시장보고서
상품코드
1558625

세계의 플렉서블 배터리 시장(2025-2035년)

The Global Market for Flexible Batteries 2025-2035

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 245 Pages, 99 Tables, 93 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

전자 기기의 소형화, 유연화, 웨어러블화에 따라 유연하고 효율적인 전원 공급 장치에 대한 수요가 증가하고 있습니다. 세계경제포럼(World Economic Forum)은 플렉서블 배터리를 향후 10년간 가장 중요한 신기술 중 하나로 꼽았습니다. 웨어러블 일렉트로닉스, 사물인터넷(IoT) 기기 및 얇고 구부릴 수 있는 신축성 있는 전원을 필요로 하는 기타 응용 분야의 확대가 플렉서블 배터리 시장을 뒷받침하고 있습니다.

이 보고서는 세계 플렉서블 배터리 시장에 대해 조사 분석했으며, 시장 성장 촉진요인 및 동향, 과거 수요 및 예측, 기업 프로파일 등의 정보를 제공합니다.

목차

제1장 주요 요약

  • 플렉서블 배터리 정의와 개요
  • 배터리 시장 메가트렌드
  • 배터리용 첨단 소재
  • 매크로 동향
  • 현대 용도 플렉서블 배터리 중요성
  • 기술 벤치마크
  • 배터리 개발
    • 에너지 밀도와 성능 향상
    • 신축성 배터리
    • 텍스타일 기반 배터리
    • 프린티드 배터리
    • 지속가능생분해성 배터리
    • 자기치유 배터리
    • 고체 플렉서블 배터리
    • 에너지수확기술과의 통합
    • 나노 구조재료
    • 박막 배터리 기술
  • 세계의 배터리 시장
  • 시장 성장 촉진요인
  • 배터리 로드맵
  • 용도 시장 로드맵
  • 용도
  • 시장 예측의 전제조건과 과제
    • 기술별(100만 달러)
    • 기술별(개수)
    • 용도별(100만 달러)
    • 용도별(개수)
  • 시장과 기술 과제

제2장 기술 개요

  • 유연성에의 접근
    • Thinness-derived flexibility
    • Material-derived flexibility
    • Device-Design-Derived Flexibility
  • 생산
  • 플렉서블 배터리 기술
    • 박막 리튬이온 배터리
    • 프린티드 배터리
    • 박막 고체 배터리
    • 신축성 배터리
    • 기타 신기술
  • 플렉서블 배터리 주요 컴포넌트
    • 전극
    • 전해질
    • 세퍼레이터
    • 집전장치
    • 패키지
    • 캡슐화 재료
    • 기타 제조 기술
  • 성능 지표와 특성
    • 에너지 밀도
    • 전력 밀도
    • 사이클 수명
    • 유연성 및 구부러짐
    • 동작 온도
    • 자기 방전

제3장 시장 역학

  • 시장 성장 촉진요인
  • 시장 성장 억제요인
  • 시장 기회
  • 시장이 해결해야 할 과제

제4장 세계 시장 규모와 예측(2025년-2035년)

  • 시장 세분화 : 기술별
    • 박막 리튬이온 배터리
    • 프린티드 배터리
    • 플렉서블 고체 배터리
    • 신축성 배터리
  • 시장 세분화 : 용도별
    • 소비자 일렉트로닉스
    • 의료, 의료기기
    • 스마트 패키지
    • 스마트 카드, RFID
    • 웨어러블 디바이스
    • IoT
    • 자동차
  • 시장 세분화 : 지역별
    • 북미
    • 유럽
    • 아시아태평양

제5장 용도 분석

  • 소비자 일렉트로닉스
    • 폴더블/플렉서블 스마트폰
    • 배터리 요건
    • 저전력 전자부품
    • 박형/플렉서블 슈퍼커패시터
    • 용도
    • 기술 요건과 과제
  • 의료 및 의료기기
    • 주요 용도
    • 기술 요건과 과제
  • 스마트 패키징
    • 주요 용도
    • 기술 요건과 과제
  • 스마트 카드 및 RFID
    • 주요 용도
    • 기술 요건과 과제
  • 웨어러블 디바이스
    • 주요 제품
    • 기술 요건과 과제
  • IoT
    • 주요 용도
    • 기술 요건과 과제
  • 항공우주 및 방위
    • 주요 용도
    • 기술 요건과 과제
  • 자동차
    • 주요 용도
    • 기술 요건과 과제

제6장 동향과 향후 전망

  • 새로운 플렉서블 배터리 기술
    • Graphene-based Flexible Batteries
    • Fiber and Textile Batteries
    • Bio-batteries and Eco-friendly Solutions
    • Self-healing Battery Technologies
  • 기타 기술과의 통합
    • 플렉서블 태양전지
    • 무선 충전 시스템
    • 에너지수확 디바이스
    • AI, 스마트 전력 관리
  • 재료 과학 진보
  • 제조 혁신
  • 표준화 및 규제 상황
    • 산업 표준 개발
    • 안전 규제와 컴플라이언스
    • 환경 규제와 지속가능성 대처
  • 환경에 대한 영향과 지속가능성
    • 플렉서블 배터리 수명주기 평가
    • 재활용 가능성과 폐기 관리
    • 친환경 재료와 생산 공정

제7장 기업 개요(44개사)

제8장 부록

제9장 참고 문헌

LSH

As electronic devices become more compact, flexible, and wearable, the demand for similarly flexible and efficient power sources is increasing. Flexible batteries have been identified by the World Economic Forum as one of the key emerging technologies for the next decade. The flexible batteries market is being supported by the expansion of wearable electronics, Internet of Things (IoT) devices, and other applications that require thin, bendable, and potentially stretchable power sources. This market report examines the global flexible batteries landscape from 2025 to 2035, providing insights for investors, manufacturers, and technology developers interested in this evolving energy storage solution.

Report contents include:

  • Market Size and Growth Projections: Forecasts of the flexible batteries market size and growth rate from 2025 to 2035, categorized by technology, application, and region.
  • Technology Analysis: Overview of various flexible battery technologies, including thin-film lithium-ion, printed batteries, solid-state batteries, and stretchable batteries.
  • Application Areas: Assessment of key application areas such as consumer electronics, healthcare devices, smart packaging, wearables, IoT, and automotive sectors.
  • Regional Analysis: Examination of market trends and opportunities in North America, Europe, Asia-Pacific, and other key regions.
  • Competitive Landscape: Profiles of established companies and new entrants in the flexible batteries space, including their technologies, strategies, and market positioning. Companies profiled include 3DOM Inc., AC Biode, AMO Greentech, Ampcera Inc., Anthro Energy, Ateios Systems, Australian Advanced Materials, Blackstone Resources, Blue Current Inc., Blue Spark Technologies Inc., CCL Design, Enfucell OY, Ensurge Micropower ASA, Evonik, Exeger, Fraunhofer Institute for Electronic Nano Systems (ENAS), Fuelium, Hitachi Zosen, Hyprint GmbH, Ilika, Intecells Inc., Jenax Inc., LiBest Inc., LionVolt BV, Maxell, Navaflex, NEC Corporation, Ohara, Photocentric, PolyPlus Battery Company, prelonic technologies, Prologium Technology Co. Ltd., Sakuu Corporation, Samsung SDI, Semiconductor Energy Laboratory Co. Ltd., Shenzhen Grepow Battery Co. Ltd. (Grepow), STMicroelectronics, TotalEnergies, UNIGRID Battery, Varta, and Zinergy UK.
  • Recent developments in flexible battery technology.
  • Market Drivers and Opportunities.
  • Challenges and Market Dynamics
  • Technical issues in manufacturing and scaling production.
  • Cost considerations and competition from traditional battery technologies.
  • Regulatory and safety concerns.
  • Technology Benchmarking and Performance Metrics.
  • Manufacturing Innovations and Material Science Advancements.
  • Investment Landscape and Market Opportunities.
    • Analysis of venture capital funding trends.
    • Overview of government initiatives and grants supporting flexible battery development.
    • Identification of potential investment areas and emerging market segments.

This report offers information for various stakeholders in the flexible batteries ecosystem:

  • Manufacturers: Production strategies, technology selection, and scaling considerations
  • Electronics Companies: Integration challenges and opportunities in product design
  • Investors: Potentially high-growth technologies and market segments for investment
  • Researchers: Areas for further study and development
  • Policy Makers: Regulatory considerations and support mechanisms for industry growth

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Definition and Overview of Flexible Batteries
  • 1.2. Battery market megatrends
  • 1.3. Advanced materials for batteries
  • 1.4. Macro-trends
  • 1.5. Importance of Flexible Batteries in Modern Applications
  • 1.6. Technology benchmarking
  • 1.7. Battery Development
    • 1.7.1. Enhanced Energy Density and Performance
    • 1.7.2. Stretchable Batteries
    • 1.7.3. Textile-Based Batteries
    • 1.7.4. Printable Batteries
    • 1.7.5. Sustainable and Biodegradable Batteries
    • 1.7.6. Self-Healing Batteries
    • 1.7.7. Solid-State Flexible Batteries
    • 1.7.8. Integration with Energy Harvesting
    • 1.7.9. Nanostructured Materials
    • 1.7.10. Thin-Film Battery Technologies
  • 1.8. The Global Battery Market
  • 1.9. Market drivers
  • 1.10. Batteries roadmap
  • 1.11. Application market roadmap
  • 1.12. Applications
  • 1.13. Market forecast assumptions and challenges
    • 1.13.1. By technology (Millions USD)
    • 1.13.2. By technology (Units)
    • 1.13.3. By application (Millions USD)
    • 1.13.4. By application (Units)
  • 1.14. Market and technical challenges

2. TECHNOLOGY OVERVIEW

  • 2.1. Approaches to flexibility
    • 2.1.1. Thinness-derived flexibility
    • 2.1.2. Material-derived flexibility
    • 2.1.3. Device-Design-Derived Flexibility
  • 2.2. Production
  • 2.3. Flexible Battery Technologies
    • 2.3.1. Thin-film Lithium-ion Batteries
      • 2.3.1.1. The Goliath range
      • 2.3.1.2. Thin film vs bulk solid-state batteries
      • 2.3.1.3. Types of Flexible/stretchable LIBs
        • 2.3.1.3.1. Flexible planar LiBs
        • 2.3.1.3.2. Flexible Fiber LiBs
        • 2.3.1.3.3. Flexible micro-LiBs
        • 2.3.1.3.4. Stretchable lithium-ion batteries
        • 2.3.1.3.5. Origami and kirigami lithium-ion batteries
      • 2.3.1.4. Flexible Li/S batteries
        • 2.3.1.4.1. Components
        • 2.3.1.4.2. Carbon nanomaterials
      • 2.3.1.5. Flexible lithium-manganese dioxide (Li-MnO2) batteries
    • 2.3.2. Printed Batteries
      • 2.3.2.1. Technical specifications
      • 2.3.2.2. Components
      • 2.3.2.3. Design
      • 2.3.2.4. Manufacturing
        • 2.3.2.4.1. Blade Coating/Doctor Blade Printing
        • 2.3.2.4.2. Screen and Stencil Printing
        • 2.3.2.4.3. Screen Printed Secondary NMH Batteries
        • 2.3.2.4.4. Spray and Flexographic Printing
        • 2.3.2.4.5. Inkjet and Dispenser Printing
        • 2.3.2.4.6. 2D and 3D Printing techniques
      • 2.3.2.5. Key features
        • 2.3.2.5.1. Printable current collectors
        • 2.3.2.5.2. Printable electrodes
        • 2.3.2.5.3. Materials
        • 2.3.2.5.4. Applications
        • 2.3.2.5.5. Lithium-ion (LIB) printed batteries
        • 2.3.2.5.6. Zinc-based printed batteries
        • 2.3.2.5.7. 3D Printed batteries
          • 2.3.2.5.7.1. Materials for 3D printed batteries
            • 2.3.2.5.7.1.1. Electrode Materials
            • 2.3.2.5.7.1.2. Electrolyte Materials
    • 2.3.3. Thin-Film Solid-state Batteries
      • 2.3.3.1. Fabrication Techniques
        • 2.3.3.1.1. Physical vapor deposition (PVD)
        • 2.3.3.1.2. Direct Vapor Deposition
      • 2.3.3.2. Solid-state electrolytes
      • 2.3.3.3. Features and advantages
      • 2.3.3.4. Technical specifications
        • 2.3.3.4.1. Types
      • 2.3.3.5. Microbatteries
        • 2.3.3.5.1. Introduction
        • 2.3.3.5.2. Materials
        • 2.3.3.5.3. Applications
        • 2.3.3.5.4. 3D designs
    • 2.3.4. Stretchable Batteries
    • 2.3.5. Other Emerging Technologies
      • 2.3.5.1. Metal-sulfur batteries
      • 2.3.5.2. Flexible zinc-based batteries
      • 2.3.5.3. Flexible silver-zinc (Ag-Zn) batteries
      • 2.3.5.4. Flexible Zn-Air batteries
      • 2.3.5.5. Flexible zinc-vanadium batteries
      • 2.3.5.6. Fiber-shaped batteries
        • 2.3.5.6.1. Carbon nanotubes
        • 2.3.5.6.2. Types
        • 2.3.5.6.3. Applications
        • 2.3.5.6.4. Challenges
      • 2.3.5.7. Transparent batteries
        • 2.3.5.7.1. Components
      • 2.3.5.8. Degradable batteries
        • 2.3.5.8.1. Components
      • 2.3.5.9. Fiber-shaped batteries
        • 2.3.5.9.1. Carbon nanotubes
        • 2.3.5.9.2. Types
        • 2.3.5.9.3. Applications
        • 2.3.5.9.4. Challenges
      • 2.3.5.10. Cable-type batteries
  • 2.4. Key Components of Flexible Batteries
    • 2.4.1. Electrodes
    • 2.4.2. Electrolytes
    • 2.4.3. Separators
    • 2.4.4. Current Collectors
    • 2.4.5. Packaging
      • 2.4.5.1. Pouch cells
    • 2.4.6. Encapsulation Materials
    • 2.4.7. Other Manufacturing Techniques
  • 2.5. Performance Metrics and Characteristics
    • 2.5.1. Energy Density
    • 2.5.2. Power Density
    • 2.5.3. Cycle Life
    • 2.5.4. Flexibility and Bendability
    • 2.5.5. Operating Temperature
    • 2.5.6. Self-Discharge

3. MARKET DYNAMICS

  • 3.1. Market Drivers
    • 3.1.1. Growing Demand for Wearable Electronics
    • 3.1.2. Increasing Adoption of IoT Devices
    • 3.1.3. Advancements in Flexible Electronics
    • 3.1.4. Rising Interest in Printed Electronics
    • 3.1.5. Demand for Lightweight and Portable Power Sources
  • 3.2. Market Restraints
    • 3.2.1. Technical Challenges in Manufacturing
    • 3.2.2. Limited Energy Density Compared to Conventional Batteries
    • 3.2.3. High Initial Production Costs
    • 3.2.4. Safety Concerns and Regulatory Hurdles
  • 3.3. Market Opportunities
    • 3.3.1. Emerging Applications in Healthcare and Medical Devices
    • 3.3.2. Integration with Energy Harvesting Technologies
    • 3.3.3. Potential in Aerospace and Defense Sectors
    • 3.3.4. Smart Packaging and RFID Applications
  • 3.4. Market Challenges
    • 3.4.1. Scaling Up Production
    • 3.4.2. Achieving Consistent Performance Under Various Conditions
    • 3.4.3. Competition from Alternative Energy Storage Technologies
    • 3.4.4. Addressing Environmental and Recycling Concerns

4. GLOBAL MARKET SIZE AND FORECAST (2025-2035)

  • 4.1. Market Segmentation by Technology
    • 4.1.1. Thin-film Lithium-ion Batteries
    • 4.1.2. Printed Batteries
    • 4.1.3. Flexible Solid-state Batteries
    • 4.1.4. Stretchable Batteries
  • 4.2. Market Segmentation by Application
    • 4.2.1. Consumer Electronics
    • 4.2.2. Healthcare and Medical Devices
    • 4.2.3. Smart Packaging
    • 4.2.4. Smart Cards and RFID
    • 4.2.5. Wearable Devices
    • 4.2.6. Internet of Things (IoT)
    • 4.2.7. Automotive
  • 4.3. Market Segmentation by Region
    • 4.3.1. North America
    • 4.3.2. Europe
    • 4.3.3. Asia-Pacific

5. APPLICATION ANALYSIS

  • 5.1. Consumer Electronics
    • 5.1.1. Foldable and flexible phones
    • 5.1.2. Battery Requirements
    • 5.1.3. Low-power electronic components
    • 5.1.4. Thin and flexible supercapacitors
    • 5.1.5. Applications
      • 5.1.5.1. Flexible Batteries in Smartphones
      • 5.1.5.2. Flexible Batteries in Tablets
      • 5.1.5.3. Flexible Batteries in Wearables
    • 5.1.6. Technology Requirements and Challenges
  • 5.2. Healthcare and Medical Devices
    • 5.2.1. Key Applications
      • 5.2.1.1. Smart Patches
        • 5.2.1.1.1. Cosmetic Skin Patches
        • 5.2.1.1.2. Cardiovascular monitoring patch
        • 5.2.1.1.3. Diabetes management
        • 5.2.1.1.4. Temperature Monitoring
      • 5.2.1.2. Implantable Devices
      • 5.2.1.3. Monitoring Systems
    • 5.2.2. Technology Requirements and Challenges
  • 5.3. Smart Packaging
    • 5.3.1. Key Applications
      • 5.3.1.1. Temperature Sensors
      • 5.3.1.2. Freshness Indicators
    • 5.3.2. Technology Requirements and Challenges
  • 5.4. Smart Cards and RFID
    • 5.4.1. Key Applications
    • 5.4.2. Technology Requirements and Challenges
  • 5.5. Wearable Devices
    • 5.5.1. Key Products
      • 5.5.1.1. Wrist-worn wearables and fitness trackers
      • 5.5.1.2. Smart Textiles
      • 5.5.1.3. Smart eyewear and headwear
      • 5.5.1.4. Smart contact lenses
    • 5.5.2. Technology Requirements and Challenges
  • 5.6. Internet of Things (IoT)
    • 5.6.1. Key Applications
      • 5.6.1.1. Sensors
        • 5.6.1.1.1. IoT and Industry 4.0 ecosystem
        • 5.6.1.1.2. Wireless Sensor Networks (WSNs)
        • 5.6.1.1.3. IoT applications in consumer goods
      • 5.6.1.2. Smart Home Devices
      • 5.6.1.3. Industrial IoT
    • 5.6.2. Technology Requirements and Challenges
  • 5.7. Aerospace and Defense
    • 5.7.1. Key Applications
      • 5.7.1.1. Drones
      • 5.7.1.2. Soldier Systems
      • 5.7.1.3. Aircraft Components
    • 5.7.2. Technology Requirements and Challenges
  • 5.8. Automotive
    • 5.8.1. Key Applications
      • 5.8.1.1. Electric Vehicles
      • 5.8.1.2. Smart Keys
      • 5.8.1.3. In-Car Electronics
    • 5.8.2. Technology Requirements and Challenges

6. TRENDS AND FUTURE OUTLOOK

  • 6.1. Emerging Flexible Battery Technologies
    • 6.1.1. Graphene-based Flexible Batteries
    • 6.1.2. Fiber and Textile Batteries
    • 6.1.3. Bio-batteries and Eco-friendly Solutions
    • 6.1.4. Self-healing Battery Technologies
  • 6.2. Integration with Other Technologies
    • 6.2.1. Flexible Solar Cells
    • 6.2.2. Wireless Charging Systems
    • 6.2.3. Energy Harvesting Devices
    • 6.2.4. Artificial Intelligence and Smart Power Management
  • 6.3. Advancements in Materials Science
  • 6.4. Manufacturing Innovations
  • 6.5. Standardization and Regulatory Landscape
    • 6.5.1. Development of Industry Standards
    • 6.5.2. Safety Regulations and Compliance
    • 6.5.3. Environmental Regulations and Sustainability Initiatives
  • 6.6. Environmental Impact and Sustainability
    • 6.6.1. Life Cycle Assessment of Flexible Batteries
    • 6.6.2. Recyclability and End-of-Life Management
    • 6.6.3. Eco-friendly Materials and Production Processes

7. COMPANY PROFILES (44 company profiles)

8. APPENDICES

  • 8.1. Glossary of Terms
  • 8.2. List of Abbreviations
  • 8.3. Research Methodology

9. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제