½ÃÀ庸°í¼­
»óǰÄÚµå
1262974

¼¼°èÀÇ Ã·´Ü ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀå(2023-2040³â)

The Global Market for Advanced Plastics Recycling 2023-2040

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 218 Pages, 39 Tables, 42 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°èÀÇ °íµµ ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀå¿¡ ´ëÇØ Á¶»çºÐ¼®ÇßÀ¸¸ç, ¿äÀΰú µ¿Çâ, ½ÃÀå ¸Ê, ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÀçȰ¿ë ±â¼ú ºÐ·ù

Á¦3Àå ¼Ò°³

  • ¼¼°èÀÇ ÇÃ¶ó½ºÆ½ »ý»ê
  • ÇÃ¶ó½ºÆ½ÀÇ Á߿伺
  • ÇÃ¶ó½ºÆ½ »ç¿ë ¹®Á¦
  • ¹ÙÀÌ¿À ÇÃ¶ó½ºÆ½ ¶Ç´Â Àç»ý °¡´ÉÇÑ ÇÃ¶ó½ºÆ½
  • »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½?ÅðºñÈ­ °¡´É ÇÃ¶ó½ºÆ½
  • ÇÃ¶ó½ºÆ½ ¿À¿°
  • Á¤Ã¥ ¹× ±ÔÁ¦
  • ¼øÈ¯°æÁ¦
  • ÇÃ¶ó½ºÆ½ ÀçȰ¿ë

Á¦4Àå °íµµ ÇÃ¶ó½ºÆ½ ÀçȰ¿ë ½ÃÀå

  • ½ÃÀå ÃËÁø¿äÀΰú µ¿Çâ
  • ¾÷°èÀÇ ¹ßÀü(2020³â-2023³â)
  • »ý»ê´É·Â
  • ¼¼°èÀÇ Æú¸®¸Ó ¼ö¿ä: ¸®»çÀÌŬ ±â¼úº°(2022³â-2040³â)
  • ¼¼°è ½ÃÀå : ¸®»çÀÌŬ ÇÁ·Î¼¼½ºº°
  • È­ÇÐ ÀçȰ¿ë ÇÃ¶ó½ºÆ½ Á¦Ç°
  • ½ÃÀå ¸Ê
  • ¹ë·ùüÀÎ
  • °í±Þ È­ÇÐ ÀçȰ¿ë °øÁ¤ÀÇ ¼ö¸í ÁÖ±â Æò°¡(LCA)
  • ½ÃÀåÀÇ °úÁ¦

Á¦5Àå °íµµ ÀçȰ¿ë ±â¼ú

  • ¿ëµµ
  • ¿­ºÐÇØ
  • °¡½ºÈ­
  • ¿ëÇØ
  • ÇØÁßÇÕ(Depolymerisation)
  • ±âŸ

Á¦6Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ

Á¦7Àå Âü°í¹®Çå

LSH 23.05.02

Advanced recycling technologies that utilize heat or chemical solvents to recycle plastics into new plastics, fuels or chemicals are a key strategy for solving the global plastic problem.

Advanced chemical recycling technologies are now being developed by around 130 companies worldwide, and capacities are increasing. Companies including ExxonMobil, New Hope Energy, Nexus Circular, Eastman, Encina are planning to build large plastics recycling plants.

As well as complementing traditional mechanical recycling, advanced recycling offers benefits such as widening the range of recyclable plastic options, producing high value plastics (e.g. for flexible food packaging) and improving sustainability (using waste rather than fossil fuels for plastics production).

Report contents include:

  • Overview of the global plastics and bioplastics markets.
  • Market drivers and trends.
  • Advanced plastics recycling industry developments 2020-2023.
  • Capacities by technology.
  • Market maps and value chain.
  • In-depth analysis of advanced plastics recycling technologies.
  • Advanced plastics recycling technologies covered include:
    • Pyrolysis
    • Gasification
    • Dissolution
    • Depolymerisation
    • Emerging technologies.
  • Profiles of 144 companies. Companies profiled include Agilyx, APK AG, Aquafil, Carbios, Eastman, Extracthive, Fych Technologies, Garbo, gr3n SA, Ioniqa, Itero, Licella, Mura Technology, revalyu Resources GmbH, Plastogaz SA, Plastic Energy, Polystyvert, Pyrowave, Synova and SABIC.

TABLE OF CONTENTS

1 RESEARCH METHODOLOGY

2 CLASSIFICATION OF RECYCLING TECHNOLOGIES

3 INTRODUCTION

  • 3.1 Global production of plastics
  • 3.2 The importance of plastic
  • 3.3 Issues with plastics use
  • 3.4 Bio-based or renewable plastics
    • 3.4.1 Drop-in bio-based plastics
    • 3.4.2 Novel bio-based plastics
  • 3.5 Biodegradable and compostable plastics
    • 3.5.1 Biodegradability
    • 3.5.2 Compostability
  • 3.6 Plastic pollution
  • 3.7 Policy and regulations
  • 3.8 The circular economy
  • 3.9 Plastic recycling
    • 3.9.1 Mechanical recycling
      • 3.9.1.1 Closed-loop mechanical recycling
      • 3.9.1.2 Open-loop mechanical recycling
      • 3.9.1.3 Polymer types, use, and recovery
    • 3.9.2 Advanced chemical recycling
      • 3.9.2.1 Main streams of plastic waste
      • 3.9.2.2 Comparison of mechanical and advanced chemical recycling

4 THE ADVANCED PLASTICS RECYCLING MARKET

  • 4.1 Market drivers and trends
  • 4.2 Industry developments 2020-2023
  • 4.3 Capacities
  • 4.4 Global polymer demand 2022-2040, segmented by recycling technology
  • 4.5 Global market by recycling process
  • 4.6 Chemically recycled plastic products
  • 4.7 Market map
  • 4.8 Value chain
  • 4.9 Life Cycle Assessments (LCA) of advanced chemical recycling processes
  • 4.10 Market challenges

5 ADVANCED RECYCLING TECHNOLOGIES

  • 5.1 Applications
  • 5.2 Pyrolysis
    • 5.2.1 Non-catalytic
    • 5.2.2 Catalytic
      • 5.2.2.1 Polystyrene pyrolysis
      • 5.2.2.2 Pyrolysis for production of bio fuel
      • 5.2.2.3 Used tires pyrolysis
        • 5.2.2.3.1 Conversion to biofuel
      • 5.2.2.4 Co-pyrolysis of biomass and plastic wastes
    • 5.2.3 SWOT analysis
    • 5.2.4 Companies and capacities
  • 5.3 Gasification
    • 5.3.1 Technology overview
      • 5.3.1.1 Syngas conversion to methanol
      • 5.3.1.2 Biomass gasification and syngas fermentation
      • 5.3.1.3 Biomass gasification and syngas thermochemical conversion
    • 5.3.2 SWOT analysis
    • 5.3.3 Companies and capacities (current and planned)
  • 5.4 Dissolution
    • 5.4.1 Technology overview
    • 5.4.2 SWOT analysis
    • 5.4.3 Companies and capacities (current and planned)
  • 5.5 Depolymerisation
    • 5.5.1 Hydrolysis
      • 5.5.1.1 Technology overview
      • 5.5.1.2 SWOT analysis
    • 5.5.2 Enzymolysis
      • 5.5.2.1 Technology overview
      • 5.5.2.2 SWOT analysis
    • 5.5.3 Methanolysis
      • 5.5.3.1 Technology overview
      • 5.5.3.2 SWOT analysis
    • 5.5.4 Glycolysis
      • 5.5.4.1 Technology overview
      • 5.5.4.2 SWOT analysis
    • 5.5.5 Aminolysis
      • 5.5.5.1 Technology overview
      • 5.5.5.2 SWOT analysis
    • 5.5.6 Companies and capacities (current and planned)
  • 5.6 Other advanced chemical recycling technologies
    • 5.6.1 Hydrothermal cracking
    • 5.6.2 Pyrolysis with in-line reforming
    • 5.6.3 Microwave-assisted pyrolysis
    • 5.6.4 Plasma pyrolysis
    • 5.6.5 Plasma gasification
    • 5.6.6 Supercritical fluids
    • 5.6.7 Carbon fiber recycling
      • 5.6.7.1 Processes
      • 5.6.7.2 Companies

6 COMPANY PROFILES (144 company profiles)

7 REFERENCES

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦