½ÃÀ庸°í¼­
»óǰÄÚµå
1556878

¼¼°èÀÇ ¼ÒÇü ¸ðµâÇü ¿øÀÚ·Î(SMR) ½ÃÀå(2025-2045³â)

The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 328 Pages, 84 Tables, 37 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°è ¼ÒÇü ¸ðµâÇü ¿øÀÚ·Î(SMR) ½ÃÀåÀº ¿øÀÚ·Â »ê¾÷¿¡¼­ °¡Àå À¯¸ÁÇÑ ºÐ¾ß Áß ÇϳªÀ̸ç, ÀϹÝÀûÀ¸·Î 300MWe ¹Ì¸¸ÀÇ Àü±â Ãâ·ÂÀ» °¡Áø Çõ½ÅÀûÀÎ ¿øÀÚ·Î ¼³°è°¡ Ư¡ÀÔ´Ï´Ù. ÀÌ ½ÅÈï ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀº ±âÁ¸ ´ëÇü ¿øÀÚ·Â ¹ßÀü¼Ò¿¡ ºñÇØ ³ôÀº À¯¿¬¼º, ÀçÁ¤Àû À§Çè °¨¼Ò, ¾ÈÀü¼ºÀ» °­È­ÇÏ´Â Àúź¼Ò ¿¡³ÊÁö ¼Ö·ç¼ÇÀÇ Ãß±¸ÀÔ´Ï´Ù. ¼¼°è °¢±¹ÀÌ ±âÈÄ º¯È­¿¡ ´ëÇÑ ´ëÀÀÀ» °­È­ÇÏ´Â ÇÑÆí, ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ ¿ì·Á°¡ ³ô¾ÆÁö´Â °¡¿îµ¥, SMRÀº ¾ÈÁ¤ÀûÀÎ ±âÀúºÎÇÏ ¹ßÀü°ú ´Ù¾çÇÑ ¹èÄ¡°¡ °¡´ÉÇÑ À¯·ÂÇÑ ¼Ö·ç¼ÇÀ¸·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù. ½ÃÀå ¼ºÀå ¿¹ÃøÀº °³¹ß »óȲ¿¡ µû¶ó Å©°Ô ´Þ¶óÁö´Âµ¥, º¸¼öÀûÀÎ ¿¹Ãø¿¡ µû¸£¸é 2030³â±îÁö ¼¼°è ½ÃÀå ±Ô¸ð´Â ¾à 100¾ï-150¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹»óµÇ¸ç, º¸´Ù ³«°üÀûÀÎ ¿¹Ãø¿¡ µû¸£¸é ±â¼úÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó 2035³â±îÁö 400¾ï-500¾ï ´Þ·¯¿¡ ´ÞÇÒ °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇöÀç °³¹ß Ȱµ¿À» ÁÖµµÇϰí ÀÖ´Â °÷Àº ºÏ¹Ì ½ÃÀåÀ¸·Î, ¹Ì±¹ Á¤ºÎ°¡ Advanced Reactor Demonstration Program°ú °°Àº ÇÁ·Î±×·¥À» ÅëÇØ ¸·´ëÇÑ ÀÚ±ÝÀ» Áö¿øÇϰí ÀÖ½À´Ï´Ù. ¾Æ½Ã¾ÆÅÂÆò¾çÀº °¡Àå ºü¸£°Ô ¼ºÀåÇÏ´Â Áö¿ª ½ÃÀåÀ¸·Î, ÁÖ·Î Áß±¹ÀÇ °¡µ¿ ÁßÀÎ HTR-PM°ú ·¯½Ã¾ÆÀÇ ºÎÀ¯½Ä ¿øÀÚ·Â ¹ßÀü¼Ò°¡ ÁÖµµÇϰí ÀÖ½À´Ï´Ù.

GE Hitachi, Westinghouse, Rosatom°ú °°Àº ÀüÅëÀûÀÎ ¿øÀÚ·Â º¥´õµéÀº ±âÁ¸ÀÇ ±â¼ú Àü¹®¼ºÀ» Ȱ¿ëÇÏ¿© SMRÀ» ¼³°è ¹× °³¹ßÇÏ´Â ¹Ý¸é, NuScale Power, TerraPower, X-energy¿Í °°Àº ½Å»ý ±â¾÷µéÀº »õ·Î¿î Á¢±Ù¹æ½ÄÀ¸·Î ¸¹Àº ÅõÀÚ¸¦ Çϰí ÀÖ½À´Ï´Ù. NuScale Power, TerraPower, X-energy¿Í °°Àº ½Å±Ô ÁøÃâ±â¾÷µéÀº Âü½ÅÇÑ Á¢±Ù¹æ½ÄÀ¸·Î ¸¹Àº ÅõÀÚ¸¦ À¯Ä¡Çϰí ÀÖ½À´Ï´Ù. ¿µ±¹ÀÇ Rolls-Royce SMR ÇÁ·Î±×·¥Àº ¸¹Àº ±¹°¡µéÀÌ ±¹³» SMR ¿ª·® °³¹ß¿¡ Àü·«Àû ±¹°¡Àû Á߿伺À» ºÎ¿©Çϰí ÀÖÀ¸¸ç, ij³ª´Ù, ÇÁ¶û½º, Çѱ¹¿¡¼­µµ À¯»çÇÑ °èȹÀÌ ÁøÇà ÁßÀÔ´Ï´Ù.

½ÃÀå ³» ±â¼ú ¼¼ºÐÈ­´Â ¿©·¯ ¿øÀÚ·Î À¯Çü¿¡ °ÉÃÄ ÀÖÀ¸¸ç, °³¹ß ÀÏÁ¤µµ ´Ù¾çÇÕ´Ï´Ù. °æ¼ö·Î ¼³°è´Â ±ÔÁ¦ ´ç±¹ÀÌ Àß ¾Ë°í ÀÖ°í ±â¼úÀû Áغñ°¡ Àß µÇ¾î Àֱ⠶§¹®¿¡ °¡±î¿î ½ÃÀÏ ³»¿¡ ÁÖ·ù°¡ µÉ °ÍÀ̸ç, NuScaleÀÇ VOYGR°ú GE HitachiÀÇ BWRX-300Àº ±ÔÁ¦ °úÁ¤¿¡¼­ °¡Àå ¾Õ¼­ ÀÖ½À´Ï´Ù. °í¿Â °¡½º³Ã°¢·Î´Â »ê¾÷¿ëÀ¸·Î °øÁ¤ °¡¿­ ±â´ÉÀ» Á¦°øÇÏ´Â ¹Ý¸é, ¾×ü ±Ý¼Ó ¹× ¿ëÀ¶¿° ±â¼úÀ» ÀÌ¿ëÇÑ º¸´Ù Áøº¸µÈ ¼³°è´Â ¼º´É Ư¼ºÀ» Çâ»ó½ÃÄÑ Àå±âÀûÀÎ ½ÃÀå ±âȸ¸¦ ³ë¸®°í ÀÖ½À´Ï´Ù.

ÁÖ¿ä ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎÀ¸·Î´Â Żź¼ÒÈ­ Á¤Ã¥, ¿¡³ÊÁö ¾Èº¸¿¡ ´ëÇÑ ¿ì·Á, ¼®Åº ¹ßÀü¼Ò ±³Ã¼ ±âȸ, »ê¾÷ ºÎ¹®ÀÇ ÀÀ¿ë µîÀÌ ÀÖÀ¸¸ç, SMRÀ» ±¤¹üÀ§ÇÑ ¿¡³ÊÁö ½Ã½ºÅÛ¿¡ ÅëÇÕÇÏ´Â °ÍÀº ƯÈ÷ ûÁ¤ ¼ö¼Ò »ý»êÀÇ ¿øµ¿·ÂÀÌÀÚ Àç»ý¿¡³ÊÁö º¸±Þ·üÀÌ ³ôÀº ½Ã½ºÅÛ¿¡¼­ ±×¸®µå ¾ÈÁ¤È­ ¼­ºñ½º Á¦°ø¾÷ü·Î¼­ Áß¿äÇÑ °¡Ä¡ Á¦¾ÈÀÔ´Ï´Ù. Àç»ý¿¡³ÊÁö º¸±Þ·üÀÌ ³ôÀº ½Ã½ºÅÛ¿¡¼­ ±×¸®µå ¾ÈÁ¤È­ ¼­ºñ½º Á¦°ø¾÷ü·Î¼­ Áß¿äÇÑ °¡Ä¡ Á¦¾ÈÀÌ µÉ ¼ö ÀÖ½À´Ï´Ù. ±º¿ë ¹× ¿ø°ÝÁö ÀÀ¿ë ºÐ¾ß´Â °íÀ¯ÇÑ ¿ä±¸»çÇ×°ú ÀáÀçÀûÀ¸·Î ³ôÀº °¡°Ý ¼ö¿ë¼ºÀ» °¡Áø Ư¼öÇÑ ½ÃÀå ºÎ¹®À» Çü¼ºÇÕ´Ï´Ù.

½ÃÀåÀº À¯·Ê¾ø´Â ±ÔÁ¦ Àå¾Ö¹°, ÀÚº» Áý¾àÀû ÇÁ·ÎÁ§Æ®¸¦ À§ÇÑ º¹ÀâÇÑ ÀÚ±Ý Á¶´Þ, °ø±Þ¸Á °³¹ßÀÇ Çʿ伺, »çȸÀû ¼ö¿ë¼º °ËÅä µî ¿©·¯ °¡Áö Áß´ëÇÑ ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. Ç¥ÁØÈ­µÈ ºÎǰ Á¦Á¶ ¿ª·®À» ±¸ÃàÇÒ Çʿ伺Àº SMRÀ» °³¹ßÇϰíÀÚ ÇÏ´Â ±¹°¡µéÀÇ »ê¾÷ ¹ßÀü¿¡ µµÀüÀÌÀÚ ±âȸÀÔ´Ï´Ù.

IAEAÀÇ SMR Ç÷§Æû ¹× ´Ù¾çÇÑ ¾çÀÚ ÇùÁ¤°ú °°Àº ³ë·ÂÀº Áö½Ä °øÀ¯ ¹× ±ÔÁ¦ Á¶Á¤À» ÃËÁøÇÕ´Ï´Ù. ¼öÃâ ½ÃÀå °³¹ßÀº ¹Ì±¹, ·¯½Ã¾Æ, Áß±¹, ¿µ±¹À» ºñ·ÔÇÑ º¥´õ ±¹°¡µéÀÇ Àü·«Àû ¿ì¼±¼øÀ§À̸ç, ¼³°è°¡ »ó¾÷Àû Áغñ ´Ü°è¿¡ µµ´ÞÇÔ¿¡ µû¶ó ±¹Á¦ ¹èÄ¡¿¡ ´ëÇÑ °æÀïÀÌ Ä¡¿­ÇØÁú °ÍÀ¸·Î ¿¹ÃøµË´Ï´Ù. ÇâÈÄ 10³â°£Àº ½ÇÁõ ÇÁ·ÎÁ§Æ®¿¡¼­ »ó¾÷¿ë Â÷·® ¹èÄ¡·ÎÀÇ ÀüȯÀÌ ÇÙ½É ½ÃÀå °úÁ¦À̸ç, ¼¼°è ÃÖÃÊ ÇÁ·ÎÁ§Æ®ÀÇ ¼º°ø ¿©ºÎ°¡ ÇâÈÄ ½ÃÀå ±ËÀû, ÅõÀÚ È帧, ¼¼°è ¿¡³ÊÁö ȯ°æ Àü¹ÝÀÇ ±â¼ú ¼±Åà ÆÐÅÏ¿¡ Å« ¿µÇâÀ» ¹ÌÄ¥ °¡´É¼ºÀÌ ³ô½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ºü¸£°Ô ¹ßÀüÇϰí ÀÖ´Â ¼¼°è ¼ÒÇü ¸ðµâ·Î(SMR) ½ÃÀåÀ» Á¶»ç ºÐ¼®ÇßÀ¸¸ç, ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ, ±â¼ú Çõ½Å, Àü°³ ½Ã³ª¸®¿À, ±ÔÁ¦ ÇÁ·¹ÀÓ¿öÅ©, °æÀï ±¸µµ µîÀ» ¸é¹ÐÈ÷ °ËÅäÇÏ¿© ½Ç¿ëÀûÀÎ ÅëÂû·ÂÀ» Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

  • ½ÃÀå °³¿ä
  • ½ÃÀå ¿¹Ãø
  • ±â¼ú µ¿Çâ
  • ±ÔÁ¦ »óȲ

Á¦2Àå ¼­·Ð

  • SMRÀÇ Á¤ÀÇ¿Í Æ¯Â¡
  • È®¸³µÈ ¿øÀÚ·Â ±â¼ú
  • SMR ±â¼úÀÇ ¿ª»ç¿Í ÁøÈ­
  • SMRÀÇ Àå´ÜÁ¡
  • ±âÁ¸ ¿øÀڷοÍÀÇ ºñ±³
  • ÇöÀçÀÇ SMR ¿øÀÚ·Î ¼³°è¿Í ÇÁ·ÎÁ§Æ®
  • SMRÀÇ À¯Çü
  • SMRÀÇ ¿ëµµ
  • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
  • SMRÀÇ ¾ÈÀü¼º

Á¦3Àå ¼¼°èÀÇ ¿¡³ÊÁö »óȲ°ú SMRÀÇ ¿ªÇÒ

  • ÇöÀç ¼¼°èÀÇ ¿¡³ÊÁö ¹Í½º
  • ¿¹ÃøµÇ´Â ¿¡³ÊÁö ¼ö¿ä(2025³â-2045³â)
  • ±âÈÄ º¯È­ ¿ÏÈ­¿Í ÆÄ¸® ÇùÁ¤
  • SDGs ¹®¸Æ ¿øÀÚ·Â ¿¡³ÊÁö
  • ûÁ¤¿¡³ÊÁö À̵¿ ¼Ö·ç¼ÇÀ¸·Î¼­ÀÇ SMR

Á¦4Àå ±â¼ú °³¿ä

  • SMR ¼³°è ¿øÄ¢
  • ÁÖ¿ä ÄÄÆ÷³ÍÆ®¿Í ½Ã½ºÅÛ
  • ¾ÈÀü ±â´É°ú ÆÐ½Ãºê ¼¼ÀÌÇÁƼ ½Ã½ºÅÛ
  • »çÀÌŬ°ú Æó±â¹° °ü¸®
  • ÷´Ü Á¦Á¶ ±â¹ý
  • ¸ðµâÈ­¿Í °øÀå Á¦Á¶
  • ¿î¼Û°ú ÇöÀå¿¡¼­ÀÇ Á¶¸³
  • ±×¸®µå ÅëÇÕ°ú ºÎÇÏ ÃßÁ¾ ±â´É
  • ½Å±â¼ú°ú ÇâÈÄ ¹ßÀü

Á¦5Àå ±ÔÁ¦ ±¸Á¶¿Í ¶óÀ̼±½Ì

  • IAEA °¡À̵å¶óÀÎ
  • NRC SMR¿¡ÀÇ Á¢±Ù
  • ENSREG ½ÃÁ¡
  • ±ÔÁ¦»ó °úÁ¦¿Í Á¶È­È­ Ȱµ¿
  • SMR ¶óÀ̼±½Ì ÇÁ·Î¼¼½º
  • ȯ°æ»ó ¿µÇâ Æò°¡
  • »çȸÀû ¼ö¿ë°ú ÀÌÇØ°ü°èÀÚ °ü¿©

Á¦6Àå ½ÃÀå ºÐ¼®

  • ¼¼°è ½ÃÀå ±Ô¸ð¿Í ¼ºÀå ¿¹Ãø(2025³â-2045³â)
  • ½ÃÀå ¼¼ºÐÈ­
    • ¿øÀÚ·Î À¯Çüº°
    • ¿ëµµº°
    • Áö¿ªº°
  • SWOT ºÐ¼®
  • ¹ë·ùüÀÎ ºÐ¼®
  • ºñ¿ë ºÐ¼®°ú °æÁ¦Àû ½ÇÇö °¡´É¼º
  • ÀÚ±ÝÁ¶´Þ ¸ðµ¨°ú ÅõÀÚ Àü·«
  • Áö¿ª ½ÃÀå ºÐ¼®
    • ºÏ¹Ì
    • À¯·´
    • ±âŸ À¯·´
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • Áßµ¿ ¹× ¾ÆÇÁ¸®Ä«
    • ¶óƾ¾Æ¸Þ¸®Ä«

Á¦7Àå °æÀï ±¸µµ

  • °æÀï Àü·«
  • ÃÖ±Ù ½ÃÀå ´º½º
  • ½ÅÁ¦Ç° °³¹ß°ú Çõ½Å
  • SMR ¹Î°£ÅõÀÚ

Á¦8Àå SMR Àü°³ ½Ã³ª¸®¿À

  • À¯·Ê ¾ø´Â(FOAK) °èȹ
  • À¯·Ê ÀÖ´Â(NOAK) °èȹ
  • Àü°³ ŸÀÓ¶óÀΰú ¸¶ÀϽºÅæ
  • ¹ßÀü ´É·Â Áõ°­ ¿¹Ãø(2025³â-2045³â)
  • ½ÃÀå ħÅõ ºÐ¼®
  • ³ëÈÄÈ­ÇÑ ¿øÀÚ·Â Çø´ ±³È¯
  • Àç»ý¿¡³ÊÁö ½Ã½ºÅÛ°úÀÇ ÅëÇÕ

Á¦9Àå °æÁ¦Àû ¿µÇ⠺м®

  • °í¿ë âÃâ°ú ±â´É °³¹ß
  • Áö¿ª°ú ±¹°¡ÀÇ °æÁ¦Àû ÀÌÀÍ
  • ¿¡³ÊÁö °¡°Ý¿¡ ´ëÇÑ ¿µÇâ
  • ±âŸ ûÁ¤¿¡³ÊÁö ±â¼ú°úÀÇ ºñ±³

Á¦10Àå ȯ°æ°ú »çȸ¿¡ ´ëÇÑ ¿µÇâ

  • ź¼Ò ¹èÃâ °¨Ãà °¡´É¼º
  • ÅäÁö ÀÌ¿ë°ú ÀÔÁö¿¡ °üÇÑ °í·Á
  • ¹° »ç¿ë°ú ¿­ ¿À¿°
  • ¹æ»ç¼º Æó±â¹° °ü¸®
  • °øÁßÀ§»ý°ú ¾ÈÀü
  • »çȸÀû ¼ö¿ë°ú Ä¿¹Â´ÏƼ °ü¿©

Á¦11Àå Á¤Ã¥°ú Á¤ºÎ ÀÌ´Ï¼ÅÆ¼ºê

  • ±¹°¡ ¿øÀÚ·Â Á¤Ã¥
  • SMR¿¡ ƯȭµÈ Áö¿ø ÇÁ·Î±×·¥
  • ¿¬±¸°³¹ß ÀÚ±Ý
  • ±¹Á¦ Çù·Â°ú ±â¼ú ÀÌÀü
  • ¼öÃâ Á¦¾î¿Í ºÒÇÙ È®»ê Á¶Ä¡

Á¦12Àå °úÁ¦¿Í ±âȸ

  • ±â¼úÀû °úÁ¦
  • °æÁ¦»ó °úÁ¦
  • ±ÔÁ¦»ó °úÁ¦
  • »çȸÀû/Á¤Ä¡Àû °úÁ¦
  • ±âȸ

Á¦13Àå ÇâÈÄ Àü¸Á°ú ½Ã³ª¸®¿À

  • ±â¼ú ·Îµå¸Ê(2025³â-2045³â)
  • ½ÃÀå ¹ßÀü ½Ã³ª¸®¿À
  • Àå±âÀûÀÎ ½ÃÀå ¿¹Ãø(2045³â-)
  • ÀáÀçÀûÀÎ ÆÄ±«Àû ±â¼ú
  • SMR ÅëÇÕ¿¡ ¼ö¹ÝÇÏ´Â ¼¼°èÀÇ ¿¡³ÊÁö ¹Í½º ½Ã³ª¸®¿À

Á¦14Àå »ç·Ê ¿¬±¸

  • NuScale Power VOYGR(TM) SMR Power Plant
  • Rolls-Royce UK SMR Program
  • Áß±¹ÀÇ HTR-PM ½ÇÁõ ÇÁ·ÎÁ§Æ®
  • ·¯½Ã¾ÆÀÇ ºÎÀ¯½Ä ¿øÀڷ¹ßÀü¼Ò(Akademik Lomonosov)
  • ij³ª´ÙÀÇ SMR Action Plan

Á¦15Àå ÅõÀÚ ºÐ¼®

  • ÅõÀÚ¼öÀÍ·ü(ROI) ¿¹Ãø
  • ¸®½ºÅ© Æò°¡ ¹× °æ°¨ Àü·«
  • ±âŸ ¿¡³ÊÁö ÅõÀÚ¿ÍÀÇ ºñ±³ ºÐ¼®
  • ¹Î°ü ÆÄÆ®³Ê½Ê ¸ðµ¨

Á¦16Àå ±â¾÷ °³¿ä(±â¾÷ 33°³»ç °³¿ä)

Á¦17Àå ºÎ·Ï

Á¦18Àå Âü°í ¹®Çå

LSH 25.05.26

The global Small Modular Reactor (SMR) market represents one of the most promising segments within the nuclear energy industry, characterized by innovative reactor designs with electrical outputs typically below 300 MWe. This emerging market is driven by the search for low-carbon energy solutions that offer greater flexibility, reduced financial risk, and enhanced safety features compared to conventional large-scale nuclear plants. As countries worldwide strengthen climate commitments while facing increasing energy security concerns, SMRs are positioned as a potential solution that combines reliable baseload generation with deployment versatility. Market growth projections vary significantly based on deployment scenarios, with conservative estimates valuing the global market at approximately $10-15 billion by 2030, while more optimistic projections suggest potential growth to $40-50 billion by 2035 as the technology matures. The North American market currently leads development efforts, with the United States government providing substantial funding through programs like the Advanced Reactor Demonstration Program. Asia-Pacific represents the fastest-growing regional market, driven primarily by China's operational HTR-PM and Russia's floating nuclear plants, with significant investment also occurring in South Korea, Japan, and India.

The competitive landscape features both established nuclear industry players and innovative startups. Traditional nuclear vendors like GE Hitachi, Westinghouse, and Rosatom have developed SMR designs leveraging their existing technological expertise, while newcomers such as NuScale Power, TerraPower, and X-energy have attracted significant investment with novel approaches. The UK's Rolls-Royce SMR program exemplifies the strategic national importance many countries place on developing domestic SMR capabilities, with similar initiatives underway in Canada, France, and South Korea.

Technology segmentation within the market spans multiple reactor types with varying development timelines. Light water reactor designs dominate near-term deployments due to regulatory familiarity and technological readiness, with NuScale's VOYGR and GE Hitachi's BWRX-300 among the most advanced in regulatory processes. High-temperature gas-cooled reactors offer process heat capabilities for industrial applications, while more advanced designs utilizing liquid metal or molten salt technologies target longer-term market opportunities with enhanced performance characteristics.

Key market drivers include decarbonization policies, energy security concerns, coal plant replacement opportunities, and industrial sector applications. The integration of SMRs within broader energy systems, particularly as enablers for clean hydrogen production and providers of grid stability services in systems with high renewable penetration, represents a significant value proposition. Military and remote community applications create specialized market segments with unique requirements and potentially higher price tolerance.

The market faces several significant challenges, including first-of-a-kind regulatory hurdles, financing complexities for capital-intensive projects, supply chain development needs, and public acceptance considerations. The necessity of establishing manufacturing capacity for standardized components represents both a challenge and an opportunity for industrial development in countries pursuing SMR deployment.

International collaboration has emerged as a defining characteristic of the market, with initiatives like the IAEA's SMR Platform and various bilateral agreements facilitating knowledge sharing and harmonized approaches to regulation. Export market development remains a strategic priority for vendor countries, particularly the United States, Russia, China, and the United Kingdom, with competition for international deployments expected to intensify as designs reach commercial readiness. Over the next decade, the transition from demonstration projects to commercial fleet deployment represents the central market challenge, with successful first-of-a-kind projects likely to significantly influence subsequent market trajectories, investment flows, and technology selection patterns across the global energy landscape.

"The Global Nuclear Small Modular Reactors (SMRs) Market 2025-2045" provides in-depth analysis and strategic intelligence on the rapidly evolving Global Nuclear Small Modular Reactors (SMRs) market from 2025-2045. As countries worldwide intensify efforts to achieve net-zero emissions while ensuring energy security, SMRs have emerged as a transformative solution offering reduced capital costs, enhanced safety features, and versatile applications beyond traditional electricity generation. The report meticulously examines market drivers, technological innovations, deployment scenarios, regulatory frameworks, and competitive landscapes to deliver actionable insights for investors, energy companies, policymakers, and industry stakeholders. With detailed data on market segmentation by reactor type, application, and geographical region, this comprehensive analysis presents three growth scenarios with quantitative projections spanning two decades.

Report Contents include:

  • Market Overview and Forecast (2025-2045) - Detailed market size projections, growth trajectories, and regional breakdowns with CAGR analysis and value forecasts.
  • Technological Analysis - Comprehensive evaluation of diverse SMR technologies including Light Water Reactors (LWRs), High-Temperature Gas-Cooled Reactors (HTGRs), Fast Neutron Reactors (FNRs), Molten Salt Reactors (MSRs), and emerging microreactor designs
  • Competitive Landscape - Strategic positioning, innovation pipelines, competitive advantages, and market share analysis of 33 leading and emerging SMR developers with detailed company profiles
  • Regulatory Framework Analysis - International and regional licensing approaches, harmonization efforts, policy incentives, and export control considerations affecting market development
  • Economic Impact Assessment - Job creation potential, ROI projections, cost-benefit analyses, and comparative economics against traditional nuclear and renewable energy alternatives
  • Deployment Scenarios - Detailed timelines and milestones for First-of-a-Kind (FOAK) and Nth-of-a-Kind (NOAK) deployments with capacity addition forecasts through 2045
  • Applications Analysis - Market potential across diverse applications including electricity generation, industrial process heat, district heating, hydrogen production, desalination, remote power, and marine propulsion
  • Investment Analysis - Financing models, risk assessment methodologies, public-private partnership structures, and ROI comparisons with alternative energy investments
  • Environmental and Social Impact - Carbon emissions reduction potential, land use comparisons, water usage analysis, waste management strategies, and public acceptance considerations
  • Case Studies - In-depth analysis of pioneering SMR projects including NuScale Power VOYGR(TM), Rolls-Royce UK SMR, China's HTR-PM, Russia's Akademik Lomonosov, and the Canadian SMR Action Plan
  • Future Outlook - Long-term market projections beyond 2045, technology roadmaps, potential disruptive technologies, and global energy mix scenarios with SMR integration
  • Regional Market Analysis - Detailed assessments of market opportunities and regulatory environments across North America, Europe, Asia-Pacific, Middle East & Africa, and Latin America

The report provides comprehensive profiles of 33 leading and emerging companies including Aalo Atomics, ARC Clean Technology, Blue Capsule, Blykalla, BWX Technologies, China National Nuclear Corporation (CNNC), Deep Fission, EDF, GE Hitachi Nuclear Energy, General Atomics, Hexana, Holtec International, Kairos Power, Karnfull Next, Korea Atomic Energy Research Institute (KAERI), Last Energy, Moltex Energy, Naarea, Nano Nuclear Energy, Newcleo, NuScale Power, Oklo, Rolls-Royce SMR, Rosatom, Saltfoss Energy and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. The nuclear industry
    • 1.1.2. Nuclear as a source of low-carbon power
    • 1.1.3. Challenges for nuclear power
    • 1.1.4. Construction and costs of commercial nuclear power plants
    • 1.1.5. Renewed interest in nuclear energy
    • 1.1.6. Projections for nuclear installation rates
    • 1.1.7. Nuclear energy costs
    • 1.1.8. SMR benefits
    • 1.1.9. Decarbonization
  • 1.2. Market Forecast
  • 1.3. Technological Trends
  • 1.4. Regulatory Landscape

2. INTRODUCTION

  • 2.1. Definition and Characteristics of SMRs
  • 2.2. Established nuclear technologies
  • 2.3. History and Evolution of SMR Technology
    • 2.3.1. Nuclear fission
    • 2.3.2. Controlling nuclear chain reactions
    • 2.3.3. Fuels
    • 2.3.4. Safety parameters
      • 2.3.4.1. Void coefficient of reactivity
      • 2.3.4.2. Temperature coefficient
    • 2.3.5. Light Water Reactors (LWRs)
    • 2.3.6. Ultimate heat sinks (UHS)
  • 2.4. Advantages and Disadvantages of SMRs
  • 2.5. Comparison with Traditional Nuclear Reactors
  • 2.6. Current SMR reactor designs and projects
  • 2.7. Types of SMRs
    • 2.7.1. Designs
    • 2.7.2. Coolant temperature
    • 2.7.3. The Small Modular Reactor landscape
    • 2.7.4. Light Water Reactors (LWRs)
      • 2.7.4.1. Pressurized Water Reactors (PWRs)
        • 2.7.4.1.1. Overview
        • 2.7.4.1.2. Key features
        • 2.7.4.1.3. Examples
      • 2.7.4.2. Pressurized Heavy Water Reactors (PHWRs)
        • 2.7.4.2.1. Overview
        • 2.7.4.2.2. Key features
        • 2.7.4.2.3. Examples
      • 2.7.4.3. Boiling Water Reactors (BWRs)
        • 2.7.4.3.1. Overview
        • 2.7.4.3.2. Key features
        • 2.7.4.3.3. Examples
    • 2.7.5. High-Temperature Gas-Cooled Reactors (HTGRs)
      • 2.7.5.1. Overview
      • 2.7.5.2. Key features
      • 2.7.5.3. Examples
    • 2.7.6. Fast Neutron Reactors (FNRs)
      • 2.7.6.1. Overview
      • 2.7.6.2. Key features
      • 2.7.6.3. Examples
    • 2.7.7. Molten Salt Reactors (MSRs)
      • 2.7.7.1. Overview
      • 2.7.7.2. Key features
      • 2.7.7.3. Examples
    • 2.7.8. Microreactors
      • 2.7.8.1. Overview
      • 2.7.8.2. Key features
      • 2.7.8.3. Examples
    • 2.7.9. Heat Pipe Reactors
      • 2.7.9.1. Overview
      • 2.7.9.2. Key features
      • 2.7.9.3. Examples
    • 2.7.10. Liquid Metal Cooled Reactors
      • 2.7.10.1. Overview
      • 2.7.10.2. Key features
      • 2.7.10.3. Examples
    • 2.7.11. Supercritical Water-Cooled Reactors (SCWRs)
      • 2.7.11.1. Overview
      • 2.7.11.2. Key features
    • 2.7.12. Pebble Bed Reactors
      • 2.7.12.1. Overview
      • 2.7.12.2. Key features
  • 2.8. Applications of SMRs
    • 2.8.1. Electricity Generation
      • 2.8.1.1. Overview
      • 2.8.1.2. Cogeneration
    • 2.8.2. Process Heat for Industrial Applications
      • 2.8.2.1. Overview
      • 2.8.2.2. Strategic co-location of SMRs
      • 2.8.2.3. High-temperature reactors
      • 2.8.2.4. Coal-fired power plant conversion
    • 2.8.3. Nuclear District Heating
    • 2.8.4. Desalination
    • 2.8.5. Remote and Off-Grid Power
    • 2.8.6. Hydrogen and industrial gas production
    • 2.8.7. Space Applications
    • 2.8.8. Marine SMRs
  • 2.9. Market challenges
  • 2.10. Safety of SMRs

3. GLOBAL ENERGY LANDSCAPE AND THE ROLE OF SMRs

  • 3.1. Current Global Energy Mix
  • 3.2. Projected Energy Demand (2025-2045)
  • 3.3. Climate Change Mitigation and the Paris Agreement
  • 3.4. Nuclear Energy in the Context of Sustainable Development Goals
  • 3.5. SMRs as a Solution for Clean Energy Transition

4. TECHNOLOGY OVERVIEW

  • 4.1. Design Principles of SMRs
  • 4.2. Key Components and Systems
  • 4.3. Safety Features and Passive Safety Systems
  • 4.4. Cycle and Waste Management
  • 4.5. Advanced Manufacturing Techniques
  • 4.6. Modularization and Factory Fabrication
  • 4.7. Transportation and Site Assembly
  • 4.8. Grid Integration and Load Following Capabilities
  • 4.9. Emerging Technologies and Future Developments

5. REGULATORY FRAMEWORK AND LICENSING

  • 5.1. International Atomic Energy Agency (IAEA) Guidelines
  • 5.2. Nuclear Regulatory Commission (NRC) Approach to SMRs
  • 5.3. European Nuclear Safety Regulators Group (ENSREG) Perspective
  • 5.4. Regulatory Challenges and Harmonization Efforts
  • 5.5. Licensing Processes for SMRs
  • 5.6. Environmental Impact Assessment
  • 5.7. Public Acceptance and Stakeholder Engagement

6. MARKET ANAYSIS

  • 6.1. Global Market Size and Growth Projections (2025-2045)
  • 6.2. Market Segmentation
    • 6.2.1. By Reactor Type
    • 6.2.2. By Application
    • 6.2.3. By Region
  • 6.3. SWOT Analysis
  • 6.4. Value Chain Analysis
  • 6.5. Cost Analysis and Economic Viability
  • 6.6. Financing Models and Investment Strategies
  • 6.7. Regional Market Analysis
    • 6.7.1. North America
      • 6.7.1.1. United States
      • 6.7.1.2. Canada
    • 6.7.2. Europe
      • 6.7.2.1. United Kingdom
      • 6.7.2.2. France
      • 6.7.2.3. Russia
    • 6.7.3. Other European Countries
    • 6.7.4. Asia-Pacific
      • 6.7.4.1. China
      • 6.7.4.2. Japan
      • 6.7.4.3. South Korea
      • 6.7.4.4. India
      • 6.7.4.5. Other Asia-Pacific Countries
    • 6.7.5. Middle East and Africa
    • 6.7.6. Latin America

7. COMPETITIVE LANDSCAPE

  • 7.1. Competitive Strategies
  • 7.2. Recent market news
  • 7.3. New Product Developments and Innovations
  • 7.4. SMR private investment

8. SMR DEPOLYMENT SCENARIOS

  • 8.1. First-of-a-Kind (FOAK) Projects
  • 8.2. Nth-of-a-Kind (NOAK) Projections
  • 8.3. Deployment Timelines and Milestones
  • 8.4. Capacity Additions Forecast (2025-2045)
  • 8.5. Market Penetration Analysis
  • 8.6. Replacement of Aging Nuclear Fleet
  • 8.7. Integration with Renewable Energy Systems

9. ECONOMIC IMPACT ANALYSIS

  • 9.1. Job Creation and Skill Development
  • 9.2. Local and National Economic Benefits
  • 9.3. Impact on Energy Prices
  • 9.4. Comparison with Other Clean Energy Technologies

10. ENVIRONMENTAL AND SOCIAL IMPACT

  • 10.1. Carbon Emissions Reduction Potential
  • 10.2. Land Use and Siting Considerations
  • 10.3. Water Usage and Thermal Pollution
  • 10.4. Radioactive Waste Management
  • 10.5. Public Health and Safety
  • 10.6. Social Acceptance and Community Engagement

11. POLICY AND GOVERNMENT INITIATIVES

  • 11.1. National Nuclear Energy Policies
  • 11.2. SMR-Specific Support Programs
  • 11.3. Research and Development Funding
  • 11.4. International Cooperation and Technology Transfer
  • 11.5. Export Control and Non-Proliferation Measures

12. CHALLENGES AND OPPORTUNITIES

  • 12.1. Technical Challenges
    • 12.1.1. Design Certification and Licensing
    • 12.1.2. Fuel Development and Supply
    • 12.1.3. Component Manufacturing and Quality Assurance
    • 12.1.4. Grid Integration and Load Following
  • 12.2. Economic Challenges
    • 12.2.1. Capital Costs and Financing
    • 12.2.2. Economies of Scale
    • 12.2.3. Market Competition from Other Energy Sources
  • 12.3. Regulatory Challenges
    • 12.3.1. Harmonization of International Standards
    • 12.3.2. Site Licensing and Environmental Approvals
    • 12.3.3. Liability and Insurance Issues
  • 12.4. Social and Political Challenges
    • 12.4.1. Public Perception and Acceptance
    • 12.4.2. Nuclear Proliferation Concerns
    • 12.4.3. Waste Management and Long-Term Storage
  • 12.5. Opportunities
    • 12.5.1. Decarbonization of Energy Systems
    • 12.5.2. Energy Security and Independence
    • 12.5.3. Industrial Applications and Process Heat
    • 12.5.4. Remote and Off-Grid Power Solutions
    • 12.5.5. Nuclear-Renewable Hybrid Energy Systems

13. FUTURE OUTLOOK AND SCENARIOS

  • 13.1. Technology Roadmap (2025-2045)
  • 13.2. Market Evolution Scenarios
  • 13.3. Long-Term Market Projections (Beyond 2045)
  • 13.4. Potential Disruptive Technologies
  • 13.5. Global Energy Mix Scenarios with SMR Integration

14. CASE STUDIES

  • 14.1. NuScale Power VOYGR(TM) SMR Power Plant
  • 14.2. Rolls-Royce UK SMR Program
  • 14.3. China's HTR-PM Demonstration Project
  • 14.4. Russia's Floating Nuclear Power Plant (Akademik Lomonosov)
  • 14.5. Canadian SMR Action Plan

15. INVESTMENT ANALYSIS

  • 15.1. Return on Investment (ROI) Projections
  • 15.2. Risk Assessment and Mitigation Strategies
  • 15.3. Comparative Analysis with Other Energy Investments
  • 15.4. Public-Private Partnership Models

16. COMPANY PROFILES(33 company profiles)

17. APPENDICES

  • 17.1. Research Methodology

18. REFERENCES

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦