시장보고서
상품코드
1564669

세계의 바이오연료 및 합성연료(eFuel) 시장(2025-2035년)

The Global Market for Biofuels and E-Fuels 2025-2035

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 446 Pages, 147 Tables, 110 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

재생 가능한 바이오매스 자원에서 추출한 바이오연료는 에탄올과 바이오디젤을 필두로 시장에서 큰 영향력을 발휘하고 있습니다. 이들 재래식 바이오연료는 특히 미국, 브라질, 유럽연합(EU)에서 정부 지원 정책 및 의무화 정책의 혜택을 받아왔습니다. 그러나 식량 안보와 토지 이용에 대한 우려로 인해 비식량 원료와 폐기물로 생산되는 첨단 바이오연료로 전환이 가속화되고 있습니다. 바이오연료를 보완할 수 있는 유망한 연료로 탄소 중립적인 액체 연료를 제공할 수 있는 합성연료(eFuel 또는 Power-to-X 연료라고도 함)가 주목받고 있습니다. 녹색 수소와 회수된 이산화탄소를 결합하여 생산되는 합성연료는 재생 가능한 전력을 기존 인프라와 엔진에 적합한 형태로 저장할 수 있는 방법을 제공합니다.

바이오연료와 합성연료 시장은 기술 발전, 정책적 지원, 소비자 선호도 변화 등 다양한 요인이 복합적으로 작용하여 형성되고 있습니다. 특히 항공 부문은 지속가능한 연료 채택의 중요한 촉진요인으로 부상하고 있으며, 지속가능한 항공 연료(SAF)는 항공사와 연료 제조업체 모두에게 중요한 초점이 되고 있습니다. 생산 규모가 확대되고 비용이 감소함에 따라, 이러한 지속가능한 연료는 장거리 운송 및 중공업과 같이 탈탄소화가 어려운 부문의 탈탄소화에서 점점 더 중요한 역할을 할 것으로 예상됩니다.

이 보고서는 세계 바이오연료 및 합성연료(eFuel) 시장을 조사하여 바이오연료의 종류와 기술, 원료 분석, 합성연료의 생산 경로와 시장 과제, 230개 이상의 기업 프로파일 등을 제공합니다.

목차

제1장 조사 방법

제2장 주요 요약

  • 탈탄소화
  • 화석연료와의 비교
  • 순환경제의 역할
  • 정부 정책
  • 시장 성장 촉진요인
  • 시장 과제
  • 액체 바이오연료 시장
  • 바이오연료의 지속가능성

제3장 산업 발전(2022-2024년)

제4장 바이오연료

  • 개요
  • 세계의 바이오연료 시장
  • SWOT 분석 : 바이오연료 시장
  • 바이오연료 비용의 비교 : 유형별(2024년)
  • 유형
  • 정유소
  • 원료

제5장 탄화수소 바이오연료

  • 바이오디젤
  • 재생 디젤
  • 지속가능한 항공 연료(SAF)
  • 바이오 나프타

제6장 알코올 연료

  • 바이오메탄올
  • 바이오에탄올
  • 바이오부탄올

제7장 바이오매스 유래 가스

  • 원료
  • 바이오 성가스
  • 바이오수소
  • 바이오가스 생산의 바이오차
  • 바이오 DME

제8장 바이오연료용 화학적 재활용

  • 플라스틱 열분해
  • 사용 후 타이어 열분해
  • 바이오매스와 플라스틱 폐기물 공열분해
  • 가스화
  • 수열분해
  • SWOT 분석

제9장 합성연료(eFuel)

  • 소개
  • 그린 수소
  • CO2 포집
  • 합성가스 생산
  • e메탄
  • e메탄올
  • SWOT 분석
  • 생산
  • 전해조
  • 가격
  • 시장 과제
  • 기업

제10장 조류 유래 바이오연료

  • 기술 설명
  • CO2 포집 및 이용
  • 변환 경로
  • SWOT 분석
  • 생산
  • 시장 과제
  • 가격
  • 제조업체

제11장 그린 암모니아

  • 생산
  • 그린 암모니아 합성법
  • SWOT 분석
  • 블루 암모니아
  • 시장과 용도
  • 가격
  • 추정 시장 수요
  • 기업과 프로젝트

제12장 탄소 포집 유래 바이오연료

  • 개요
  • 점원에서 CO2 포집
  • 생산 루트
  • SWOT 분석
  • 직접공기포집(DAC)
  • 바이오연료의 탄소 이용

제13장 바이오 오일(열분해유)

  • 개요
  • 생산
  • 열분해 리액터
  • SWOT 분석
  • 용도
  • 바이오 오일 제조업체
  • 가격

제14장 폐기물 고형 연료(RDF)

  • 개요
  • 생산
  • 시장

제15장 기업 개요(238개사 프로파일)

제16장 참고문헌

ksm 24.10.11

Biofuels, derived from renewable biomass sources, have established a significant presence in the market, with ethanol and biodiesel leading the way. These conventional biofuels have benefited from supportive government policies and mandates, particularly in the United States, Brazil, and the European Union. However, concerns about food security and land use have prompted a shift towards advanced biofuels produced from non-food feedstocks and waste materials. Emerging as a promising complement to biofuels, e-fuels (also known as synthetic fuels or power-to-X fuels) are gaining attention for their potential to provide carbon-neutral liquid fuels. Produced by combining green hydrogen with captured carbon dioxide, e-fuels offer a way to store renewable electricity in a form compatible with existing infrastructure and engines.

The market for both biofuels and e-fuels is being shaped by a complex interplay of factors including technological advancements, policy support, and shifting consumer preferences. The aviation sector, in particular, is emerging as a key driver for sustainable fuel adoption, with sustainable aviation fuel (SAF) becoming a focus for airlines and fuel producers alike. As production scales up and costs decrease, these sustainable fuels are expected to play an increasingly important role in decarbonizing hard-to-abate sectors like long-distance transport and heavy industry.

This comprehensive market report provides an in-depth analysis of the global biofuels and e-fuels markets, covering the crucial period from 2025 to 2035. As the world seeks to decarbonize the transportation sector and reduce dependence on fossil fuels, biofuels and e-fuels are emerging as key players in the transition to sustainable energy.

Report contents include:

  • Role of biofuels and e-fuels in decarbonization efforts, their comparison to fossil fuels, and their place in the circular economy. Analysis of government policies, market drivers, and challenges shaping the industry.
  • Comprehensive market forecasts for liquid biofuels from 2020 to 2035, broken down by type and production.
  • Sustainability aspects of biofuels, addressing concerns about land use, food security, and lifecycle emissions.
  • Key industry developments from 2022 to 2024, providing insight into recent technological advancements, policy changes, and market trends.
  • Biofuel Types and Technologies: Detailed analysis of various biofuel types, including solid, liquid, and gaseous biofuels, as well as conventional and advanced biofuels. The report covers production processes, feedstocks, and emerging technologies.
  • Feedstock Analysis: biofuel feedstocks, from first-generation crops to advanced feedstocks like algae and waste materials. The report includes SWOT analyses for different feedstock categories.
  • Hydrocarbon Biofuels: biodiesel, renewable diesel, sustainable aviation fuel (SAF), and bio-naphtha, including production processes, market trends, and key players.
  • lcohol Fuels: biomethanol, bioethanol, and biobutanol markets, including production pathways, applications, and market forecasts.
  • Biomass-Based Gas: biogas, biomethane, biosyngas, and biohydrogen, including feedstocks, production processes, and market applications.
  • Chemical Recycling for Biofuels: emerging technologies for converting plastic waste and used tires into biofuels, including pyrolysis and gasification processes.
  • E-Fuels: electrofuels (e-fuels), covering production pathways, market challenges, and key players in this emerging sector.
  • Algae-Derived Biofuels: potential for algae-based biofuels, including production pathways, market challenges, and key players.
  • Green Ammonia: green ammonia as a potential energy carrier and fuel, including production methods, applications, and market projections.
  • Carbon Capture for Biofuels: technologies and market potential for producing biofuels from captured carbon dioxide, including direct air capture (DAC) processes.
  • Company Profiles: Over 230 detailed company profiles covering key players across the biofuels and e-fuels value chain, from feedstock providers to technology developers and fuel producers. Companies profiled include Aduro Clean Technologies, Aemetis, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Alpha Biofuels, AM Green, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Arcadia eFuels, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, Bio-Oils, BIOD Energy, Biofy, Biofine Technology, BiogasClean, Biojet, Bloom Biorenewables, BlueAlp Technology, Blue BioFuels, Braven Environmental, Brightmark Energy, bse Methanol, BTG Bioliquids, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cargill, Cassandra Oil, Casterra Ag, Celtic Renewables, Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chitose Bio Evolution, Circla Nordic, CleanJoule, Climeworks, CNF Biofuel, Concord Blue Engineering, Cool Planet Energy Systems, Corsair Group International, Coval Energy, Crimson Renewable Energy, C-Zero, D-CRBN, Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, Domsjo Fabriker, DuPont, EcoCeres, Eco Environmental, Eco Fuel Technology, Electro-Active Technologies, Emerging Fuels Technology (EFT), Encina Development Group, Enerkem, Eneus Energy, Enexor BioEnergy, Eni Sustainable Mobility, Ensyn, EnviTec Biogas, Euglena, Firefly Green Fuels, Forge Hydrocarbons, FuelPositive, Fuenix Ecogy, Fulcrum BioEnergy, Galp Energia, GenCell Energy, Genecis Bioindustries, Gevo, GIDARA Energy, Graforce Hydro, Granbio Technologies, Greenergy, Green COP, Green Earth Institute, Green Fuel, Hago Energetics, Haldor Topsoe, Handerek Technologies, Hero BX, Honeywell, HutanBio, Hyundai Oilbank, Hy2Gen, Hydrogenious LOHC, HYCO1, HydGene Renewables, Ineratec, Infinitree, Infinium Electrofuels, Innoltek, Jet Zero Australia, Jilin COFCO Biomaterial, Jupiter Ionics, Kaidi, Kanteleen Voima, Khepra, Klean Industries, Krajete, Kvasir Technologies, LanzaJet, Lanzatech, Lectrolyst, Licella, Liquid Wind, Lootah Biofuels, Lummus Technology, LXP Group, Manta Biofuel, Mash Energy, Mercurius Biorefining, MOFWORX, Mote, Neogen, NeoZeo, Neste, New Hope Energy, NewEnergyBlue, NextChem, Nexus Fuels, Nordic ElectroFuel, Nordsol, Norsk e-Fuel, Nova Pangaea Technologies, Novozymes, Obeo Biogas, Oberon Fuels, Obrist Group, Oceania Biofuels, O.C.O, OMV, Opus 12 and many more.

Key Topics Covered:

  • Biodiesel and Renewable Diesel
  • Sustainable Aviation Fuel (SAF)
  • Bio-naphtha
  • Biomethanol and Bioethanol
  • Biogas and Biomethane
  • E-fuels and Power-to-X Technologies
  • Algae-based Biofuels
  • Green Ammonia
  • Carbon Capture and Utilization in Fuel Production
  • Chemical Recycling of Waste to Biofuels
  • Pyrolysis Oil and Bio-oils
  • Refuse-Derived Fuels (RDF)

TABLE OF CONTENTS

1. RESEARCH METHODOLOGY

2. EXECUTIVE SUMMARY

  • 2.1. Decarbonization
  • 2.2. Comparison to fossil fuels
  • 2.3. Role in the circular economy
  • 2.4. Government policies
  • 2.5. Market drivers
  • 2.6. Market challenges
  • 2.7. Liquid biofuels market
    • 2.7.1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022
    • 2.7.2. Liquid biofuels market 2020-2035, by type and production.
  • 2.8. Sustainability of biofuels

3. INDUSTRY DEVELOPMENTS 2022-2024

4. BIOFUELS

  • 4.1. Overview
  • 4.2. The global biofuels market
    • 4.2.1. Diesel substitutes and alternatives
    • 4.2.2. Gasoline substitutes and alternatives
  • 4.3. SWOT analysis: Biofuels market
  • 4.4. Comparison of biofuel costs 2024, by type
  • 4.5. Types
    • 4.5.1. Solid Biofuels
    • 4.5.2. Liquid Biofuels
    • 4.5.3. Gaseous Biofuels
    • 4.5.4. Conventional Biofuels
    • 4.5.5. Advanced Biofuels
  • 4.6. Refineries
  • 4.7. Feedstocks
    • 4.7.1. First-generation (1-G)
    • 4.7.2. Second-generation (2-G)
      • 4.7.2.1. Lignocellulosic wastes and residues
      • 4.7.2.2. Biorefinery lignin
    • 4.7.3. Third-generation (3-G)
      • 4.7.3.1. Algal biofuels
        • 4.7.3.1.1. Properties
        • 4.7.3.1.2. Advantages
    • 4.7.4. Fourth-generation (4-G)
    • 4.7.5. Advantages and disadvantages, by generation
    • 4.7.6. Energy crops
      • 4.7.6.1. Feedstocks
      • 4.7.6.2. SWOT analysis
    • 4.7.7. Agricultural residues
      • 4.7.7.1. Feedstocks
      • 4.7.7.2. SWOT analysis
    • 4.7.8. Manure, sewage sludge and organic waste
      • 4.7.8.1. Processing pathways
      • 4.7.8.2. SWOT analysis
    • 4.7.9. Forestry and wood waste
      • 4.7.9.1. Feedstocks
      • 4.7.9.2. SWOT analysis
    • 4.7.10. Feedstock costs

5. HYDROCARBON BIOFUELS

  • 5.1. Biodiesel
    • 5.1.1. Biodiesel by generation
    • 5.1.2. SWOT analysis
    • 5.1.3. Production of biodiesel and other biofuels
      • 5.1.3.1. Pyrolysis of biomass
      • 5.1.3.2. Vegetable oil transesterification
      • 5.1.3.3. Vegetable oil hydrogenation (HVO)
        • 5.1.3.3.1. Production process
      • 5.1.3.4. Biodiesel from tall oil
      • 5.1.3.5. Fischer-Tropsch BioDiesel
      • 5.1.3.6. Hydrothermal liquefaction of biomass
      • 5.1.3.7. CO2 capture and Fischer-Tropsch (FT)
      • 5.1.3.8. Dymethyl ether (DME)
    • 5.1.4. Biodiesel Projects
    • 5.1.5. Recent market developments 2023-2024
    • 5.1.6. Prices
    • 5.1.7. Companies
    • 5.1.8. Global consumption
  • 5.2. Renewable diesel
    • 5.2.1. Production
    • 5.2.2. SWOT analysis
    • 5.2.3. Global consumption
    • 5.2.4. Prices
  • 5.3. Sustainable aviation fuel (SAF)
    • 5.3.1. Description
    • 5.3.2. Recent market developments
    • 5.3.3. SWOT analysis
    • 5.3.4. Global production and consumption
    • 5.3.5. Production pathways
    • 5.3.6. Prices
    • 5.3.7. Sustainable aviation fuel production capacities
    • 5.3.8. Challenges
    • 5.3.9. Companies
    • 5.3.10. Global consumption
  • 5.4. Bio-naphtha
    • 5.4.1. Overview
    • 5.4.2. SWOT analysis
    • 5.4.3. Markets and applications
    • 5.4.4. Prices
    • 5.4.5. Production capacities, by producer, current and planned
    • 5.4.6. Production capacities, total (tonnes), historical, current and planned

6. ALCOHOL FUELS

  • 6.1. Biomethanol
    • 6.1.1. SWOT analysis
    • 6.1.2. Methanol-to gasoline technology
      • 6.1.2.1. Production processes
        • 6.1.2.1.1. Biomethanol from Biogas Reforming
        • 6.1.2.1.2. Biomethanol from Hydrothermal Gasification
        • 6.1.2.1.3. Anaerobic digestion
        • 6.1.2.1.4. Biomass gasification
        • 6.1.2.1.5. Power to Methane
    • 6.1.3. Methanol Synthesis Companies
  • 6.2. Bioethanol
    • 6.2.1. Technology description
    • 6.2.2. 1G Bio-Ethanol
    • 6.2.3. SWOT analysis
    • 6.2.4. Alcohol-to-jet (ATJ) & alcohol-to-gasoline (ATG): methanol & ethanol
      • 6.2.4.1. ATJ and ATG processes
      • 6.2.4.2. Ethanol Feedstocks
      • 6.2.4.3. Methanol-to-Gasoline (MTG) and Methanol-to-Jet (MTJ) processes
      • 6.2.4.4. Companies
    • 6.2.5. Cellulosic Ethanol Production
    • 6.2.6. Sulfite spent liquor fermentation
    • 6.2.7. Gasification
      • 6.2.7.1. Biomass gasification and syngas fermentation
      • 6.2.7.2. Biomass gasification and syngas thermochemical conversion
    • 6.2.8. CO2 capture and alcohol synthesis
    • 6.2.9. Biomass hydrolysis and fermentation
      • 6.2.9.1. Separate hydrolysis and fermentation
      • 6.2.9.2. Simultaneous saccharification and fermentation (SSF)
      • 6.2.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
      • 6.2.9.4. Simultaneous saccharification and co-fermentation (SSCF)
      • 6.2.9.5. Direct conversion (consolidated bioprocessing) (CBP)
    • 6.2.10. Global ethanol consumption
  • 6.3. Biobutanol
    • 6.3.1. Production
    • 6.3.2. Prices

7. BIOMASS-BASED GAS

  • 7.1. Feedstocks
    • 7.1.1. Biomethane
    • 7.1.2. Production pathways
      • 7.1.2.1. Landfill gas recovery
      • 7.1.2.2. Anaerobic digestion
      • 7.1.2.3. Thermal gasification
    • 7.1.3. SWOT analysis
    • 7.1.4. Global production
    • 7.1.5. Prices
      • 7.1.5.1. Raw Biogas
      • 7.1.5.2. Upgraded Biomethane
    • 7.1.6. Bio-LNG
      • 7.1.6.1. Markets
        • 7.1.6.1.1. Trucks
        • 7.1.6.1.2. Marine
      • 7.1.6.2. Production
      • 7.1.6.3. Plants
    • 7.1.7. bio-CNG (compressed natural gas derived from biogas)
    • 7.1.8. Carbon capture from biogas
  • 7.2. Biosyngas
    • 7.2.1. Production
    • 7.2.2. Prices
  • 7.3. Biohydrogen
    • 7.3.1. Description
    • 7.3.2. SWOT analysis
    • 7.3.3. Production of biohydrogen from biomass
      • 7.3.3.1. Biological Conversion Routes
        • 7.3.3.1.1. Bio-photochemical Reaction
        • 7.3.3.1.2. Fermentation and Anaerobic Digestion
      • 7.3.3.2. Thermochemical conversion routes
        • 7.3.3.2.1. Biomass Gasification
        • 7.3.3.2.2. Biomass Pyrolysis
        • 7.3.3.2.3. Biomethane Reforming
    • 7.3.4. Applications
    • 7.3.5. Prices
  • 7.4. Biochar in biogas production
  • 7.5. Bio-DME

8. CHEMICAL RECYCLING FOR BIOFUELS

  • 8.1. Plastic pyrolysis
  • 8.2. Used tires pyrolysis
    • 8.2.1. Conversion to biofuel
  • 8.3. Co-pyrolysis of biomass and plastic wastes
  • 8.4. Gasification
    • 8.4.1. Syngas conversion to methanol
    • 8.4.2. Biomass gasification and syngas fermentation
    • 8.4.3. Biomass gasification and syngas thermochemical conversion
  • 8.5. Hydrothermal cracking
  • 8.6. SWOT analysis

9. ELECTROFUELS (E-FUELS)

  • 9.1. Introduction
    • 9.1.1. Costs
    • 9.1.2. Benefits of e-fuels
    • 9.1.3. Production pathways
  • 9.2. Green hydrogen
    • 9.2.1. Electrolyzer Technologies
  • 9.3. CO2 capture
    • 9.3.1. Overview
    • 9.3.2. CO2 Capture Systems
    • 9.3.3. Direct Air Capture (DAC) technology for e-fuel production
  • 9.4. Syngas production
    • 9.4.1. Overview
    • 9.4.2. Syngas Production Technologies
      • 9.4.2.1. Reverse Water Gas Shift (RWGS)
      • 9.4.2.2. Direct Fischer-Tropsch Synthesis: CO2 to Hydrocarbons
      • 9.4.2.3. Low-Temperature Electrochemical CO2 Reduction
      • 9.4.2.4. Solid Oxide Electrolysis Cells (SOECs)
    • 9.4.3. Solar power in E-Fuels
      • 9.4.3.1. Overview
      • 9.4.3.2. Key advantages
      • 9.4.3.3. Projects
    • 9.4.4. Companies
  • 9.5. E-methane
    • 9.5.1. Overview
    • 9.5.2. Methanation
      • 9.5.2.1. Thermocatalytic methanation
      • 9.5.2.2. Biological methanation
      • 9.5.2.3. Companies
  • 9.6. E-methanol
    • 9.6.1. Overview
    • 9.6.2. E-Methanol Production
    • 9.6.3. Direct methanol synthesis
    • 9.6.4. Companies
  • 9.7. SWOT analysis
  • 9.8. Production
    • 9.8.1. eFuel production facilities, current and planned
  • 9.9. Electrolysers
  • 9.10. Prices
  • 9.11. Market challenges
  • 9.12. Companies

10. ALGAE-DERIVED BIOFUELS

  • 10.1. Technology description
  • 10.2. CO2 capture and utilization
  • 10.3. Conversion pathways
    • 10.3.1. Macroalgae
    • 10.3.2. Microalgae / Cyanobacteria
      • 10.3.2.1. Microalgae cultivation for biofuel production
      • 10.3.2.2. Open cultivation systems
      • 10.3.2.3. Closed photobioreactors (PBRs)
    • 10.3.3. Companies
    • 10.3.4. Projects
  • 10.4. SWOT analysis
  • 10.5. Production
    • 10.5.1. Algal Biofuel Production
  • 10.6. Market challenges
  • 10.7. Prices
  • 10.8. Producers

11. GREEN AMMONIA

  • 11.1. Production
    • 11.1.1. Decarbonisation of ammonia production
    • 11.1.2. Green ammonia projects
  • 11.2. Green ammonia synthesis methods
    • 11.2.1. Haber-Bosch process
    • 11.2.2. Biological nitrogen fixation
    • 11.2.3. Electrochemical production
    • 11.2.4. Chemical looping processes
  • 11.3. SWOT analysis
  • 11.4. Blue ammonia
    • 11.4.1. Blue ammonia projects
  • 11.5. Markets and applications
    • 11.5.1. Chemical energy storage
      • 11.5.1.1. Ammonia fuel cells
    • 11.5.2. Marine fuel
  • 11.6. Prices
  • 11.7. Estimated market demand
  • 11.8. Companies and projects

12. BIOFUELS FROM CARBON CAPTURE

  • 12.1. Overview
  • 12.2. CO2 capture from point sources
  • 12.3. Production routes
  • 12.4. SWOT analysis
  • 12.5. Direct air capture (DAC)
    • 12.5.1. Description
    • 12.5.2. Deployment
    • 12.5.3. Point source carbon capture versus Direct Air Capture
    • 12.5.4. Technologies
      • 12.5.4.1. Solid sorbents
      • 12.5.4.2. Liquid sorbents
      • 12.5.4.3. Liquid solvents
      • 12.5.4.4. Airflow equipment integration
      • 12.5.4.5. Passive Direct Air Capture (PDAC)
      • 12.5.4.6. Direct conversion
      • 12.5.4.7. Co-product generation
      • 12.5.4.8. Low Temperature DAC
      • 12.5.4.9. Regeneration methods
    • 12.5.5. Commercialization and plants
    • 12.5.6. Metal-organic frameworks (MOFs) in DAC
    • 12.5.7. DAC plants and projects-current and planned
    • 12.5.8. Markets for DAC
    • 12.5.9. Costs
    • 12.5.10. Challenges
    • 12.5.11. Players and production
  • 12.6. Carbon utilization for biofuels
    • 12.6.1. Production routes
      • 12.6.1.1. Electrolyzers
      • 12.6.1.2. Low-carbon hydrogen
    • 12.6.2. Products & applications
      • 12.6.2.1. Vehicles
      • 12.6.2.2. Shipping
      • 12.6.2.3. Aviation
      • 12.6.2.4. Costs
      • 12.6.2.5. Ethanol
      • 12.6.2.6. Methanol
      • 12.6.2.7. Sustainable Aviation Fuel
      • 12.6.2.8. Methane
      • 12.6.2.9. Algae based biofuels
      • 12.6.2.10. CO2-fuels from solar
    • 12.6.3. Challenges
    • 12.6.4. SWOT analysis
    • 12.6.5. Companies

13. BIO-OILS (PYROLYSIS OIL)

  • 13.1. Description
    • 13.1.1. Advantages of bio-oils
  • 13.2. Production
    • 13.2.1. Biomass Pyrolysis
    • 13.2.2. Plastic Waste Pyrolysis
    • 13.2.3. Catalytic Pyrolysis of Plastic
    • 13.2.4. Costs of production
    • 13.2.5. Upgrading
  • 13.3. Pyrolysis reactors
  • 13.4. SWOT analysis
  • 13.5. Applications
  • 13.6. Bio-oil producers
  • 13.7. Prices

14. REFUSE-DERIVED FUELS (RDF)

  • 14.1. Overview
  • 14.2. Production
    • 14.2.1. Production process
    • 14.2.2. Mechanical biological treatment
  • 14.3. Markets (238 company profiles)

16. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제