8.4.2.3. Commercialization
    • 3.8.5. Chitosan
      • 3.8.5.1. Technology description
  • 3.9. PRODUCTION OF BIOBASED AND BIODEGRADABLE PLASTICS, BY REGION
    • 3.9.1. North America
    • 3.9.2. Europe
    • 3.9.3. Asia-Pacific
      • 3.9.3.1. China
      • 3.9.3.2. Japan
      • 3.9.3.3. Thailand
      • 3.9.3.4. Indonesia
    • 3.9.4. Latin America
  • 3.10. MARKET SEGMENTATION OF BIOPLASTICS
    • 3.10.1. Packaging
      • 3.10.1.1. Processes for bioplastics in packaging
      • 3.10.1.2. Applications
      • 3.10.1.3. Flexible packaging
        • 3.10.1.3.1. Production volumes 2019-2033
      • 3.10.1.4. Rigid packaging
        • 3.10.1.4.1. Production volumes 2019-2033
    • 3.10.2. Consumer products
      • 3.10.2.1. Applications
    • 3.10.3. Automotive
      • 3.10.3.1. Applications
      • 3.10.3.2. Production capacities
    • 3.10.4. Building & construction
      • 3.10.4.1. Applications
      • 3.10.4.2. Production capacities
    • 3.10.5. Textiles
      • 3.10.5.1. Apparel
      • 3.10.5.2. Footwear
      • 3.10.5.3. Medical textiles
      • 3.10.5.4. Production capacities
    • 3.10.6. Electronics
      • 3.10.6.1. Applications
      • 3.10.6.2. Production capacities
    • 3.10.7. Agriculture and horticulture
      • 3.10.7.1. Production capacities
  • 3.11. NATURAL FIBERS
    • 3.11.1. Manufacturing method, matrix materials and applications of natural fibers
    • 3.11.2. Advantages of natural fibers
    • 3.11.3. Commercially available next-gen natural fiber products
    • 3.11.4. Market drivers for next-gen natural fibers
    • 3.11.5. Challenges
    • 3.11.6. Plants (cellulose, lignocellulose)
      • 3.11.6.1. Seed fibers
        • 3.11.6.1.1. Cotton
          • 3.11.6.1.1.1. Production volumes 2018-2033
        • 3.11.6.1.2. Kapok
          • 3.11.6.1.2.1. Production volumes 2018-2033
        • 3.11.6.1.3. Luffa
      • 3.11.6.2. Bast fibers
        • 3.11.6.2.1. Jute
        • 3.11.6.2.2. Production volumes 2018-2033
          • 3.11.6.2.2.1. Hemp
          • 3.11.6.2.2.2. Production volumes 2018-2033
        • 3.11.6.2.3. Flax
          • 3.11.6.2.3.1. Production volumes 2018-2033
        • 3.11.6.2.4. Ramie
          • 3.11.6.2.4.1. Production volumes 2018-2033
        • 3.11.6.2.5. Kenaf
          • 3.11.6.2.5.1. Production volumes 2018-2033
      • 3.11.6.3. Leaf fibers
        • 3.11.6.3.1. Sisal
          • 3.11.6.3.1.1. Production volumes 2018-2033
        • 3.11.6.3.2. Abaca
          • 3.11.6.3.2.1. Production volumes 2018-2033
      • 3.11.6.4. Fruit fibers
        • 3.11.6.4.1. Coir
          • 3.11.6.4.1.1. Production volumes 2018-2033
        • 3.11.6.4.2. Banana
          • 3.11.6.4.2.1. Production volumes 2018-2033
        • 3.11.6.4.3. Pineapple
      • 3.11.6.5. Stalk fibers from agricultural residues
        • 3.11.6.5.1. Rice fiber
        • 3.11.6.5.2. Corn
      • 3.11.6.6. Cane, grasses and reed
        • 3.11.6.6.1. Switch grass
        • 3.11.6.6.2. Sugarcane (agricultural residues)
        • 3.11.6.6.3. Bamboo
          • 3.11.6.6.3.1. Production volumes 2018-2033
        • 3.11.6.6.4. Fresh grass (green biorefinery)
      • 3.11.6.7. Modified natural polymers
        • 3.11.6.7.1. Mycelium
        • 3.11.6.7.2. Chitosan
        • 3.11.6.7.3. Alginate
    • 3.11.7. Animal (fibrous protein)
      • 3.11.7.1. Wool
        • 3.11.7.1.1. Alternative wool materials
        • 3.11.7.1.2. Producers
      • 3.11.7.2. Silk fiber
        • 3.11.7.2.1. Alternative silk materials
          • 3.11.7.2.1.1. Producers
      • 3.11.7.3. Leather
        • 3.11.7.3.1. Alternative leather materials
          • 3.11.7.3.1.1. Producers
      • 3.11.7.4. Fur
        • 3.11.7.4.1. Producers
      • 3.11.7.5. Down
        • 3.11.7.5.1. Alternative down materials
          • 3.11.7.5.1.1. Producers
    • 3.11.8. MARKETS FOR NATURAL FIBERS
      • 3.11.8.1. Composites
      • 3.11.8.2. Applications
      • 3.11.8.3. Natural fiber injection moulding compounds
        • 3.11.8.3.1. Properties
        • 3.11.8.3.2. Applications
      • 3.11.8.4. Non-woven natural fiber mat composites
        • 3.11.8.4.1. Automotive
        • 3.11.8.4.2. Applications
      • 3.11.8.5. Aligned natural fiber-reinforced composites
      • 3.11.8.6. Natural fiber biobased polymer compounds
      • 3.11.8.7. Natural fiber biobased polymer non-woven mats
        • 3.11.8.7.1. Flax
        • 3.11.8.7.2. Kenaf
      • 3.11.8.8. Natural fiber thermoset bioresin composites
      • 3.11.8.9. Aerospace
        • 3.11.8.9.1. Market overview
      • 3.11.8.10. Automotive
        • 3.11.8.10.1. Market overview
        • 3.11.8.10.2. Applications of natural fibers
      • 3.11.8.11. Building/construction
        • 3.11.8.11.1. Market overview
        • 3.11.8.11.2. Applications of natural fibers
      • 3.11.8.12. Sports and leisure
        • 3.11.8.12.1. Market overview
      • 3.11.8.13. Textiles
        • 3.11.8.13.1. Market overview
        • 3.11.8.13.2. Consumer apparel
        • 3.11.8.13.3. Geotextiles
      • 3.11.8.14. Packaging
        • 3.11.8.14.1. Market overview
    • 3.11.9. NATURAL FIBERS GLOBAL PRODUCTION
      • 3.11.9.1. Overall global fibers market
      • 3.11.9.2. Plant-based fiber production
      • 3.11.9.3. Animal-based natural fiber production
  • 3.12. LIGNIN
    • 3.12.1. INTRODUCTION
      • 3.12.1.1. What is lignin?
        • 3.12.1.1.1. Lignin structure
      • 3.12.1.2. Types of lignin
        • 3.12.1.2.1. Sulfur containing lignin
        • 3.12.1.2.2. Sulfur-free lignin from biorefinery process
      • 3.12.1.3. Properties
      • 3.12.1.4. The lignocellulose biorefinery
      • 3.12.1.5. Markets and applications
      • 3.12.1.6. Challenges for using lignin
    • 3.12.2. LIGNIN PRODUCTON PROCESSES
      • 3.12.2.1. Lignosulphonates
      • 3.12.2.2. Kraft Lignin
        • 3.12.2.2.1. LignoBoost process
        • 3.12.2.2.2. LignoForce method
        • 3.12.2.2.3. Sequential Liquid Lignin Recovery and Purification
        • 3.12.2.2.4. A-Recovery+
      • 3.12.2.3. Soda lignin
      • 3.12.2.4. Biorefinery lignin
        • 3.12.2.4.1. Commercial and pre-commercial biorefinery lignin production facilities and processes
      • 3.12.2.5. Organosolv lignins
      • 3.12.2.6. Hydrolytic lignin
    • 3.12.3. MARKETS FOR LIGNIN
      • 3.12.3.1. Market drivers and trends for lignin
      • 3.12.3.2. Production capacities
        • 3.12.3.2.1. Technical lignin availability (dry ton/y)
        • 3.12.3.2.2. Biomass conversion (Biorefinery)
      • 3.12.3.3. Estimated consumption of lignin
      • 3.12.3.4. Prices
      • 3.12.3.5. Heat and power energy
      • 3.12.3.6. Pyrolysis and syngas
      • 3.12.3.7. Aromatic compounds
        • 3.12.3.7.1. Benzene, toluene and xylene
        • 3.12.3.7.2. Phenol and phenolic resins
        • 3.12.3.7.3. Vanillin
      • 3.12.3.8. Plastics and polymers
      • 3.12.3.9. Hydrogels
      • 3.12.3.10. Carbon materials
        • 3.12.3.10.1. Carbon black
        • 3.12.3.10.2. Activated carbons
        • 3.12.3.10.3. Carbon fiber
      • 3.12.3.11. Concrete
      • 3.12.3.12. Rubber
      • 3.12.3.13. Biofuels
      • 3.12.3.14. Bitumen and Asphalt
      • 3.12.3.15. Oil and gas
      • 3.12.3.16. Energy storage
        • 3.12.3.16.1. Supercapacitors
        • 3.12.3.16.2. Anodes for lithium-ion batteries
        • 3.12.3.16.3. Gel electrolytes for lithium-ion batteries
        • 3.12.3.16.4. Binders for lithium-ion batteries
        • 3.12.3.16.5. Cathodes for lithium-ion batteries
        • 3.12.3.16.6. Sodium-ion batteries
      • 3.12.3.17. Binders, emulsifiers and dispersants
      • 3.12.3.18. Chelating agents
      • 3.12.3.19. Ceramics
      • 3.12.3.20. Automotive interiors
      • 3.12.3.21. Fire retardants
      • 3.12.3.22. Antioxidants
      • 3.12.3.23. Lubricants
      • 3.12.3.24. Dust control
  • 3.13. BIO-BASED MATERIALS, PLASTICS AND POLYMERS COMPANY PROFILES(492 company profiles)

4. BIO-BASED FUELS

  • 4.1. BIO-FUELS
    • 4.1.1. The biofuels market
    • 4.1.2. Types
      • 4.1.2.1. Solid Biofuels
      • 4.1.2.2. Liquid Biofuels
      • 4.1.2.3. Gaseous Biofuels
      • 4.1.2.4. Conventional Biofuels
      • 4.1.2.5. Advanced Biofuels
    • 4.1.3. Feedstocks
      • 4.1.3.1. First-Generation Feedstocks
      • 4.1.3.2. Second-Generation Feedstocks
        • 4.1.3.2.1. Lignocellulosic wastes and residues
        • 4.1.3.2.2. Biorefinery lignin
      • 4.1.3.3. Third-Generation Feedstocks
        • 4.1.3.3.1. Algal biofuels
      • 4.1.3.4. Fourth-Generation Feedstocks
        • 4.1.3.4.1. Advantages and disadvantages, by generation
      • 4.1.3.5. Market demand
    • 4.1.4. Bioethanol
    • 4.1.5. Bio-jet (bio-aviation) fuels
      • 4.1.5.1. Description
      • 4.1.5.2. Global market
      • 4.1.5.3. Production pathways
      • 4.1.5.4. Costs
      • 4.1.5.5. Biojet fuel production capacities
      • 4.1.5.6. Challenges
    • 4.1.6. Biomass-based diesel
      • 4.1.6.1. Biodiesel
        • 4.1.6.1.1. Production
        • 4.1.6.1.2. Global market
      • 4.1.6.2. Renewable diesel
        • 4.1.6.2.1. Production
        • 4.1.6.2.2. Global market
    • 4.1.7. Syngas
    • 4.1.8. Biogas and biomethane
      • 4.1.8.1. Feedstocks
    • 4.1.9. Biobutanol
      • 4.1.9.1. Production
  • 4.2. ELECTROFUELS (E-FUELS)
    • 4.2.1. Introduction
      • 4.2.1.1. Benefits of e-fuels
    • 4.2.2. Feedstocks
      • 4.2.2.1. Hydrogen electrolysis
      • 4.2.2.2. CO2 capture
    • 4.2.3. Production
    • 4.2.4. Electrolysers
      • 4.2.4.1. Commercial alkaline electrolyser cells (AECs)
      • 4.2.4.2. PEM electrolysers (PEMEC)
      • 4.2.4.3. High-temperature solid oxide electrolyser cells (SOECs)
    • 4.2.5. Direct Air Capture (DAC)
      • 4.2.5.1. Technologies
      • 4.2.5.2. Markets for DAC
      • 4.2.5.3. Costs
      • 4.2.5.4. Challenges
      • 4.2.5.5. Companies and production
      • 4.2.5.6. CO2 capture from point sources
    • 4.2.6. Costs
    • 4.2.7. Market challenges
    • 4.2.8. Companies
  • 4.3. GREEN AMMONIA
    • 4.3.1. Production
      • 4.3.1.1. Decarbonisation of ammonia production
      • 4.3.1.2. Green ammonia projects
    • 4.3.2. Green ammonia synthesis methods
      • 4.3.2.1. Haber-Bosch process
      • 4.3.2.2. Biological nitrogen fixation
      • 4.3.2.3. Electrochemical production
      • 4.3.2.4. Chemical looping processes
    • 4.3.3. Blue ammonia
      • 4.3.3.1. Blue ammonia projects
    • 4.3.4. Markets and applications
      • 4.3.4.1. Chemical energy storage
        • 4.3.4.1.1. Ammonia fuel cells
      • 4.3.4.2. Marine fuel
    • 4.3.5. Costs
    • 4.3.6. Estimated market demand
    • 4.3.7. Companies and projects
  • 4.4. BIO-BASED FUELS COMPANY PROFILES. 794 (114 company profiles)

5. BIO-BASED PAINTS AND COATINGS

  • 5.1. The global paints and coatings market
  • 5.2. Bio-based paints and coatings
  • 5.3. Challenges using bio-based paints and coatings
  • 5.4. Types of bio-based coatings and materials
    • 5.4.1. Alkyd coatings
      • 5.4.1.1. Alkyd resin properties
      • 5.4.1.2. Biobased alkyd coatings
      • 5.4.1.3. Products
    • 5.4.2. Polyurethane coatings
      • 5.4.2.1. Properties
      • 5.4.2.2. Biobased polyurethane coatings
      • 5.4.2.3. Products
    • 5.4.3. Epoxy coatings
      • 5.4.3.1. Properties
      • 5.4.3.2. Biobased epoxy coatings
      • 5.4.3.3. Products
    • 5.4.4. Acrylate resins
      • 5.4.4.1. Properties
      • 5.4.4.2. Biobased acrylates
      • 5.4.4.3. Products
    • 5.4.5. Polylactic acid (Bio-PLA)
      • 5.4.5.1. Properties
      • 5.4.5.2. Bio-PLA coatings and films
    • 5.4.6. Polyhydroxyalkanoates (PHA)
      • 5.4.6.1. Properties
      • 5.4.6.2. PHA coatings
      • 5.4.6.3. Commercially available PHAs
    • 5.4.7. Cellulose
      • 5.4.7.1. Microfibrillated cellulose (MFC)
        • 5.4.7.1.1. Properties
        • 5.4.7.1.2. Applications in paints and coatings
      • 5.4.7.2. Cellulose nanofibers
        • 5.4.7.2.1. Properties
        • 5.4.7.2.2. Product developers
      • 5.4.7.3. Cellulose nanocrystals
      • 5.4.7.4. Bacterial Nanocellulose (BNC)
    • 5.4.8. Rosins
    • 5.4.9. Biobased carbon black
      • 5.4.9.1. Lignin-based
      • 5.4.9.2. Algae-based
    • 5.4.10. Lignin
      • 5.4.10.1. Application in coatings
    • 5.4.11. Edible coatings
    • 5.4.12. Protein-based biomaterials for coatings
      • 5.4.12.1. Plant derived proteins
      • 5.4.12.2. Animal origin proteins
    • 5.4.13. Alginate
  • 5.5. Market for bio-based paints and coatings
    • 5.5.1. Global market revenues to 2033, total
    • 5.5.2. Global market revenues to 2033, by market
  • 5.6. BIO-BASED PAINTS AND COATINGS COMPANY PROFILES (130 company profiles)

6. REFERENCES

비교리스트
0 건의 상품을 선택 중
상품 비교하기
전체삭제