½ÃÀ庸°í¼­
»óǰÄÚµå
1289794

¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´É Æ÷Àå ½ÃÀå(2023-2033³â)

The Global Market for Bio-based and Sustainable Packaging 2023-2033

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 456 Pages, 118 Tables, 109 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

ȯ°æ ¹®Á¦³ª ¼ÒºñÀÚ °ü½ÉÀ¸·Î ÀÎÇØ ¼®À¯È­ÇÐÁ¦Ç°À» ´ë½ÅÇÏ´Â ¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´ÉÇÑ Æ÷ÀåÀç·á°¡ °³¹ßµÇ°í ÀÖ½À´Ï´Ù. ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀç·á´Â Àç»ý °¡´ÉÇÑ »ýºÐÇØ¼º ¿øÀç·á·Î ¸¸µé¾îÁö¸ç, ÀÏȸ¿ë ÇÃ¶ó½ºÆ½ Á¦Ç° µîÀÇ ¼®À¯È­Çаè ÇÃ¶ó½ºÆ½À» ´ë½ÅÇϴ ģȯ°æÀÇ »õ·Î¿î ´ëü Àç·á°¡ µÇ°í ÀÖ½À´Ï´Ù.

¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´É Æ÷Àå ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ¼¼°èÀÇ ÇÃ¶ó½ºÆ½ ½ÃÀå ÇöȲ°ú °úÁ¦, ÇÃ¶ó½ºÆ½ Æ÷Àå ¸®»çÀÌŬ¸µ ±â¼ú°ú µ¿Çâ, ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀç·á °¢Á¾ À¯Çü, ½ÃÀå ±Ô¸ðÀÇ ÃßÀÌ¡¤¿¹Ãø, °¢Á¾ ±¸ºÐ¡¤Áö¿ªº° ³»¿ª, ½ÃÀå ¼ºÀå¿¡ ´ëÇÑ ¿µÇâ¿äÀÎ ºÐ¼®, ÁÖ¿ä ±â¾÷ÀÇ °³¿ä µîÀ» Á¤¸®ÇÏ¿© ÀüÇØµå¸³´Ï´Ù.

¸ñÂ÷

Á¦1Àå Á¶»ç ¹æ¹ý

Á¦2Àå ÁÖ¿ä ¿ä¾à

Á¦3Àå ¼¼°èÀÇ ÇÃ¶ó½ºÆ½ ½ÃÀå

  • ¼¼°èÀÇ ÇÃ¶ó½ºÆ½ Á¦Á¶
  • ÇÃ¶ó½ºÆ½ÀÇ Á߿伺
  • ÇÃ¶ó½ºÆ½ »ç¿ëÀÇ ¹®Á¦
  • Á¤Ã¥¡¤±ÔÁ¦
  • ¼øÈ¯°æÁ¦
  • ÀçȰ¿ë
  • Àç·á Çõ½Å
  • Ȱ¼ºÆ÷Àå
  • Æ÷Àå¿¡ »ç¿ëµÇ´Â ±âÁ¸ Æú¸®¸Ó Àç·á
    • Æú¸®¿Ã·¹ÇÉ : Æú¸®ÇÁ·ÎÇÊ·» ¹× Æú¸®¿¡Æ¿·»
    • PET ¹× ±âŸ Æú¸®¿¡½ºÅ׸£ Æú¸®¸Ó
    • Àç»ý ¹ÙÀÌ¿À ±â¹Ý Æú¸®¸Ó
    • È­¼® ±â¹Ý ÇÕ¼º Æú¸®¸Ó¿Í »ý¹° ±â¹Ý ÇÕ¼º Æú¸®¸ÓÀÇ ºñ±³
    • Æ÷Àå¿ë ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ÇÁ·Î¼¼½º
    • ¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´É Æ÷ÀåÀÇ Æó±â ó¸®

Á¦4Àå ÇÃ¶ó½ºÆ½ Æ÷Àå ¸®»çÀÌŬ¸µ

  • ±â°èÀû ¸®»çÀÌŬ¸µ
    • Ŭ·ÎÁîµå ·çÇÁ ±â°èÀû ¸®»çÀÌŬ¸µ
    • ¿ÀÇ ·çÇÁ ±â°èÀû ¸®»çÀÌŬ¸µ
    • Æú¸®¸Ó À¯Çü¡¤»ç¿ë¡¤È¸¼ö
  • ÷´Ü ÄɹÌÄà ¸®»çÀÌŬ¸µ
    • ÇÃ¶ó½ºÆ½ Æó±â¹°ÀÇ ÁÖ¿ä È帧
    • ±â°èÀû ¸®»çÀÌŬ¸µ°ú ÷´Ü ÄɹÌÄà ¸®»çÀÌŬ¸µÀÇ ºñ±³
  • ¿ë·®
  • ¼¼°èÀÇ Æú¸®¸Ó ¼ö¿ä : ÀçȰ¿ë ±â¼úº°
  • ¼¼°è ½ÃÀå : ÀçȰ¿ë ÇÁ·Î¼¼½ºº°
  • ÄɹÌÄà ÀçȰ¿ë ÇÃ¶ó½ºÆ½ Á¦Ç°
  • ½ÃÀå ¸Ê
  • ¹ë·ùüÀÎ
  • ÷´Ü ÇÃ¶ó½ºÆ½ ¸®»çÀÌŬ¸µ ÇÁ·Î¼¼½ºÀÇ ¼ö¸íÁÖ±â Æò°¡(LCA)
  • ¿­ºÐÇØ
    • ¹«Ã˸Å
    • Ã˸Å
    • SWOT ºÐ¼®
    • ±â¾÷¡¤´É·Â
  • °¡½ºÈ­
    • ±â¼ú °³¿ä
    • SWOT ºÐ¼®
    • ±â¾÷¡¤´É·Â(ÇöÀç ¹× °èȹ)
  • ÇØ»ê
    • ±â¼ú °³¿ä
    • SWOT ºÐ¼®
    • ±â¾÷¡¤´É·Â(ÇöÀç ¹× °èȹ)
  • ÇØÁßÇÕ
    • °¡¼öºÐÇØ
    • È¿¼Ò ºÐÇØ
    • Methanolysis
    • ÇØ´ç°è
    • Aminolysis
    • ±â¾÷¡¤´É·Â(ÇöÀç ¹× °èȹ)
  • ±âŸ ÷´Ü ÄɹÌÄà ¸®»çÀÌŬ¸µ ±â¼ú
    • ¼ö¿­ºÐÇØ
    • ÀζóÀÎ °³Áú¿¡ ÀÇÇÑ ¿­ºÐÇØ
    • ¸¶ÀÌÅ©·ÎÆÄ Áö¿ø ¿­ºÐÇØ
    • ÇöóÁ ¿­ºÐÇØ
    • ÇöóÁ °¡½ºÈ­
    • ÃÊÀÓ°è À¯Ã¼
    • ź¼Ò¼¶À¯ ¸®»çÀÌŬ¸µ

Á¦5Àå Æ÷Àå¿ë ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½ ¹× ¹ÙÀÌ¿ÀÆú¸®¸Ó

  • ¹ÙÀÌ¿À ±â¹Ý ¶Ç´Â Àç»ý ÇÃ¶ó½ºÆ½
    • µå·Ó ÀÎ ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½
    • »õ·Î¿î ¹ÙÀÌ¿À ±â¹Ý ÇÃ¶ó½ºÆ½
  • »ýºÐÇØ¼º¡¤ÅðºñÈ­ °¡´É ÇÃ¶ó½ºÆ½
    • »ýºÐÇØ¼º
    • ÅðºñÈ­ °¡´É¼º
  • ÀåÁ¡¡¤´ÜÁ¡
  • ¹ÙÀÌ¿À ±â¹Ý ¹×/¶Ç´Â »ýºÐÇØ¼º ÇÃ¶ó½ºÆ½ÀÇ À¯Çü
  • ¿ëµµ
    • Á¾ÀÌ¡¤ÆÇÁö Æ÷Àå
    • ½Äǰ Æ÷Àå
  • ÇÕ¼º ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀç·á
    • Æú¸®À¯»ê(¹ÙÀÌ¿À PLA)
    • Æú¸®¿¡Æ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(¹ÙÀÌ¿À PET)
    • Æú¸®Æ®¸®¸ÞÆ¿·» Å×·¹ÇÁÅ»·¹ÀÌÆ®(¹ÙÀÌ¿À PTT)
    • Polyethylene furanoate(Bio-PEF)
    • Æú¸®¾Æ¹Ìµå(¹ÙÀÌ¿À PA)
    • Poly(butylene adipate-co-terephthalate)(Bio-PBAT) - Áö¹æÁ·¹æÇâÁ· ÄÚÆú¸®¿¡½ºÅ׸£
    • Æú¸®ºÎÆ¿·» ¼®½Ã³×ÀÌÆ®(PBS) ¹× ÄÚÆú¸®¸Ó
    • Polyethylene furanoate(Bio-PEF)
    • Æú¸®¿¡Æ¿·»(¹ÙÀÌ¿À PE)
    • Æú¸®ÇÁ·ÎÇÊ·»(¹ÙÀÌ¿À PP)
  • õ¿¬ ¹ÙÀÌ¿À ±â¹Ý Æ÷ÀåÀç·á
    • Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA)
    • ÀüºÐ ±â¹Ý ºí·»µå
    • ¼¿·ê·Î¿À½º
    • Æ÷Àå¿ë ´Ü¹éÁú ±â¹Ý ¹ÙÀÌ¿ÀÇÃ¶ó½ºÆ½
    • Æ÷Àå¿ë ÁöÁú ¹× ¿Î½º
    • ÇØÁ¶ ±â¹Ý Æ÷Àå
    • ±Õ»çü
    • ŰÅä»ê
    • ¹ÙÀÌ¿À ³ªÇÁŸ
  • õ¿¬¼¶À¯
    • õ¿¬¼¶À¯ÀÇ Á¦¹ý¡¤¸ÅÆ®¸¯½º Àç·á¡¤¿ëµµ
    • ½ÃÆÇ õ¿¬¼¶À¯ Á¦Ç°
    • Æ÷Àå ¿ëµµ
  • ¸®±×´Ñ
    • ¸®±×´ÑÀÇ À¯Çü
    • ÇÁ·ÎÆÛƼ
    • Æ÷Àå ¿ëµµ

Á¦6Àå Æ÷Àå¿ë ¹ÙÀÌ¿À ±â¹Ý Çʸ§ ¹× ÄÚÆÃ

  • ¹ÙÀÌ¿À ±â¹Ý ÆäÀÎÆ® ¹× ÄÚÆÃÀÇ °úÁ¦
  • Æ÷Àå¿ë ¹ÙÀÌ¿À ±â¹Ý ÄÚÆÃ ¹× Çʸ§ÀÇ À¯Çü
    • Æú¸®¿ì·¹Åº ÄÚÆÃ
    • ¾ÆÅ©¸± ¼öÁö
    • Æú¸®À¯»ê(¹ÙÀÌ¿À PLA)
    • Æú¸®È÷µå·Ï½Ã¾ËÄ«³ë¿¡ÀÌÆ®(PHA) ÄÚÆÃ
    • ¼¿·ê·Î¿À½º ÄÚÆÃ ¹× Çʸ§
    • ¸®±×´Ñ ÄÚÆÃ
    • ÄÚÆÃ¿ë ´Ü¹éÁú ±â¹Ý »ýü Àç·á

Á¦7Àå Æ÷Àå¿ë Ä«º» ĸó À¯·¡ Àç·á

  • ÇÃ¶ó½ºÆ½ ¿ø·á·Î¼­ÀÇ Åº¼Ò ÀÌ¿ëÀÇ ÀÌÁ¡
  • CO2 À¯·¡ Æú¸®¸Ó ¹× ÇÃ¶ó½ºÆ½
    • CO2 Ȱ¿ë Á¦Ç°

Á¦8Àå ¼¼°èÀÇ ¹ÙÀÌ¿À ±â¹Ý Áö¼Ó°¡´É Æ÷ÀåÀÇ Á¦Á¶

  • ¿¬Æ÷Àå
  • °æÁú Æ÷Àå
  • ÄÚÆÃ ¹× Çʸ§

Á¦9Àå ±â¾÷ °³¿ä(¹ÙÀÌ¿À ±â¹Ý Æ÷Àå ±â¾÷ 200»ç)

Á¦10Àå Âü°í ÀÚ·á

KSA 23.06.22

Environmental and consumer concerns have resulted in the development of bio-based and sustainable materials as alternatives to petrochemicals for packaging applications. Bio-based packaging materials are made from renewable and biodegradable raw materials, and provide novel eco-friendly alternatives to petrochemical-based plastics, especially for single-use plastic goods.

Bio-based and sustainable packaging is a major global trend, with numerous start-ups and large companies developing alternatives to single-use plastic packaging. The global plastics sector currently produces >250 million tons annually, and they are used extensively in packaging due to their low cost and weight. Over 99% of this is derived from fossil fuels, and most of it is not biodegradable. Currently, the packaging materials are largely based on glass, aluminium and tin, and fossil derived synthetic plastics. These materials possess high strength and barrier properties. However, they are unsustainable, some are fragile such as glass, and their weight adds to energy costs for shipping. Discarded plastic bags and containers have also raised issues relating to environmental pollution due to their non-biodegradable nature. Biodegradable takeaway food containers and single-use plastic bags are being used as a substitute, but only degrade completely when subjected to a harsh thermal treatment above 50 °C.

Innovative packaging materials composed of blends or pure bio-based materials are expected to improve the sustainability of these products. Using renewable resources for the development of bio-based packaging material produces a smaller carbon footprint, reduces environmental impact, increases acceptance by consumers, maintains barrier properties and shelf-life of the packaged good, and allows for a sustainable end of life.

Report contents include:

  • An overview of global market outlook for bio-based and sustainable packaging.
  • Materials utilized in bio-based and sustainable packaging including Synthetic bio-based packaging materials, Natural bio-based packaging materials, Natural fibers, Lignin, bio-based coatings and films, bio-based antimicrobial agents, bio-based packaging sensors etc.
  • Analysis of advanced chemical recycling for packaging.
  • Analysis of packaging materials from C)O2 capture.
  • Analyses of global market trends, with data from 2021, 2022, and projections of compound annual growth rates (CAGRs) through 2033.
  • Identification of market trends, issues and forecast impacting the global bio-based and sustainable packaging market and quantification of the market based on type, application, and region.
  • Recent advancements and innovations in the bio-based and sustainable packaging market.
  • Comprehensive profiles of 200 companies in the market. Companies profiled include Alterpacks, Anellotech, Inc., Arekapak GmbH, Arkema S.A., Avantium, BIOLO, Biovox, BlockTexx Pty Ltd., Carbiolice, Cellugy, DuFor Resins B.V., Earthodic, Esbottle Oy, Fiberwood Oy, Full Cycle Bioplastics LLC, Futamura Chemical Co, Ltd., Futurity Bio-Ventures Ltd., Genecis Bioindustries, Huhtamaki, Kaneka Corporation, Kelpi Industries, Lactips S.A., Loliware, Marea, Mitsubishi Chemical Corporation, MakeGrowLab, New Zealand Natural Fibres, Oimo, Plafco Fibertech Oy, Shellworks, Sufresca, Sulapac, Teal Bioworks, TerraVerdae Bioworks Inc. and Tianjin GreenBio Materials.

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

2. EXECUTIVE SUMMARY

  • 2.1. Current global packaging market and materials
  • 2.2. Market trends
  • 2.3. Drivers for recent growth in bioplastics in packaging
  • 2.4. Challenges for bio-based and sustainable packaging
  • 2.5. Global biobased packaging markets
    • 2.5.1. By end-use application
    • 2.5.2. Packaging type
      • 2.5.2.1. Rigid packaging
      • 2.5.2.2. Flexible packaging
    • 2.5.3. By geographic market

3. THE GLOBAL PLASTICS MARKET

  • 3.1. Global production of plastics
  • 3.2. The importance of plastic
  • 3.3. Issues with plastics use
  • 3.4. Policy and regulations
  • 3.5. The circular economy
  • 3.6. Recycling
  • 3.7. Materials innovation
  • 3.8. Active packaging
  • 3.9. Conventional polymer materials used in packaging
    • 3.9.1. Polyolefins: Polypropylene and polyethylene
    • 3.9.2. PET and other polyester polymers
    • 3.9.3. Renewable and bio-based polymers for packaging
    • 3.9.4. Comparison of synthetic fossil-based and bio-based polymers
    • 3.9.5. Processes for bioplastics in packaging
    • 3.9.6. End-of-life treatment of bio-based and sustainable packaging

4. PLASTIC PACKAGING RECYCLING

  • 4.1. Mechanical recycling
    • 4.1.1. Closed-loop mechanical recycling
    • 4.1.2. Open-loop mechanical recycling
    • 4.1.3. Polymer types, use, and recovery
  • 4.2. Advanced chemical recycling
    • 4.2.1. Main streams of plastic waste
    • 4.2.2. Comparison of mechanical and advanced chemical recycling
  • 4.3. Capacities
  • 4.4. Global polymer demand 2022-2040, segmented by recycling technology
  • 4.5. Global market by recycling process 2020-2024, metric tons
  • 4.6. Chemically recycled plastic products
  • 4.7. Market map
  • 4.8. Value chain
  • 4.9. Life Cycle Assessments (LCA) of advanced plastics recycling processes
  • 4.10. Pyrolysis
    • 4.10.1. Non-catalytic
    • 4.10.2. Catalytic
      • 4.10.2.1. Polystyrene pyrolysis
      • 4.10.2.2. Pyrolysis for production of bio fuel
      • 4.10.2.3. Used tires pyrolysis
        • 4.10.2.3.1. Conversion to biofuel
      • 4.10.2.4. Co-pyrolysis of biomass and plastic wastes
    • 4.10.3. SWOT analysis
    • 4.10.4. Companies and capacities
  • 4.11. Gasification
    • 4.11.1. Technology overview
      • 4.11.1.1. Syngas conversion to methanol
      • 4.11.1.2. Biomass gasification and syngas fermentation
      • 4.11.1.3. Biomass gasification and syngas thermochemical conversion
    • 4.11.2. SWOT analysis
    • 4.11.3. Companies and capacities (current and planned)
  • 4.12. Dissolution
    • 4.12.1. Technology overview
    • 4.12.2. SWOT analysis
    • 4.12.3. Companies and capacities (current and planned)
  • 4.13. Depolymerisation
    • 4.13.1. Hydrolysis
      • 4.13.1.1. Technology overview
      • 4.13.1.2. SWOT analysis
    • 4.13.2. Enzymolysis
      • 4.13.2.1. Technology overview
      • 4.13.2.2. SWOT analysis
    • 4.13.3. Methanolysis
      • 4.13.3.1. Technology overview
      • 4.13.3.2. SWOT analysis
    • 4.13.4. Glycolysis
      • 4.13.4.1. Technology overview
      • 4.13.4.2. SWOT analysis
    • 4.13.5. Aminolysis
      • 4.13.5.1. Technology overview
      • 4.13.5.2. SWOT analysis
    • 4.13.6. Companies and capacities (current and planned)
  • 4.14. Other advanced chemical recycling technologies
    • 4.14.1. Hydrothermal cracking
    • 4.14.2. Pyrolysis with in-line reforming
    • 4.14.3. Microwave-assisted pyrolysis
    • 4.14.4. Plasma pyrolysis
    • 4.14.5. Plasma gasification
    • 4.14.6. Supercritical fluids
    • 4.14.7. Carbon fiber recycling
      • 4.14.7.1. Processes
      • 4.14.7.2. Companies

5. BIOPLASTICS AND BIOPOLYMERS IN PACKAGING

  • 5.1. Bio-based or renewable plastics
    • 5.1.1. Drop-in bio-based plastics
    • 5.1.2. Novel bio-based plastics
  • 5.2. Biodegradable and compostable plastics
    • 5.2.1. Biodegradability
    • 5.2.2. Compostability
  • 5.3. Advantages and disadvantages
  • 5.4. Types of Bio-based and/or Biodegradable Plastics
  • 5.5. Applications
    • 5.5.1. Paper and board packaging
    • 5.5.2. Food packaging
      • 5.5.2.1. Bio-Based films and trays
      • 5.5.2.2. Bio-Based pouches and bags
      • 5.5.2.3. Bio-Based textiles and nets
      • 5.5.2.4. Bioadhesives
        • 5.5.2.4.1. Starch
        • 5.5.2.4.2. Cellulose
        • 5.5.2.4.3. Protein-Based
      • 5.5.2.5. Barrier coatings and films
        • 5.5.2.5.1. Polysaccharides
          • 5.5.2.5.1.1. Chitin
          • 5.5.2.5.1.2. Chitosan
          • 5.5.2.5.1.3. Starch
        • 5.5.2.5.2. Poly(lactic acid) (PLA)
        • 5.5.2.5.3. Poly(butylene Succinate)
        • 5.5.2.5.4. Functional Lipid and Proteins Based Coatings
      • 5.5.2.6. Active and Smart Food Packaging
        • 5.5.2.6.1. Active Materials and Packaging Systems
        • 5.5.2.6.2. Intelligent and Smart Food Packaging
      • 5.5.2.7. Antimicrobial films and agents
        • 5.5.2.7.1. Natural
        • 5.5.2.7.2. Inorganic nanoparticles
        • 5.5.2.7.3. Biopolymers
      • 5.5.2.8. Bio-based Inks and Dyes
      • 5.5.2.9. Edible films and coatings
  • 5.6. Synthetic bio-based packaging materials
    • 5.6.1. Polylactic acid (Bio-PLA)
      • 5.6.1.1. Market analysis
      • 5.6.1.2. Producers and production capacities, current and planned
        • 5.6.1.2.1. Lactic acid producers and production capacities
        • 5.6.1.2.2. LA producers and production capacities
    • 5.6.2. Polyethylene terephthalate (Bio-PET)
      • 5.6.2.1. Market analysis
      • 5.6.2.2. Producers and production capacities
    • 5.6.3. Polytrimethylene terephthalate (Bio-PTT)
      • 5.6.3.1. Market analysis
      • 5.6.3.2. Producers and production capacities
    • 5.6.4. Polyethylene furanoate (Bio-PEF)
      • 5.6.4.1. Market analysis
      • 5.6.4.2. Comparative properties to PET
      • 5.6.4.3. Producers and production capacities
        • 5.6.4.3.1. FDCA and PEF producers and production capacities
    • 5.6.5. Polyamides (Bio-PA)
      • 5.6.5.1. Market analysis
      • 5.6.5.2. Producers and production capacities
    • 5.6.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
      • 5.6.6.1. Market analysis
      • 5.6.6.2. Producers and production capacities
    • 5.6.7. Polybutylene succinate (PBS) and copolymers
      • 5.6.7.1. Market analysis
      • 5.6.7.2. Producers and production capacities
    • 5.6.8. Polyethylene furanoate (Bio-PEF)
      • 5.6.8.1. Market analysis
      • 5.6.8.2. Comparative properties to PET
      • 5.6.8.3. Producers and production capacities
        • 5.6.8.3.1. FDCA and PEF producers and production capacities
        • 5.6.8.3.2. Polyethylene furanoate (Bio-PEF) production capacities 2019-2033 (1,000 tons)
    • 5.6.9. Polyethylene (Bio-PE)
      • 5.6.9.1. Market analysis
      • 5.6.9.2. Producers and production capacities
    • 5.6.10. Polypropylene (Bio-PP)
      • 5.6.10.1. Market analysis
      • 5.6.10.2. Producers and production capacities
  • 5.7. Natural bio-based packaging materials
    • 5.7.1. Polyhydroxyalkanoates (PHA)
      • 5.7.1.1. Technology description
      • 5.7.1.2. Types
        • 5.7.1.2.1. PHB
        • 5.7.1.2.2. PHBV
      • 5.7.1.3. Synthesis and production processes
      • 5.7.1.4. Market analysis
      • 5.7.1.5. Commercially available PHAs
      • 5.7.1.6. PHAS in packaging
      • 5.7.1.7. PHA production capacities 2019-2033 (1,000 tons)
    • 5.7.2. Starch-based blends
      • 5.7.2.1. Properties
      • 5.7.2.2. Applications in packaging
    • 5.7.3. Cellulose
      • 5.7.3.1. Feedstocks
        • 5.7.3.1.1. Wood
        • 5.7.3.1.2. Plant
        • 5.7.3.1.3. Tunicate
        • 5.7.3.1.4. Algae
        • 5.7.3.1.5. Bacteria
      • 5.7.3.2. Microfibrillated cellulose (MFC)
        • 5.7.3.2.1. Properties
      • 5.7.3.3. Nanocellulose
        • 5.7.3.3.1. Cellulose nanocrystals
          • 5.7.3.3.1.1. Applications in packaging
        • 5.7.3.3.2. Cellulose nanofibers
          • 5.7.3.3.2.1. Applications in packaging
            • 5.7.3.3.2.1.1. Reinforcement and barrier
            • 5.7.3.3.2.1.2. Biodegradable food packaging foil and films
            • 5.7.3.3.2.1.3. Paperboard coatings
        • 5.7.3.3.3. Bacterial Nanocellulose (BNC)
          • 5.7.3.3.3.1. Applications in packaging
    • 5.7.4. Protein-based bioplastics in packaging
    • 5.7.5. Lipids and waxes for packaging
    • 5.7.6. Seaweed-based packaging
      • 5.7.6.1. Production
      • 5.7.6.2. Applications in packaging
      • 5.7.6.3. Producers
    • 5.7.7. Mycelium
      • 5.7.7.1. Applications in packaging
    • 5.7.8. Chitosan
      • 5.7.8.1. Applications in packaging
    • 5.7.9. Bio-naphtha
      • 5.7.9.1. Overview
      • 5.7.9.2. Markets and applications
  • 5.8. Natural fibers
    • 5.8.1. Manufacturing method, matrix materials and applications of natural fibers
    • 5.8.2. Commercially available natural fiber products
    • 5.8.3. Applications in packaging
  • 5.9. Lignin
    • 5.9.1. Types of lignin
    • 5.9.2. Properties
    • 5.9.3. Applications in packaging

6. BIO-BASED FILMS AND COATINGS IN PACKAGING

  • 6.1. Challenges using bio-based paints and coatings
  • 6.2. Types of bio-based coatings and films in packaging
    • 6.2.1. Polyurethane coatings
      • 6.2.1.1. Properties
      • 6.2.1.2. Bio-based polyurethane coatings
      • 6.2.1.3. Products
    • 6.2.2. Acrylate resins
      • 6.2.2.1. Properties
      • 6.2.2.2. Bio-based acrylates
      • 6.2.2.3. Products
    • 6.2.3. Polylactic acid (Bio-PLA)
      • 6.2.3.1. Properties
      • 6.2.3.2. Bio-PLA coatings and films
    • 6.2.4. Polyhydroxyalkanoates (PHA) coatings
    • 6.2.5. Cellulose coatings and films
      • 6.2.5.1. Microfibrillated cellulose (MFC)
      • 6.2.5.2. Cellulose nanofibers
        • 6.2.5.2.1. Properties
        • 6.2.5.2.2. Product developers
    • 6.2.6. Lignin coatings
    • 6.2.7. Protein-based biomaterials for coatings
      • 6.2.7.1. Plant derived proteins
      • 6.2.7.2. Animal origin proteins

7. CARBON CAPTURE DERIVED MATERIALS FOR PACKAGING

  • 7.1. Benefits of carbon utilization for plastics feedstocks
  • 7.2. CO2-derived polymers and plastics
    • 7.2.1. CO2. utilization products

8. GLOBAL PRODUCTION OF BIO-BASED AND SUSTAINABLE PACKAGING

  • 8.1. Flexible packaging
  • 8.2. Rigid packaging
  • 8.3. Coatings and films

9. COMPANY PROFILES (200 bio-based packaging company profiles)

10. REFERENCES

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦