시장보고서
상품코드
1568991

세계의 지속 가능 화학제품 시장(2025-2035년)

The Global Market for Sustainable Chemicals 2025-2035

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 1,002 Pages, 449 Tables, 149 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

화학제품의 새로운 시대는 지속가능성의 필요성, 기술의 진보, 시장 요구의 변화로 인한 화학산업의 패러다임 변화를 의미합니다. 이 변화는 화석 유래 원료에서 재생 가능한 순환 자원으로의 전환과 환경에 미치는 영향을 최소화하는 혁신적인 생산 방식을 특징으로합니다.

이 새로운 시대의 주요 특징은 다음과 같습니다.

  • 지속가능한 원료: 바이오매스, CO2, 폐기물을 화학물질 생산의 원료로 활용하여 화석 자원에 대한 의존도를 줄입니다.
  • 녹색 화학: 화학 공정에서 유해 물질의 사용 및 발생을 줄이거나 제거하는 원칙의 적용.
  • 순환경제: 폐기물을 최소화하고 자원 효율을 극대화합니다.
  • 전기: 전극 촉매 및 전기화학 합성을 포함한 화학 공정에서 재생 가능한 전력의 통합.
  • 디지털화: 프로세스를 최적화하고 혁신을 가속화하기 위한 AI, 머신러닝, 고급 분석의 활용.

이 새로운 시대에서 다루는 기술 분야는 다음과 같습니다.

  • 바이오 리파이닝 : 바이오 매스를 다양한 가치있는 화학 물질 및 재료로 변환.
  • CO2 이용 : CO2 포집와 화학, 연료, 재료로의 전환.
  • 첨단 촉매 작용 : 지속 가능한 공정에 사용되는 고도로 선택적이고 효율적인 촉매 개발.
  • 합성 생물학: 재생 가능한 원료로부터 화학물질을 생산하기 위한 미생물 공학.
  • 흐름 화학: 효율성과 제어 향상을 위한 연속 제조 공정.
  • 적층 성형: 화학 및 재료의 3D 프린팅을 통한 맞춤형 생산.
  • 고급 재료 : 바이오플라스틱 및 고급 복합재료와 같은 지속 가능한 고성능 재료 개발.
  • 녹색 솔벤트 : 유해한 기존 솔벤트를 대체하는 바이오베이스 및 저 환경 부하 솔벤트 개발.
  • 공정 고도화: 보다 컴팩트하고 효율적인 통합 화학 공정 설계.
  • 폐기물의 효과적인 이용 : 폐기물의 흐름을 가치있는 화학 물질과 재료로 전환.
  • 화학 설계용 AI: 분자 설계, 공정 최적화, 예측 모델링에 대한 AI 및 머신러닝의 이용은 화학 혁신에서 중요한 시장 분야가 되고 있습니다.
  • 개인화 화학: 개인화 의료, 화장품 및 기타 소비자 제품을 위해 맞춤화된 화학 및 재료 개발을 포함합니다.
  • 양자화학: 아직 새로운 분야이지만 양자역학의 원리를 이용하여 새로운 재료와 화학 공정을 개발하고 다양한 산업에 혁명을 일으킬 수 있습니다.

이 화학의 새로운 시대는 개별 기술뿐만 아니라 이들을 총체적이고 지속 가능한 화학제품 밸류체인에 통합하는 것을 의미합니다. 새로운 경제 기회를 창출하고 화학 산업의 환경 실적를 줄이는 동시에 세계 과제에 대한 혁신적인 솔루션을 제공할 것으로 기대되고 있습니다.

본 보고서에서는 세계의 지속 가능한 화학제품 시장에 대해 조사 분석하여 2025-2035년의 동향, 기술, 시장 기회에 대한 지견을 제공합니다.

목차

제1장 주요 요약

  • 화학산업에 있어서의 새로운 시대의 필요성
  • 화학의 새로운 시대를 정의하는
  • 세계의 촉진요인과 동향
  • 화학 산업의 변화하는 상황
  • 화학의 신시대에 있어서의 신흥 시장과 변혁 시장

제2장 원료

  • 지속 가능한 원료 : 신시대의 기초
  • 지속 가능한 원료 옵션 개요
  • 화학 원료로서의 바이오매스
  • 탄소원으로서의 CO2
  • 폐기물의 가치화
  • 재생 가능(녹색) 수소

제3장 그린 케미스트리의 원리와 응용

  • 그린케미스트리의 12원칙
  • 합성에 있어서의 원자 경제와 스텝 경제
  • 용제 삭감과 그린 용제
  • 그린 케미스트리용 촉매
  • 화학에 있어서의 그린 메트릭스와 라이프 사이클 평가

제4장 화학 산업에서의 순환형 경제

  • 순환형 경제의 원칙
  • 화학제품의 순환형 디자인
  • 화학 재활용 기술
  • 화학 폐기물의 업 사이클
  • 화학 부문의 순환형 비즈니스 모델
  • 순환형 사회의 실현에 있어서의 과제와 기회
  • 기업

제5장 화학 공정의 전기화

  • 화학 생산에 있어서의 재생 가능 전력의 역할
  • 전기화학 합성
  • 플라즈마 화학
  • 마이크로파를 이용한 화학
  • 화학제품 생산에 있어서의 Power-to-X 기술의 통합

제6장 화학의 디지털화와 인더스트리 4.0

  • 화학 연구에서 빅 데이터와 첨단 분석
  • AI와 머신러닝의 이용
  • 화학 플랜트 운용에 있어서의 디지털 트윈
  • 공급망의 투명성과 추적성을 위한 블록체인
  • 디지털화된 화학 산업에 있어서의 사이버 보안의 과제

제7장 첨단 제조 기술

  • 연속 흐름 화학
  • 모듈형/분산형 제조
  • 화학제품과 재료의 3D프린팅
  • 고급 프로세스 제어 및 실시간 모니터링
  • 유연하고 적응성이 높은 생산 시스템

제8장 바이오 리파이닝과 산업 바이오테크놀러지

  • 바이오리파이너리의 개념과 구성
  • 리그노셀룰로오스 바이오매스 처리
  • 조류 바이오리파이너리
  • 업스트림 처리
  • 발효
  • 다운스트림 처리
  • 처방
  • 바이오프로세스 개발
  • 분석 방법
  • 생산규모
  • 운용 방식
  • 숙주 생물

제9장 CO2 이용 기술

  • 개요
  • CO2비변환기술 및 변환기술
  • 탄소 이용 비즈니스 모델
  • CO2 이용 경로
  • 변환 프로세스
  • CO2 유래 제품
  • 석유 회수 증진에 있어서의 CO2 이용
  • 강화된 광화 작용

제10장 지속가능한 화학을 향한 첨단 촉매

  • 생체 촉매 기술의 개요
  • 생체 촉매의 유형
  • 생산방식과 프로세스
  • 생체 촉매의 새로운 기술과 혁신
  • 기업

제11장 합성 생물학과 대사 공학

  • 대사공학
  • 유전자와 DNA의 합성
  • 유전자 합성과 조립
  • 유전체 공학
  • 단백질·효소공학
  • 합성 유전체학
  • 주식의 구축과 최적화
  • 스마트 바이오프로세스
  • 섀시 생물
  • 바이오미메틱스
  • 지속가능한 재료
  • 로보틱스와 자동화
  • 바이오인포매틱스와 계산 툴
  • 이종 생물학과 확장된 유전자 알파벳
  • 바이오센서와 바이오일렉트로닉스
  • 원료

제12장 그린 용매와 대체 반응 매체

  • 바이오 베이스 용제
  • 전환 가능한 용매
  • 심공정 용매(DES)
  • 공업용도에 있어서의 초임계 유체
  • 무용매 반응과 메카노케미스트리
  • 용매 선택 도구 및 프레임워크
  • 기업

제13장 폐기물의 가치화와 자원 회수

  • 도시 폐기물로부터 화학제품에
  • 농업폐기물과 식품폐기물의 가치화
  • 중요 물질 추출 기술
  • 폐수 처리와 자원 회수
  • 광업 폐기물의 가치화
  • 기업

제14장 에너지 효율과 재생 가능 에너지의 통합

  • 화학 플랜트의 에너지 효율 대책
  • 열회수와 핀치 분석
  • 화학제품 제조에 있어서의 재생 가능 에너지원
  • 공정 산업용 에너지 저장 기술
  • 열전병급(CHP) 시스템
  • 산업공생과 에너지통합

제15장 안전성과 지속가능성 평가

  • 그린케미스트리 지표와 지속가능성 지표
  • 화학 공정에서의 수명 주기 평가(LCA)
  • 설계상의 안전성의 원칙
  • 새로운 화학 기술의 위험 평가 및 관리
  • 환경의 영향 평가
  • 화학의 신시대에 있어서의 사회적·윤리적 고려 사항

제16장 규제와 정책

  • 세계의 화학제품 규제와 그 진화
  • 지속가능한 화학을 추진하는 환경정책
  • 그린케미스트리에 대한 인센티브와 지원 메커니즘
  • 신기술의 규제에 있어서의 과제
  • 국제 협력과 조화의 대처

제17장 시장과 제품

  • 지속 가능한 재료, 폴리머
  • 지속 가능한 농업용 화학제품
  • 지속가능한 건설재료
  • 지속 가능한 포장
  • 그린 화장품, 퍼스널케어
  • 바이오 베이스로 친환경 도료, 코팅
  • 그린 일렉트로닉스
  • 지속 가능한 섬유, 섬유
  • 대체연료, 윤활유
  • 그린 의약품, 의료
  • 3D 프린팅용 선진 재료
  • 화학 설계의 AI
  • 양자화학의 응용

제18장 경제적 측면과 비즈니스 모델

  • 지속 가능한 화학 기술의 비용 경쟁력
  • 그린케미스트리에 대한 투자 동향
  • 순환형 경제의 새로운 비즈니스 모델
  • 시장 역학과 소비자의 선호
  • 지적재산에 관한 고려 사항
  • 사례 연구

제19장 장래의 전망과 새로운 동향

  • 바이오, 나노, IT의 융합
  • 화학 연구 개발의 양자 컴퓨팅
  • 화학제품의 우주에서의 제조
  • 인공 광합성과 태양광 연료
  • 개인화된 온디맨드 화학제품 제조
  • 넷 제로 배출의 달성에 있어서의 화학의 역할
  • 순환형 경제 솔루션
  • AI와 디지털화의 영향
  • 양자화학 전망

제20장 부록

제21장 참고문헌

JHS 24.10.30

The new era of chemicals represents a paradigm shift in the chemical industry, driven by the need for sustainability, technological advancements, and changing market demands. This transformation is characterized by a move away from fossil-based feedstocks towards renewable and circular resources, coupled with innovative production methods that minimize environmental impact.

Key aspects of this new era include:

  • Sustainable Feedstocks: Utilization of biomass, CO2, and waste materials as raw materials for chemical production, reducing dependence on fossil resources.
  • Green Chemistry: Application of principles that reduce or eliminate the use and generation of hazardous substances in chemical processes.
  • Circular Economy: Design of chemical products and processes for reuse, recycling, and upcycling, minimizing waste and maximizing resource efficiency.
  • Electrification: Integration of renewable electricity in chemical processes, including electrocatalysis and electrochemical synthesis.
  • Digitalization: Use of AI, machine learning, and advanced analytics to optimize processes and accelerate innovation.

Technology areas covered in this new era include:

  • Biorefining: Converting biomass into a spectrum of valuable chemicals and materials.
  • CO2 Utilization: Capturing and converting CO2 into chemicals, fuels, and materials.
  • Advanced Catalysis: Developing highly selective and efficient catalysts for sustainable processes.
  • Synthetic Biology: Engineering microorganisms to produce chemicals from renewable feedstocks.
  • Flow Chemistry: Continuous manufacturing processes for improved efficiency and control.
  • Additive Manufacturing: 3D printing of chemicals and materials for customized production.
  • Advanced Materials: Developing sustainable, high-performance materials like bioplastics and advanced composites.
  • Green Solvents: Creating bio-based and low-impact solvents to replace harmful traditional solvents.
  • Process Intensification: Designing more compact, efficient, and integrated chemical processes.
  • Waste Valorization: Converting waste streams into valuable chemicals and materials.
  • Artificial Intelligence in Chemical Design: The use of AI and machine learning for molecular design, process optimization, and predictive modeling is becoming a significant market area in chemical innovation.
  • Personalized Chemistry: This includes the development of customized chemicals and materials for personalized medicine, cosmetics, and other consumer products.
  • Quantum Chemistry: Although still emerging, this field uses quantum mechanical principles to develop new materials and chemical processes, potentially revolutionizing various industries.

This new era of chemicals is not just about individual technologies but their integration into holistic, sustainable chemical value chains. It promises to deliver innovative solutions to global challenges while creating new economic opportunities and reducing the environmental footprint of the chemical industry. This report analyzes the sustainable chemicals market, offering insights into trends, technologies, and market opportunities from 2025 to 2035.

Report contents include:

  • Market Drivers and Trends
  • Sustainable Feedstocks and Green Chemistry
  • Circular Economy in the Chemical Industry
  • Emerging Technologies and Manufacturing Processes
    • Electrification of chemical processes
    • Digitalization and Industry 4.0 applications
    • Advanced manufacturing technologies
    • Biorefining and industrial biotechnology
    • CO2 utilization technologies
    • Advanced catalysts
    • Synthetic biology and metabolic engineering
  • Market Segments and Applications:
    • Sustainable materials and polymers
    • Green solvents and process chemicals
    • Sustainable agriculture chemicals
    • Renewable energy technologies
    • Sustainable construction materials
    • Green cosmetics and personal care products
    • Sustainable packaging
    • Eco-friendly paints and coatings
    • Green electronics
    • Sustainable textiles and fibers
    • Alternative fuels and lubricants
    • Pharmaceuticals and healthcare applications
    • Water treatment and purification solutions
    • Carbon capture and utilization products
    • Industrial biotechnology products
    • Advanced materials for 3D printing
  • Regulatory Landscape and Policy Analysis
  • Economic Aspects and Business Models
  • Future Outlook and Emerging Trends
  • Company Profiles and Competitive Landscape-profiles of over 1,000 key players in the sustainable chemicals market, analyzing their strategies, products, and market positions. Companies profiled include Aanika Biosciences, ACCUREC-Recycling GmbH, Aduro Clean Technologies, Aemetis, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Allozymes, Alpha Biofuels, AM Green, Amyris, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Aralez Bio, Arcadia eFuels, Ascend Elements, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BANiQL, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BBGI, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, Bio-Oils, Biofibre GmbH, Bioform Technologies, Biofine Technology, Biofy, BiogasClean, BIOD Energy, Biojet, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., Biomatter, BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovectra, Biovox GmbH, BlockTexx Pty Ltd., Bloom Biorenewables, Blue BioFuels, Blue Ocean Closures, BlueAlp Technology, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Braskem, Braven Environmental, Brightmark Energy, Brightplus Oy, bse Methanol, BTG Bioliquids, Bucha Bio, Business Innovation Partners Co., Ltd., Buyo, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbiolice, Carbios, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cardia Bioplastics Ltd., CARAPAC Company, Cargill, Cascade Biocatalysts, Cass Materials Pty Ltd, Cassandra Oil, Casterra Ag, Celanese Corporation, Celtic Renewables, Cellugy, Cellutech AB (Stora Enso), Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), Chitose Bio Evolution, Circla Nordic, Cirba Solutions, CJ Biomaterials, Inc., CleanJoule, Climeworks, Coastgrass ApS, CNF Biofuel, Concord Blue Engineering, Constructive Bio, Cool Planet Energy Systems, Corumat, Inc., Corsair Group International, Coval Energy, Crimson Renewable Energy, Cruz Foam, Cryotech, CuanTec Ltd., Cyclic Materials, C-Zero, Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific, D-CRBN, Debut Biotechnology, DIC Corporation, DIC Products, Inc., Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, DKS Co. Ltd., Domsjo Fabriker, Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., EarthForm, EcoCeres, Eco Environmental, Eco Fuel Technology, Ecomann Biotechnology Co., Ltd., Ecoshell, Electro-Active Technologies, Eligo Bioscience, Enim, Enginzyme AB, Enzymit, Erebagen, EV Biotech, eversyn, Evolutor, FabricNano, FlexSea, Floreon, Gevo, Ginkgo Bioworks, Heraeus Remloy, HyProMag, Hyfe, Invizyne Technologies, JPM Silicon GmbH, LanzaTech, Librec AG, Lygos, MagREEsource, Mammoth Biosciences, MetaCycler BioInnovations, Mi Terro, NeoMetals, Noveon Magnetics, Novozymes A/S, NTx, Origin Materials, Phoenix Tailings, PlantSwitch, Posco, Pow.bio, Protein Evolution, REEtec, Rivalia Chemical, Samsara Eco, SiTration, Solugen, Sumitomo and Summit Nanotech, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Teijin Limited, Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, Versalis, Xampla and more....
  • Market Forecasts and Data Analysis

This report is relevant for:

  • Chemical industry executives and strategists
  • Sustainability officers and environmental managers
  • Investors and financial analysts
  • R&D professionals
  • Policy makers and regulatory bodies
  • Environmental NGOs
  • Academic researchers

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. The Need for a New Era in the Chemical Industry
  • 1.2. Defining the New Era of Chemicals
  • 1.3. Global Drivers and Trends
  • 1.4. The Changing Landscape of the Chemical Industry
    • 1.4.1. Historical Context: From Coal to Oil to Renewables
    • 1.4.2. Current State of the Global Chemical Industry
    • 1.4.3. Environmental Challenges and Regulatory Pressures
    • 1.4.4. Shifting Consumer Demands and Market Dynamics
    • 1.4.5. The Role of Digitalization and Industry 4.0
  • 1.5. Emerging and Transforming Markets in the New Era of Chemicals
    • 1.5.1. Sustainable Agriculture Chemicals
    • 1.5.2. Green Cosmetics and Personal Care
    • 1.5.3. Sustainable Packaging
    • 1.5.4. Eco-friendly Paints and Coatings
    • 1.5.5. Alternative Fuels and Lubricants
    • 1.5.6. Pharmaceuticals and Healthcare
    • 1.5.7. Water Treatment and Purification
    • 1.5.8. Carbon Capture and Utilization Products
    • 1.5.9. Advanced Materials for 3D Printing
    • 1.5.10. Sustainable Mining and Metallurgy

2. FEEDSTOCKS

  • 2.1. Sustainable Feedstocks: The Foundation of the New Era
  • 2.2. Overview of Sustainable Feedstock Options
  • 2.3. Biomass as a Chemical Feedstock
    • 2.3.1. Types of Biomass and Their Chemical Compositions
    • 2.3.2. Pretreatment and Conversion Technologies
    • 2.3.3. Challenges in Scaling Up Biomass Utilization
  • 2.4. CO2 as a Carbon Source
    • 2.4.1. CO2 Capture Technologies
    • 2.4.2. Chemical Conversion Pathways for CO2
    • 2.4.3. Economic and Technical Barriers to CO2 Utilization
  • 2.5. Waste Valorization
    • 2.5.1. Municipal Solid Waste as a Feedstock
    • 2.5.2. Industrial Waste Streams and By-products
    • 2.5.3. Plastic Waste Recycling and Upcycling
  • 2.6. Renewable (Green) Hydrogen
    • 2.6.1. Electrolysis Technologies
    • 2.6.2. Integration of Renewable Energy in Hydrogen Production
    • 2.6.3. Hydrogen's Role in Chemical Synthesis

3. GREEN CHEMISTRY PRINCIPLES AND APPLICATIONS

  • 3.1. The 12 Principles of Green Chemistry
  • 3.2. Atom Economy and Step Economy in Synthesis
  • 3.3. Solvent Reduction and Green Solvents
    • 3.3.1. Water as a Reaction Medium
    • 3.3.2. Ionic Liquids and Deep Eutectic Solvents
    • 3.3.3. Supercritical Fluids in Chemical Processes
  • 3.4. Catalysis for Green Chemistry
    • 3.4.1. Biocatalysis and Enzyme Engineering
    • 3.4.2. Heterogeneous Catalysis Advancements
    • 3.4.3. Photocatalysis and Electrocatalysis
  • 3.5. Green Metrics and Life Cycle Assessment in Chemistry

4. CIRCULAR ECONOMY IN THE CHEMICAL INDUSTRY

  • 4.1. Principles of Circular Economy
  • 4.2. Design for Circularity in Chemical Products
  • 4.3. Chemical Recycling Technologies
    • 4.3.1. Applications
    • 4.3.2. Pyrolysis
      • 4.3.2.1. Non-catalytic
      • 4.3.2.2. Catalytic
        • 4.3.2.2.1. Polystyrene pyrolysis
        • 4.3.2.2.2. Pyrolysis for production of bio fuel
        • 4.3.2.2.3. Used tires pyrolysis
          • 4.3.2.2.3.1. Conversion to biofuel
        • 4.3.2.2.4. Co-pyrolysis of biomass and plastic wastes
      • 4.3.2.3. Companies and capacities
    • 4.3.3. Gasification
      • 4.3.3.1. Technology overview
        • 4.3.3.1.1. Syngas conversion to methanol
        • 4.3.3.1.2. Biomass gasification and syngas fermentation
        • 4.3.3.1.3. Biomass gasification and syngas thermochemical conversion
      • 4.3.3.2. Companies and capacities (current and planned)
    • 4.3.4. Dissolution
      • 4.3.4.1. Technology overview
      • 4.3.4.2. Companies and capacities (current and planned)
    • 4.3.5. Depolymerisation
      • 4.3.5.1. Hydrolysis
        • 4.3.5.1.1. Technology overview
      • 4.3.5.2. Enzymolysis
        • 4.3.5.2.1. Technology overview
      • 4.3.5.3. Methanolysis
        • 4.3.5.3.1. Technology overview
      • 4.3.5.4. Glycolysis
        • 4.3.5.4.1. Technology overview
      • 4.3.5.5. Aminolysis
        • 4.3.5.5.1. Technology overview
      • 4.3.5.6. Companies and capacities (current and planned)
    • 4.3.6. Other advanced chemical recycling technologies
      • 4.3.6.1. Hydrothermal cracking
      • 4.3.6.2. Pyrolysis with in-line reforming
      • 4.3.6.3. Microwave-assisted pyrolysis
      • 4.3.6.4. Plasma pyrolysis
      • 4.3.6.5. Plasma gasification
      • 4.3.6.6. Supercritical fluids
  • 4.4. Upcycling of Chemical Waste
  • 4.5. Circular Business Models in the Chemical Sector
  • 4.6. Challenges and Opportunities in Implementing Circularity
  • 4.7. Companies

5. ELECTRIFICATION OF CHEMICAL PROCESSES

  • 5.1. The Role of Renewable Electricity in Chemical Production
  • 5.2. Electrochemical Synthesis
    • 5.2.1. Electroorganic Synthesis
    • 5.2.2. Electrochemical CO2 Reduction
    • 5.2.3. Electrochemical Nitrogen Fixation
  • 5.3. Plasma Chemistry
  • 5.4. Microwave-Assisted Chemistry
  • 5.5. Integration of Power-to-X Technologies in Chemical Production

6. DIGITALIZATION AND INDUSTRY 4.0 IN CHEMISTRY

  • 6.1. Big Data and Advanced Analytics in Chemical Research
  • 6.2. Artificial Intelligence and Machine Learning Applications
    • 6.2.1. In Silico Design of Molecules and Materials
    • 6.2.2. Process Optimization and Predictive Maintenance
    • 6.2.3. Automated Synthesis and High-Throughput Experimentation
  • 6.3. Digital Twins in Chemical Plant Operations
  • 6.4. Blockchain for Supply Chain Transparency and Traceability
  • 6.5. Cybersecurity Challenges in the Digitalized Chemical Industry

7. ADVANCED MANUFACTURING TECHNOLOGIES

  • 7.1. Continuous Flow Chemistry
    • 7.1.1. Microreactors and Process Intensification
    • 7.1.2. Advantages in Pharmaceuticals and Fine Chemicals
    • 7.1.3. Challenges in Scale-up and Implementation
  • 7.2. Modular and Distributed Manufacturing
  • 7.3. 3D Printing of Chemicals and Materials
    • 7.3.1. Direct Ink Writing and Reactive Printing
    • 7.3.2. Applications in Custom Synthesis and Formulation
  • 7.4. Advanced Process Control and Real-time Monitoring
  • 7.5. Flexible and Adaptable Production Systems

8. BIOREFINING AND INDUSTRIAL BIOTECHNOLOGY

  • 8.1. Biorefinery Concepts and Configurations
    • 8.1.1. Biorefinery Classifications
    • 8.1.2. Biorefinery Configurations
      • 8.1.2.1. Lignocellulosic Biorefinery:
      • 8.1.2.2. Whole-Crop Biorefinery
      • 8.1.2.3. Green Biorefinery
      • 8.1.2.4. Thermochemical Biorefinery
      • 8.1.2.5. Marine Biorefinery
      • 8.1.2.6. Integrated Forest Biorefinery
      • 8.1.2.7. Integration and Process Intensification
  • 8.2. Lignocellulosic Biomass Processing
  • 8.3. Algal Biorefineries
  • 8.4. Upstream Processing
    • 8.4.1. Cell Culture
      • 8.4.1.1. Overview
      • 8.4.1.2. Types of Cell Culture Systems
      • 8.4.1.3. Factors Affecting Cell Culture Performance
      • 8.4.1.4. Advances in Cell Culture Technology
        • 8.4.1.4.1. Single-use systems
        • 8.4.1.4.2. Process analytical technology (PAT)
        • 8.4.1.4.3. Cell line development
  • 8.5. Fermentation
    • 8.5.1. Overview
      • 8.5.1.1. Types of Fermentation Processes
      • 8.5.1.2. Factors Affecting Fermentation Performance
      • 8.5.1.3. Advances in Fermentation Technology
        • 8.5.1.3.1. High-cell-density fermentation
        • 8.5.1.3.2. Continuous processing
        • 8.5.1.3.3. Metabolic engineering
  • 8.6. Downstream Processing
    • 8.6.1. Purification
      • 8.6.1.1. Overview
      • 8.6.1.2. Types of Purification Methods
        • 8.6.1.2.1. Factors Affecting Purification Performance
      • 8.6.1.3. Advances in Purification Technology
        • 8.6.1.3.1. Affinity chromatography
        • 8.6.1.3.2. Membrane chromatography
        • 8.6.1.3.3. Continuous chromatography
  • 8.7. Formulation
    • 8.7.1. Overview
      • 8.7.1.1. Types of Formulation Methods
      • 8.7.1.2. Factors Affecting Formulation Performance
      • 8.7.1.3. Advances in Formulation Technology
        • 8.7.1.3.1. Controlled release
        • 8.7.1.3.2. Nanoparticle formulation
        • 8.7.1.3.3. 3D printing
  • 8.8. Bioprocess Development
    • 8.8.1. Scale-up
      • 8.8.1.1. Overview
      • 8.8.1.2. Factors Affecting Scale-up Performance
      • 8.8.1.3. Scale-up Strategies
    • 8.8.2. Optimization
      • 8.8.2.1. Overview
      • 8.8.2.2. Factors Affecting Optimization Performance
      • 8.8.2.3. Optimization Strategies
  • 8.9. Analytical Methods
    • 8.9.1. Quality Control
      • 8.9.1.1. Overview
      • 8.9.1.2. Types of Quality Control Tests
      • 8.9.1.3. Factors Affecting Quality Control Performance
    • 8.9.2. Characterization
      • 8.9.2.1. Overview
      • 8.9.2.2. Types of Characterization Methods
      • 8.9.2.3. Factors Affecting Characterization Performance
  • 8.10. Scale of Production
    • 8.10.1. Laboratory Scale
      • 8.10.1.1. Overview
      • 8.10.1.2. Scale and Equipment
      • 8.10.1.3. Advantages
      • 8.10.1.4. Disadvantages
    • 8.10.2. Pilot Scale
      • 8.10.2.1. Overview
      • 8.10.2.2. Scale and Equipment
      • 8.10.2.3. Advantages
      • 8.10.2.4. Disadvantages
    • 8.10.3. Commercial Scale
      • 8.10.3.1. Overview
      • 8.10.3.2. Scale and Equipment
      • 8.10.3.3. Advantages
      • 8.10.3.4. Disadvantages
  • 8.11. Mode of Operation
    • 8.11.1. Batch Production
      • 8.11.1.1. Overview
      • 8.11.1.2. Advantages
      • 8.11.1.3. Disadvantages
      • 8.11.1.4. Applications
    • 8.11.2. Fed-batch Production
      • 8.11.2.1. Overview
      • 8.11.2.2. Advantages
      • 8.11.2.3. Disadvantages
      • 8.11.2.4. Applications
    • 8.11.3. Continuous Production
      • 8.11.3.1. Overview
      • 8.11.3.2. Advantages
      • 8.11.3.3. Disadvantages
      • 8.11.3.4. Applications
    • 8.11.4. Cell factories for biomanufacturing
    • 8.11.5. Perfusion Culture
      • 8.11.5.1. Overview
      • 8.11.5.2. Advantages
      • 8.11.5.3. Disadvantages
      • 8.11.5.4. Applications
    • 8.11.6. Other Modes of Operation
      • 8.11.6.1. Immobilized Cell Culture
      • 8.11.6.2. Two-Stage Production
      • 8.11.6.3. Hybrid Systems
  • 8.12. Host Organisms

9. CO2. UTILIZATION TECHNOLOGIES

  • 9.1. Overview
  • 9.2. CO2. non-conversion and conversion technology
  • 9.3. Carbon utilization business models
    • 9.3.1. Benefits of carbon utilization
    • 9.3.2. Market challenges
  • 9.4. Co2. utilization pathways
  • 9.5. Conversion processes
    • 9.5.1. Thermochemical
      • 9.5.1.1. Process overview
      • 9.5.1.2. Plasma-assisted CO2 conversion
    • 9.5.2. Electrochemical conversion of CO2
      • 9.5.2.1. Process overview
    • 9.5.3. Photocatalytic and photothermal catalytic conversion of CO2
    • 9.5.4. Catalytic conversion of CO2
    • 9.5.5. Biological conversion of CO2
    • 9.5.6. Copolymerization of CO2
    • 9.5.7. Mineral carbonation
  • 9.6. CO2-derived products
    • 9.6.1. Fuels
      • 9.6.1.1. Overview
      • 9.6.1.2. Production routes
      • 9.6.1.3. CO2 -fuels in road vehicles
      • 9.6.1.4. CO2 -fuels in shipping
      • 9.6.1.5. CO2 -fuels in aviation
      • 9.6.1.6. Power-to-methane
        • 9.6.1.6.1. Biological fermentation
        • 9.6.1.6.2. Costs
      • 9.6.1.7. Algae based biofuels
      • 9.6.1.8. CO2-fuels from solar
      • 9.6.1.9. Companies
      • 9.6.1.10. Challenges
    • 9.6.2. Chemicals and polymers
      • 9.6.2.1. Polycarbonate from CO2
      • 9.6.2.2. Carbon nanostructures
      • 9.6.2.3. Scalability
      • 9.6.2.4. Applications
        • 9.6.2.4.1. Urea production
        • 9.6.2.4.2. CO2-derived polymers
        • 9.6.2.4.3. Inert gas in semiconductor manufacturing
        • 9.6.2.4.4. Carbon nanotubes
      • 9.6.2.5. Companies
    • 9.6.3. Construction materials
      • 9.6.3.1. Overview
      • 9.6.3.2. CCUS technologies
      • 9.6.3.3. Carbonated aggregates
      • 9.6.3.4. Additives during mixing
      • 9.6.3.5. Concrete curing
      • 9.6.3.6. Costs
      • 9.6.3.7. Market trends and business models
      • 9.6.3.8. Companies
      • 9.6.3.9. Challenges
    • 9.6.4. CO2 Utilization in Biological Yield-Boosting
      • 9.6.4.1. Overview
      • 9.6.4.2. Applications
        • 9.6.4.2.1. Greenhouses
        • 9.6.4.2.2. Algae cultivation
          • 9.6.4.2.2.1. CO2-enhanced algae cultivation: open systems
          • 9.6.4.2.2.2. CO2-enhanced algae cultivation: closed systems
        • 9.6.4.2.3. Microbial conversion
        • 9.6.4.2.4. Food and feed production
      • 9.6.4.3. Companies
  • 9.7. CO2 Utilization in Enhanced Oil Recovery
    • 9.7.1. Overview
      • 9.7.1.1. Process
      • 9.7.1.2. CO2 sources
    • 9.7.2. CO2-EOR facilities and projects
    • 9.7.3. Challenges
  • 9.8. Enhanced mineralization
    • 9.8.1. Advantages
    • 9.8.2. In situ and ex-situ mineralization
    • 9.8.3. Enhanced mineralization pathways
    • 9.8.4. Challenges

10. ADVANCED CATALYSTS FOR SUSTAINABLE CHEMISTRY

  • 10.1. Overview of biocatalyst technology
    • 10.1.1. Biotransformations
    • 10.1.2. Cascade biocatalysis
    • 10.1.3. Co-factor recycling
    • 10.1.4. Immobilization
  • 10.2. Types of biocatalysts
    • 10.2.1. Microorganisms
      • 10.2.1.1. Bacteria
      • 10.2.1.2. Fungi
      • 10.2.1.3. Yeast
      • 10.2.1.4. Archaea
      • 10.2.1.5. Algae
      • 10.2.1.6. Cyanobacteria
    • 10.2.2. Engineered biocatalysts
      • 10.2.2.1. Directed Evolution
      • 10.2.2.2. Rational Design
      • 10.2.2.3. Semi-Rational Design
      • 10.2.2.4. Immobilization
      • 10.2.2.5. Fusion Proteins
    • 10.2.3. Enzymes
      • 10.2.3.1. Detergent Enzymes
      • 10.2.3.2. Food Processing Enzymes
      • 10.2.3.3. Textile Processing Enzymes
      • 10.2.3.4. Paper and Pulp Processing Enzymes
      • 10.2.3.5. Leather Processing Enzymes
      • 10.2.3.6. Biofuel Production Enzymes
      • 10.2.3.7. Animal Feed Enzymes
      • 10.2.3.8. Pharmaceutical and Diagnostic Enzymes
      • 10.2.3.9. Waste Management and Bioremediation Enzymes
      • 10.2.3.10. Agriculture and Crop Improvement Enzymes
    • 10.2.4. Other types
      • 10.2.4.1. Ribozymes
      • 10.2.4.2. DNAzymes
      • 10.2.4.3. Abzymes
      • 10.2.4.4. Nanozymes
      • 10.2.4.5. Organocatalysts
  • 10.3. Production methods and processes
    • 10.3.1. Fermentation
    • 10.3.2. Recombinant DNA technology
    • 10.3.3. ell-Free Protein Synthesis
    • 10.3.4. Extraction from Natural Sources
    • 10.3.5. Solid-State Fermentation
  • 10.4. Emerging technologies and innovations in biocatalysis
    • 10.4.1. Synthetic biology and metabolic engineering
      • 10.4.1.1. Batch biomanufacturing
      • 10.4.1.2. Continuous biomanufacturing
      • 10.4.1.3. Fermentation Processes
      • 10.4.1.4. Cell-free synthesis
    • 10.4.2. Generative biology and Artificial Intelligence (AI)
      • 10.4.2.1. Molecular Dynamics Simulations
      • 10.4.2.2. Quantum Mechanical Calculations
      • 10.4.2.3. Systems Biology Modeling
      • 10.4.2.4. Metabolic Engineering Modeling
    • 10.4.3. Genome engineering
    • 10.4.4. Immobilization and encapsulation techniques
    • 10.4.5. Biomimetics
    • 10.4.6. Nanoparticle-based biocatalysts
    • 10.4.7. Biocatalytic cascades and multi-enzyme systems
    • 10.4.8. Microfluidics
  • 10.5. Companies

11. SYNTHETIC BIOLOGY AND METABOLIC ENGINEERING

  • 11.1. Metabolic engineering
  • 11.2. Gene and DNA synthesis
  • 11.3. Gene Synthesis and Assembly
  • 11.4. Genome engineering
    • 11.4.1. CRISPR
      • 11.4.1.1. CRISPR/Cas9-modified biosynthetic pathways
      • 11.4.1.2. TALENs
      • 11.4.1.3. ZFNs
  • 11.5. Protein/Enzyme Engineering
  • 11.6. Synthetic genomics
    • 11.6.1. Principles of Synthetic Genomics
    • 11.6.2. Synthetic Chromosomes and Genomes
  • 11.7. Strain construction and optimization
  • 11.8. Smart bioprocessing
  • 11.9. Chassis organisms
  • 11.10. Biomimetics
  • 11.11. Sustainable materials
  • 11.12. Robotics and automation
    • 11.12.1. Robotic cloud laboratories
    • 11.12.2. Automating organism design
    • 11.12.3. Artificial intelligence and machine learning
  • 11.13. Bioinformatics and computational tools
    • 11.13.1. Role of Bioinformatics in Synthetic Biology
    • 11.13.2. Computational Tools for Design and Analysis
  • 11.14. Xenobiology and expanded genetic alphabets
  • 11.15. Biosensors and bioelectronics
  • 11.16. Feedstocks
    • 11.16.1. C1 feedstocks
      • 11.16.1.1. Advantages
      • 11.16.1.2. Pathways
      • 11.16.1.3. Challenges
      • 11.16.1.4. Non-methane C1 feedstocks
      • 11.16.1.5. Gas fermentation
    • 11.16.2. C2 feedstocks
    • 11.16.3. Biological conversion of CO2
    • 11.16.4. Food processing wastes
      • 11.16.4.1. Syngas
      • 11.16.4.2. Glycerol
      • 11.16.4.3. Methane
      • 11.16.4.4. Municipal solid wastes
      • 11.16.4.5. Plastic wastes
      • 11.16.4.6. Plant oils
      • 11.16.4.7. Starch
      • 11.16.4.8. Sugars
      • 11.16.4.9. Used cooking oils
      • 11.16.4.10. Green hydrogen production
      • 11.16.4.11. Blue hydrogen production
    • 11.16.5. Marine biotechnology
      • 11.16.5.1. Cyanobacteria
      • 11.16.5.2. Macroalgae
      • 11.16.5.3. Companies

12. GREEN SOLVENTS AND ALTERNATIVE REACTION MEDIA

  • 12.1. Bio-based Solvents
  • 12.2. Switchable Solvents
  • 12.3. Deep Eutectic Solvents (DES)
  • 12.4. Supercritical Fluids in Industrial Applications
  • 12.5. Solvent-free Reactions and Mechanochemistry
  • 12.6. Solvent Selection Tools and Frameworks
  • 12.7. Companies

13. WASTE VALORIZATION AND RESOURCE RECOVERY

  • 13.1. Municipal Solid Waste to Chemicals
  • 13.2. Agricultural and Food Waste Valorization
  • 13.3. Critical Material Extraction Technology
    • 13.3.1. Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste)
    • 13.3.2. Critical rare-earth element recovery from secondary sources
    • 13.3.3. Li-ion battery technology metal recovery
    • 13.3.4. Critical semiconductor materials recovery
    • 13.3.5. Critical semiconductor materials recovery
    • 13.3.6. Critical platinum group metal recovery
    • 13.3.7. Critical platinum Group metal recovery
  • 13.4. Wastewater Treatment and Resource Recovery
    • 13.4.1. Bio-based Flocculants and Coagulants
    • 13.4.2. Green Oxidants and Disinfectants
    • 13.4.3. Sustainable Membrane Materials
      • 13.4.3.1. Bio-based polymer membranes
      • 13.4.3.2. Ceramic membranes from recycled materials
      • 13.4.3.3. Self-healing membranes
    • 13.4.4. Advanced Adsorbents for Contaminant Removal
      • 13.4.4.1. Biochar
      • 13.4.4.2. Activated carbon from waste biomass
      • 13.4.4.3. Green zeolites and MOFs (Metal-Organic Frameworks)
    • 13.4.5. Nutrient Recovery Technologies
    • 13.4.6. Resource Recovery from Industrial Wastewater
    • 13.4.7. Bioelectrochemical Systems
    • 13.4.8. Green Solvents in Extraction Processes
    • 13.4.9. Photocatalytic Materials
    • 13.4.10. Biodegradable Chelating Agents
    • 13.4.11. Biocatalysts for Wastewater Treatment
    • 13.4.12. Advanced Adsorption Materials
    • 13.4.13. Sustainable pH Adjustment Chemicals
  • 13.5. Mining Waste Valorization
    • 13.5.1. Bioleaching and Biooxidation
    • 13.5.2. Green Lixiviants for Metal Extraction
    • 13.5.3. Phytomining and Phytoremediation
    • 13.5.4. Sustainable Flotation Chemicals
    • 13.5.5. Electrochemical Recovery Methods
    • 13.5.6. Geopolymers and Mine Tailings Utilization
    • 13.5.7. CO2 Mineralization
    • 13.5.8. Sustainable Remediation Technologies
    • 13.5.9. Waste-to-Energy Technologies
    • 13.5.10. Advanced Separation Techniques
  • 13.6. Companies

14. ENERGY EFFICIENCY AND RENEWABLE ENERGY INTEGRATION

  • 14.1. Energy Efficiency Measures in Chemical Plants
  • 14.2. Heat Recovery and Pinch Analysis
  • 14.3. Renewable Energy Sources in Chemical Production
  • 14.4. Energy Storage Technologies for Process Industries
  • 14.5. Combined Heat and Power (CHP) Systems
  • 14.6. Industrial Symbiosis and Energy Integration

15. SAFETY AND SUSTAINABILITY ASSESSMENT

  • 15.1. Green Chemistry Metrics and Sustainability Indicators
  • 15.2. Life Cycle Assessment (LCA) in Chemical Processes
  • 15.3. Safety by Design Principles
  • 15.4. Risk Assessment and Management in New Chemical Technologies
  • 15.5. Environmental Impact Assessment
  • 15.6. Social and Ethical Considerations in the New Era of Chemicals

16. REGULATIONS AND POLICY

  • 16.1. Global Chemical Regulations and Their Evolution
  • 16.2. Environmental Policies Driving Sustainable Chemistry
  • 16.3. Incentives and Support Mechanisms for Green Chemistry
  • 16.4. Challenges in Regulating Emerging Technologies
  • 16.5. International Cooperation and Harmonization Efforts

17. MARKETS AND PRODUCTS

  • 17.1. Sustainable Materials and Polymers
    • 17.1.1. Bioplastics and Biodegradable Polymers
      • 17.1.1.1. Polylactic acid (Bio-PLA)
        • 17.1.1.1.1. Overview
        • 17.1.1.1.2. Properties
        • 17.1.1.1.3. Applications
        • 17.1.1.1.4. Advantages
        • 17.1.1.1.5. Commercial examples
      • 17.1.1.2. Polyethylene terephthalate (Bio-PET)
        • 17.1.1.2.1. Overview
        • 17.1.1.2.2. Properties
        • 17.1.1.2.3. Applications
        • 17.1.1.2.4. Commercial examples
      • 17.1.1.3. Polytrimethylene terephthalate (Bio-PTT)
        • 17.1.1.3.1. Overview
        • 17.1.1.3.2. Production Process
        • 17.1.1.3.3. Properties
        • 17.1.1.3.4. Applications
        • 17.1.1.3.5. Commercial examples
      • 17.1.1.4. Polyethylene furanoate (Bio-PEF)
        • 17.1.1.4.1. Overview
        • 17.1.1.4.2. Properties
        • 17.1.1.4.3. Applications
        • 17.1.1.4.4. Commercial examples
      • 17.1.1.5. Bio-PA
        • 17.1.1.5.1. Overview
        • 17.1.1.5.2. Properties
        • 17.1.1.5.3. Commercial examples
      • 17.1.1.6. Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters
        • 17.1.1.6.1. Overview
        • 17.1.1.6.2. Properties
        • 17.1.1.6.3. Applications
        • 17.1.1.6.4. Commercial examples
      • 17.1.1.7. Polybutylene succinate (PBS) and copolymers
        • 17.1.1.7.1. Overview
        • 17.1.1.7.2. Properties
        • 17.1.1.7.3. Applications
        • 17.1.1.7.4. Commercial examples
      • 17.1.1.8. Polypropylene (Bio-PP)
        • 17.1.1.8.1. Overview
        • 17.1.1.8.2. Properties
        • 17.1.1.8.3. Applications
        • 17.1.1.8.4. Commercial examples
      • 17.1.1.9. Polyhydroxyalkanoates (PHA)
        • 17.1.1.9.1. Properties
        • 17.1.1.9.2. Applications
        • 17.1.1.9.3. Commercial examples
      • 17.1.1.10. Starch-based blends
        • 17.1.1.10.1. Overview
        • 17.1.1.10.2. Properties
        • 17.1.1.10.3. Applications
        • 17.1.1.10.4. Commercial examples
      • 17.1.1.11. Cellulose
        • 17.1.1.11.1. Feedstocks
      • 17.1.1.12. Microfibrillated cellulose (MFC)
        • 17.1.1.12.1. Properties
      • 17.1.1.13. Nanocellulose
        • 17.1.1.13.1. Cellulose nanocrystals
          • 17.1.1.13.1.1. Applications
        • 17.1.1.13.2. Cellulose nanofibers
          • 17.1.1.13.2.1. Applications
            • 17.1.1.13.2.1.1. Reinforcement and barrier
            • 17.1.1.13.2.1.2. Biodegradable food packaging foil and films
            • 17.1.1.13.2.1.3. Paperboard coatings
        • 17.1.1.13.3. Bacterial Nanocellulose (BNC)
          • 17.1.1.13.3.1. Applications in packaging
          • 17.1.1.13.3.2. Commercial examples
      • 17.1.1.14. Protein-based bioplastics in packaging
        • 17.1.1.14.1. Feedstocks
        • 17.1.1.14.2. Commercial examples
      • 17.1.1.15. Alginate
        • 17.1.1.15.1. Overview
        • 17.1.1.15.2. Production
        • 17.1.1.15.3. Applications
        • 17.1.1.15.4. Producers
      • 17.1.1.16. Mycelium
        • 17.1.1.16.1. Overview
        • 17.1.1.16.2. Applications
        • 17.1.1.16.3. Commercial examples
      • 17.1.1.17. Chitosan
        • 17.1.1.17.1. Overview
        • 17.1.1.17.2. Applications
        • 17.1.1.17.3. Commercial examples
      • 17.1.1.18. Bio-naphtha
        • 17.1.1.18.1. Overview
        • 17.1.1.18.2. Markets and applications
        • 17.1.1.18.3. Commercial examples
    • 17.1.2. Recycled and Upcycled Plastics
    • 17.1.3. High-Performance Bio-based Materials
    • 17.1.4. Companies
  • 17.2. Sustainable Agriculture Chemicals
    • 17.2.1. Overview
    • 17.2.2. Biopesticides and Biocontrol Agents
    • 17.2.3. Precision Agriculture Chemicals
    • 17.2.4. Controlled-Release Fertilizers
    • 17.2.5. Biostimulants
    • 17.2.6. Microbials
      • 17.2.6.1. Overview
      • 17.2.6.2. Microbial biostimulants and biofertilizers
      • 17.2.6.3. Microbiome manipulation
      • 17.2.6.4. Prebiotics
    • 17.2.7. Biochemicals
    • 17.2.8. Semiochemicals
    • 17.2.9. Macrobials
    • 17.2.10. Biopesticides
      • 17.2.10.1. Natural herbicides and insecticides
    • 17.2.11. Companies
  • 17.3. Sustainable Construction Materials
    • 17.3.1. Established bio-based construction materials
    • 17.3.2. Hemp-based Materials
      • 17.3.2.1. Hemp Concrete (Hempcrete)
      • 17.3.2.2. Hemp Fiberboard
      • 17.3.2.3. Hemp Insulation
    • 17.3.3. Mycelium-based Materials
      • 17.3.3.1. Insulation
      • 17.3.3.2. Structural Elements
      • 17.3.3.3. Acoustic Panels
      • 17.3.3.4. Decorative Elements
    • 17.3.4. Sustainable Concrete and Cement Alternatives
      • 17.3.4.1. Geopolymer Concrete
      • 17.3.4.2. Recycled Aggregate Concrete
      • 17.3.4.3. Lime-Based Materials
      • 17.3.4.4. Self-healing concrete
        • 17.3.4.4.1. Bioconcrete
        • 17.3.4.4.2. Fiber concrete
      • 17.3.4.5. Microalgae biocement
      • 17.3.4.6. Carbon-negative concrete
      • 17.3.4.7. Biomineral binders
    • 17.3.5. Natural Fiber Composites
      • 17.3.5.1. Types of Natural Fibers
      • 17.3.5.2. Properties
      • 17.3.5.3. Applications in Construction
    • 17.3.6. Cellulose nanofibers
      • 17.3.6.1. Sandwich composites
      • 17.3.6.2. Cement additives
      • 17.3.6.3. Pump primers
      • 17.3.6.4. Insulation materials
    • 17.3.7. Sustainable Insulation Materials
      • 17.3.7.1. Types of sustainable insulation materials
      • 17.3.7.2. Biobased and sustainable aerogels (bio-aerogels)
    • 17.3.8. Companies
  • 17.4. Sustainable Packaging
    • 17.4.1. Paper and board packaging
    • 17.4.2. Food packaging
      • 17.4.2.1. Bio-Based films and trays
      • 17.4.2.2. Bio-Based pouches and bags
      • 17.4.2.3. Bio-Based textiles and nets
      • 17.4.2.4. Bioadhesives
        • 17.4.2.4.1. Starch
        • 17.4.2.4.2. Cellulose
        • 17.4.2.4.3. Protein-Based
      • 17.4.2.5. Barrier coatings and films
        • 17.4.2.5.1. Polysaccharides
          • 17.4.2.5.1.1 Chitin
          • 17.4.2.5.1.2 Chitosan
          • 17.4.2.5.1.3 Starch
        • 17.4.2.5.2. Poly(lactic acid) (PLA)
        • 17.4.2.5.3. Poly(butylene Succinate)
        • 17.4.2.5.4. Functional Lipid and Proteins Based Coatings
      • 17.4.2.6. Active and Smart Food Packaging
        • 17.4.2.6.1. Active Materials and Packaging Systems
        • 17.4.2.6.2. Intelligent and Smart Food Packaging
      • 17.4.2.7. Antimicrobial films and agents
        • 17.4.2.7.1. Natural
        • 17.4.2.7.2. Inorganic nanoparticles
        • 17.4.2.7.3. Biopolymers
      • 17.4.2.8. Bio-based Inks and Dyes
      • 17.4.2.9. Edible films and coatings
        • 17.4.2.9.1. Overview
        • 17.4.2.9.2. Commercial examples
      • 17.4.2.10. Types of bio-based coatings and films in packaging
        • 17.4.2.10.1. Polyurethane coatings
          • 17.4.2.10.1.1. Properties
          • 17.4.2.10.1.2. Bio-based polyurethane coatings
          • 17.4.2.10.1.3. Products
        • 17.4.2.10.2. Acrylate resins
          • 17.4.2.10.2.1. Properties
          • 17.4.2.10.2.2. Bio-based acrylates
          • 17.4.2.10.2.3. Products
        • 17.4.2.10.3. Polylactic acid (Bio-PLA)
          • 17.4.2.10.3.1. Properties
          • 17.4.2.10.3.2. Bio-PLA coatings and films
        • 17.4.2.10.4. Polyhydroxyalkanoates (PHA) coatings
        • 17.4.2.10.5. Cellulose coatings and films
          • 17.4.2.10.5.1. Microfibrillated cellulose (MFC)
          • 17.4.2.10.5.2. Cellulose nanofibers
            • 17.4.2.10.5.2.1. Properties
            • 17.4.2.10.5.2.2. Product developers
        • 17.4.2.10.6. Lignin coatings
        • 17.4.2.10.7. Protein-based biomaterials for coatings
          • 17.4.2.10.7.1. Plant derived proteins
          • 17.4.2.10.7.2. Animal origin proteins
    • 17.4.3. Carbon capture derived materials for packaging
      • 17.4.3.1. Benefits of carbon utilization for plastics feedstocks
      • 17.4.3.2. CO2-derived polymers and plastics
      • 17.4.3.3. CO2 utilization products
    • 17.4.4. Companies
  • 17.5. Green Cosmetics and Personal Care
    • 17.5.1. Natural and Bio-based Ingredients
    • 17.5.2. Microplastic Alternatives
      • 17.5.2.1. Natural hard materials
      • 17.5.2.2. Polysaccharides
        • 17.5.2.2.1. Starch
        • 17.5.2.2.2. Cellulose
          • 17.5.2.2.2.1 Microcrystalline cellulose (MCC)
          • 17.5.2.2.2.2 Regenerated cellulose microspheres
          • 17.5.2.2.2.3 Cellulose nanocrystals
          • 17.5.2.2.2.4 Bacterial nanocellulose (BNC)
        • 17.5.2.2.3. Chitin
      • 17.5.2.3. Proteins
        • 17.5.2.3.1. Collagen/Gelatin
        • 17.5.2.3.2. Casein
      • 17.5.2.4. Polyesters
        • 17.5.2.4.1. Polyhydroxyalkanoates
        • 17.5.2.4.2. Polylactic acid
      • 17.5.2.5. Other natural polymers
        • 17.5.2.5.1. Lignin
          • 17.5.2.5.1.1 Description
          • 17.5.2.5.1.2 Applications and commercial status
        • 17.5.2.5.2. Alginate
          • 17.5.2.5.2.1 Applications and commercial status
    • 17.5.3. Waterless Formulations
    • 17.5.4. Companies
  • 17.6. Bio-based and Eco-Friendly Paints and Coatings
    • 17.6.1. UV-cure
    • 17.6.2. Waterborne coatings
    • 17.6.3. Treatments with less or no solvents
    • 17.6.4. Hyperbranched polymers for coatings
    • 17.6.5. Powder coatings
    • 17.6.6. High solid (HS) coatings
    • 17.6.7. Use of bio-based materials in coatings
      • 17.6.7.1. Biopolymers
      • 17.6.7.2. Coatings based on agricultural waste
      • 17.6.7.3. Vegetable oils and fatty acids
      • 17.6.7.4. Proteins
      • 17.6.7.5. Cellulose
      • 17.6.7.6. Plant-Based wax coatings
    • 17.6.8. Barrier coatings
      • 17.6.8.1. Polysaccharides
        • 17.6.8.1.1. Chitin
        • 17.6.8.1.2. Chitosan
        • 17.6.8.1.3. Starch
      • 17.6.8.2. Poly(lactic acid) (PLA)
      • 17.6.8.3. Poly(butylene Succinate
      • 17.6.8.4. Functional Lipid and Proteins Based Coatings
    • 17.6.9. Alkyd coatings
      • 17.6.9.1. Alkyd resin properties
      • 17.6.9.2. Bio-based alkyd coatings
      • 17.6.9.3. Products
    • 17.6.10. Polyurethane coatings
      • 17.6.10.1. Properties
      • 17.6.10.2. Bio-based polyurethane coatings
        • 17.6.10.2.1. Bio-based polyols
        • 17.6.10.2.2. Non-isocyanate polyurethane (NIPU)
      • 17.6.10.3. Products
    • 17.6.11. Epoxy coatings
      • 17.6.11.1. Properties
      • 17.6.11.2. Bio-based epoxy coatings
      • 17.6.11.3. Products
    • 17.6.12. Acrylate resins
      • 17.6.12.1. Properties
      • 17.6.12.2. Bio-based acrylates
      • 17.6.12.3. Products
    • 17.6.13. Polylactic acid (Bio-PLA)
      • 17.6.13.1. Bio-PLA coatings and films
    • 17.6.14. Polyhydroxyalkanoates (PHA)
    • 17.6.15. Microfibrillated cellulose (MFC)
    • 17.6.16. Cellulose nanofibers
    • 17.6.17. Bacterial Nanocellulose (BNC)
    • 17.6.18. Rosins
    • 17.6.19. Bio-based carbon black
      • 17.6.19.1. Lignin-based
      • 17.6.19.2. Algae-based
    • 17.6.20. Lignin
    • 17.6.21. Antimicrobial films and agents
      • 17.6.21.1. Natural
      • 17.6.21.2. Inorganic nanoparticles
      • 17.6.21.3. Biopolymers
    • 17.6.22. Nanocoatings
    • 17.6.23. Protein-based biomaterials for coatings
      • 17.6.23.1. Plant derived proteins
      • 17.6.23.2. Animal origin proteins
    • 17.6.24. Algal coatings
    • 17.6.25. Polypeptides
    • 17.6.26. Companies
  • 17.7. Green Electronics
    • 17.7.1. Biodegradable Electronics
    • 17.7.2. Recycled and Recoverable Electronic Materials
    • 17.7.3. Conventional electronics manufacturing
    • 17.7.4. Benefits of Green Electronics manufacturing
    • 17.7.5. Challenges in adopting Green Electronics manufacturing
    • 17.7.6. Green Electronics Manufacturing
    • 17.7.7. Sustainability in PCB manufacturing
      • 17.7.7.1. Sustainable cleaning of PCBs
    • 17.7.8. Design of PCBs for sustainability
      • 17.7.8.1. Rigid
      • 17.7.8.2. Flexible
      • 17.7.8.3. Additive manufacturing
      • 17.7.8.4. In-mold elctronics (IME)
    • 17.7.9. Materials
      • 17.7.9.1. Metal cores
      • 17.7.9.2. Recycled laminates
      • 17.7.9.3. Conductive inks
      • 17.7.9.4. Green and lead-free solder
      • 17.7.9.5. Biodegradable substrates
        • 17.7.9.5.1. Bacterial Cellulose
        • 17.7.9.5.2. Mycelium
        • 17.7.9.5.3. Lignin
        • 17.7.9.5.4. Cellulose Nanofibers
        • 17.7.9.5.5. Soy Protein
        • 17.7.9.5.6. Algae
        • 17.7.9.5.7. PHAs
      • 17.7.9.6. Biobased inks
    • 17.7.10. Substrates
      • 17.7.10.1. Halogen-free FR4
        • 17.7.10.1.1. FR4 limitations
        • 17.7.10.1.2. FR4 alternatives
        • 17.7.10.1.3. Bio-Polyimide
      • 17.7.10.2. Metal-core PCBs
      • 17.7.10.3. Biobased PCBs
        • 17.7.10.3.1. Flexible (bio) polyimide PCBs
        • 17.7.10.3.2. Recent commercial activity
      • 17.7.10.4. Paper-based PCBs
      • 17.7.10.5. PCBs without solder mask
      • 17.7.10.6. Thinner dielectrics
      • 17.7.10.7. Recycled plastic substrates
      • 17.7.10.8. Flexible substrates
    • 17.7.11. Sustainable patterning and metallization in electronics manufacturing
      • 17.7.11.1. Introduction
      • 17.7.11.2. Issues with sustainability
      • 17.7.11.3. Regeneration and reuse of etching chemicals
      • 17.7.11.4. Transition from Wet to Dry phase patterning
      • 17.7.11.5. Print-and-plate
      • 17.7.11.6. Approaches
        • 17.7.11.6.1. Direct Printed Electronics
        • 17.7.11.6.2. Photonic Sintering
        • 17.7.11.6.3. Biometallization
        • 17.7.11.6.4. Plating Resist Alternatives
        • 17.7.11.6.5. Laser-Induced Forward Transfer
        • 17.7.11.6.6. Electrohydrodynamic Printing
        • 17.7.11.6.7. Electrically conductive adhesives (ECAs
        • 17.7.11.6.8. Green electroless plating
        • 17.7.11.6.9. Smart Masking
        • 17.7.11.6.10 Component Integration
        • 17.7.11.6.11 Bio-inspired material deposition
        • 17.7.11.6.12 Multi-material jetting
        • 17.7.11.6.13 Vacuumless deposition
        • 17.7.11.6.14 Upcycling waste streams
    • 17.7.12. Sustainable attachment and integration of components
      • 17.7.12.1. Conventional component attachment materials
      • 17.7.12.2. Materials
        • 17.7.12.2.1. Conductive adhesives
        • 17.7.12.2.2. Biodegradable adhesives
        • 17.7.12.2.3. Magnets
        • 17.7.12.2.4. Bio-based solders
        • 17.7.12.2.5. Bio-derived solders
        • 17.7.12.2.6. Recycled plastics
        • 17.7.12.2.7. Nano adhesives
        • 17.7.12.2.8. Shape memory polymers
        • 17.7.12.2.9. Photo-reversible polymers
        • 17.7.12.2.10 Conductive biopolymers
      • 17.7.12.3. Processes
        • 17.7.12.3.1. Traditional thermal processing methods
        • 17.7.12.3.2. Low temperature solder
        • 17.7.12.3.3. Reflow soldering
        • 17.7.12.3.4. Induction soldering
        • 17.7.12.3.5. UV curing
        • 17.7.12.3.6. Near-infrared (NIR) radiation curing
        • 17.7.12.3.7. Photonic sintering/curing
        • 17.7.12.3.8. Hybrid integration
    • 17.7.13. Sustainable integrated circuits
      • 17.7.13.1. IC manufacturing
      • 17.7.13.2. Sustainable IC manufacturing
      • 17.7.13.3. Wafer production
        • 17.7.13.3.1. Silicon
        • 17.7.13.3.2. Gallium nitride ICs
        • 17.7.13.3.3. Flexible ICs
        • 17.7.13.3.4. Fully printed organic ICs
      • 17.7.13.4. Oxidation methods
        • 17.7.13.4.1. Sustainable oxidation
        • 17.7.13.4.2. Metal oxides
        • 17.7.13.4.3. Recycling
        • 17.7.13.4.4. Thin gate oxide layers
      • 17.7.13.5. Patterning and doping
        • 17.7.13.5.1. Processes
          • 17.7.13.5.1.1. Wet etching
          • 17.7.13.5.1.2. Dry plasma etching
          • 17.7.13.5.1.3. Lift-off patterning
          • 17.7.13.5.1.4. Surface doping
      • 17.7.13.6. Metallization
        • 17.7.13.6.1. Evaporation
        • 17.7.13.6.2. Plating
        • 17.7.13.6.3. Printing
          • 17.7.13.6.3.1. Printed metal gates for organic thin film transistors
        • 17.7.13.6.4. Physical vapour deposition (PVD)
    • 17.7.14. End of life
      • 17.7.14.1. Hazardous waste
      • 17.7.14.2. Emissions
      • 17.7.14.3. Water Usage
      • 17.7.14.4. Recycling
        • 17.7.14.4.1. Mechanical recycling
        • 17.7.14.4.2. Electro-Mechanical Separation
        • 17.7.14.4.3. Chemical Recycling
        • 17.7.14.4.4. Electrochemical Processes
        • 17.7.14.4.5. Thermal Recycling
    • 17.7.15. Green Certification
    • 17.7.16. Companies
  • 17.8. Sustainable Textiles and Fibers
    • 17.8.1. Types of bio-based fibres
      • 17.8.1.1. Natural fibres
      • 17.8.1.2. Main-made bio-based fibres
    • 17.8.2. Bio-based synthetics
    • 17.8.3. Recyclability of bio-based fibres
    • 17.8.4. Lyocell
    • 17.8.5. Bacterial cellulose
    • 17.8.6. Algae textiles
    • 17.8.7. Bio-based leather
      • 17.8.7.1. Properties of bio-based leathers
        • 17.8.7.1.1. Tear strength.
        • 17.8.7.1.2. Tensile strength
        • 17.8.7.1.3. Bally flexing
      • 17.8.7.2. Comparison with conventional leathers
      • 17.8.7.3. Comparative analysis of bio-based leathers
      • 17.8.7.4. Plant-based leather
        • 17.8.7.4.1. Overview
        • 17.8.7.4.2. Production processes
          • 17.8.7.4.2.1 Feedstocks
          • 17.8.7.4.2.1 Agriculture Residues
          • 17.8.7.4.2.2 Food Processing Waste
          • 17.8.7.4.2.3 Invasive Plants
          • 17.8.7.4.2.4 Culture-Grown Inputs
          • 17.8.7.4.2.5 Textile-Based
          • 17.8.7.4.2.6 Bio-Composite
        • 17.8.7.4.3. Products
        • 17.8.7.4.4. Market players
      • 17.8.7.5. Mycelium leather
        • 17.8.7.5.1. Overview
        • 17.8.7.5.2. Production process
          • 17.8.7.5.2.1 Growth conditions
          • 17.8.7.5.2.2 Tanning Mycelium Leather
          • 17.8.7.5.2.3 Dyeing Mycelium Leather
        • 17.8.7.5.3. Products
        • 17.8.7.5.4. Market players
      • 17.8.7.6. Microbial leather
        • 17.8.7.6.1. Overview
        • 17.8.7.6.2. Production process
        • 17.8.7.6.3. Fermentation conditions
        • 17.8.7.6.4. Harvesting
        • 17.8.7.6.5. Products
        • 17.8.7.6.6. Market players
      • 17.8.7.7. Lab grown leather
        • 17.8.7.7.1. Overview
        • 17.8.7.7.2. Production process
        • 17.8.7.7.3. Products
        • 17.8.7.7.4. Market players
      • 17.8.7.8. Protein-based leather
        • 17.8.7.8.1. Overview
        • 17.8.7.8.2. Production process
        • 17.8.7.8.3. Commercial activity
      • 17.8.7.9. Sustainable textiles coatings and dyes
        • 17.8.7.9.1. Overview
          • 17.8.7.9.1.1 Coatings
          • 17.8.7.9.1.2 Dyes
        • 17.8.7.9.2. Commercial activity
    • 17.8.8. Companies
  • 17.9. Alternative Fuels and Lubricants
    • 17.9.1. Biofuels and Synthetic Fuels
    • 17.9.2. Biodiesel
      • 17.9.2.1. Biodiesel by generation
      • 17.9.2.2. Production of biodiesel and other biofuels
        • 17.9.2.2.1. Pyrolysis of biomass
        • 17.9.2.2.2. Vegetable oil transesterification
        • 17.9.2.2.3. Vegetable oil hydrogenation (HVO)
          • 17.9.2.2.3.1 Production process
        • 17.9.2.2.4. Biodiesel from tall oil
        • 17.9.2.2.5. Fischer-Tropsch BioDiesel
        • 17.9.2.2.6. Hydrothermal liquefaction of biomass
        • 17.9.2.2.7. CO2 capture and Fischer-Tropsch (FT)
        • 17.9.2.2.8. Dymethyl ether (DME)
      • 17.9.2.3. Prices
      • 17.9.2.4. Global production and consumption
    • 17.9.3. Renewable diesel
      • 17.9.3.1. Production
      • 17.9.3.2. SWOT analysis
      • 17.9.3.3. Global consumption
      • 17.9.3.4. Prices
    • 17.9.4. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
      • 17.9.4.1. Description
      • 17.9.4.2. SWOT analysis
      • 17.9.4.3. Global production and consumption
      • 17.9.4.4. Production pathways
      • 17.9.4.5. Prices
      • 17.9.4.6. Bio-aviation fuel production capacities
      • 17.9.4.7. Market challenges
      • 17.9.4.8. Global consumption
    • 17.9.5. Bio-naphtha
      • 17.9.5.1. Overview
      • 17.9.5.2. SWOT analysis
      • 17.9.5.3. Markets and applications
      • 17.9.5.4. Prices
      • 17.9.5.5. Production capacities, by producer, current and planned
      • 17.9.5.6. Production capacities, total (tonnes), historical, current and planned
    • 17.9.6. Biomethanol
      • 17.9.6.1. SWOT analysis
      • 17.9.6.2. Methanol-to gasoline technology
        • 17.9.6.2.1. Production processes
          • 17.9.6.2.1.1 Anaerobic digestion
          • 17.9.6.2.1.2 Biomass gasification
          • 17.9.6.2.1.3 Power to Methane
    • 17.9.7. Ethanol
      • 17.9.7.1. Technology description
      • 17.9.7.2. 1G Bio-Ethanol
      • 17.9.7.3. SWOT analysis
      • 17.9.7.4. Ethanol to jet fuel technology
      • 17.9.7.5. Methanol from pulp & paper production
      • 17.9.7.6. Sulfite spent liquor fermentation
      • 17.9.7.7. Gasification
        • 17.9.7.7.1. Biomass gasification and syngas fermentation
        • 17.9.7.7.2. Biomass gasification and syngas thermochemical conversion
      • 17.9.7.8. CO2 capture and alcohol synthesis
      • 17.9.7.9. Biomass hydrolysis and fermentation
        • 17.9.7.9.1. Separate hydrolysis and fermentation
        • 17.9.7.9.2. Simultaneous saccharification and fermentation (SSF)
        • 17.9.7.9.3. Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)
        • 17.9.7.9.4. Simultaneous saccharification and co-fermentation (SSCF)
        • 17.9.7.9.5. Direct conversion (consolidated bioprocessing) (CBP)
      • 17.9.7.10. Global ethanol consumption
    • 17.9.8. Biobutanol
      • 17.9.8.1. Production
      • 17.9.8.2. Prices
    • 17.9.9. Biomass-based Gas
      • 17.9.9.1. Biomethane
      • 17.9.9.2. Production pathways
        • 17.9.9.2.1. Landfill gas recovery
        • 17.9.9.2.2. Anaerobic digestion
        • 17.9.9.2.3. Thermal gasification
      • 17.9.9.3. SWOT analysis
      • 17.9.9.4. Global production
      • 17.9.9.5. Prices
        • 17.9.9.5.1. Raw Biogas
        • 17.9.9.5.2. Upgraded Biomethane
      • 17.9.9.6. Bio-LNG
        • 17.9.9.6.1. Markets
          • 17.9.9.6.1.1 Trucks
          • 17.9.9.6.1.2 Marine
        • 17.9.9.6.2. Production
        • 17.9.9.6.3. Plants
      • 17.9.9.7. bio-CNG (compressed natural gas derived from biogas)
      • 17.9.9.8. Carbon capture from biogas
    • 17.9.10. Biosyngas
      • 17.9.10.1. Production
      • 17.9.10.2. Prices
    • 17.9.11. Biohydrogen
      • 17.9.11.1. Description
      • 17.9.11.2. SWOT analysis
      • 17.9.11.3. Production of biohydrogen from biomass
        • 17.9.11.3.1. Biological Conversion Routes
          • 17.9.11.3.1.1. Bio-photochemical Reaction
          • 17.9.11.3.1.2. Fermentation and Anaerobic Digestion
        • 17.9.11.3.2. Thermochemical conversion routes
          • 17.9.11.3.2.1. Biomass Gasification
          • 17.9.11.3.2.2. Biomass Pyrolysis
          • 17.9.11.3.2.3. Biomethane Reforming
      • 17.9.11.4. Applications
      • 17.9.11.5. Prices
    • 17.9.12. Biochar in biogas production
    • 17.9.13. Bio-DME
    • 17.9.14. Chemical recycling for biofuels
      • 17.9.14.1. Plastic pyrolysis
      • 17.9.14.2. Used tires pyrolysis
        • 17.9.14.2.1. Conversion to biofuel
      • 17.9.14.3. Co-pyrolysis of biomass and plastic wastes
      • 17.9.14.4. Gasification
        • 17.9.14.4.1. Syngas conversion to methanol
        • 17.9.14.4.2. Biomass gasification and syngas fermentation
        • 17.9.14.4.3. Biomass gasification and syngas thermochemical conversion
      • 17.9.14.5. Hydrothermal cracking
    • 17.9.15. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
      • 17.9.15.1. Introduction
      • 17.9.15.2. Benefits of e-fuels
      • 17.9.15.3. Feedstocks
        • 17.9.15.3.1. Hydrogen electrolysis
      • 17.9.15.4. CO2 capture
      • 17.9.15.5. Production
        • 17.9.15.5.1. eFuel production facilities, current and planned
      • 17.9.15.6. Companies
    • 17.9.16. Algae-derived biofuels
      • 17.9.16.1. Technology description
        • 17.9.16.1.1. Conversion pathways
      • 17.9.16.2. Production
      • 17.9.16.3. Market challenges
      • 17.9.16.4. Prices
      • 17.9.16.5. Producers
    • 17.9.17. Green Ammonia
      • 17.9.17.1. Production
        • 17.9.17.1.1. Decarbonisation of ammonia production
        • 17.9.17.1.2. Green ammonia projects
      • 17.9.17.2. Green ammonia synthesis methods
        • 17.9.17.2.1. Haber-Bosch process
        • 17.9.17.2.2. Biological nitrogen fixation
        • 17.9.17.2.3. Electrochemical production
        • 17.9.17.2.4. Chemical looping processes
      • 17.9.17.3. Blue ammonia
        • 17.9.17.3.1. Blue ammonia projects
        • 17.9.17.3.2. Markets and applications
        • 17.9.17.3.3. Chemical energy storage
        • 17.9.17.3.4. Ammonia fuel cells
        • 17.9.17.3.5. Marine fuel
        • 17.9.17.3.6. Prices
      • 17.9.17.4. Companies and projects
    • 17.9.18. Bio-oils (pyrolysis oils)
      • 17.9.18.1. Description
        • 17.9.18.1.1. Advantages of bio-oils
      • 17.9.18.2. Production
        • 17.9.18.2.1. Fast Pyrolysis
        • 17.9.18.2.2. Costs of production
        • 17.9.18.2.3. Upgrading
      • 17.9.18.3. Applications
      • 17.9.18.4. Bio-oil producers
      • 17.9.18.5. Prices
    • 17.9.19. Refuse Derived Fuels (RDF)
      • 17.9.19.1. Overview
      • 17.9.19.2. Production
        • 17.9.19.2.1. Production process
        • 17.9.19.2.2. Mechanical biological treatment
      • 17.9.19.3. Markets
    • 17.9.20. Bio-based Lubricants
    • 17.9.21. Companies
  • 17.10 Green Pharmaceuticals and Healthcare
    • 17.10.1. Green Pharmaceutical Synthesis
      • 17.10.1.1. Green Solvents
        • 17.10.1.1.1. Supercritical CO2 (scCO2)
        • 17.10.1.1.2. Ionic Liquids
        • 17.10.1.1.3. Bio-based Solvents
        • 17.10.1.1.4. Water-based Reactions
      • 17.10.1.2. Catalysis
        • 17.10.1.2.1. Biocatalysis (Enzymes and Whole-cell Catalysts)
        • 17.10.1.2.2. Heterogeneous Catalysts
        • 17.10.1.2.3. Organocatalysts
        • 17.10.1.2.4. Photocatalysis
      • 17.10.1.3. Continuous Flow Chemistry
        • 17.10.1.3.1. Microreactors
        • 17.10.1.3.2. Flow Photochemistry
        • 17.10.1.3.3. Electrochemical Flow Cells
      • 17.10.1.4. Alternative Energy Sources
        • 17.10.1.4.1. Microwave-assisted Synthesis
        • 17.10.1.4.2. Ultrasound-assisted Reactions
        • 17.10.1.4.3. Mechanochemistry (Ball Milling)
      • 17.10.1.5. Green Oxidation and Reduction Methods
        • 17.10.1.5.1. Electrochemical oxidation/reduction
        • 17.10.1.5.2. Photochemical reactions
        • 17.10.1.5.3. Hydrogen peroxide as green oxidant
      • 17.10.1.6. Atom-Economical Reactions
      • 17.10.1.7. Bio-based Starting Materials
      • 17.10.1.8. Process Intensification
      • 17.10.1.9. Green Analytical Techniques
      • 17.10.1.10. Sustainable Purification Methods
    • 17.10.2. Bio-based Drug Delivery Systems
      • 17.10.2.1. Natural polymers
        • 17.10.2.1.1. Chitosan and its derivatives
        • 17.10.2.1.2. Alginate
        • 17.10.2.1.3. Hyaluronic acid
        • 17.10.2.1.4. Cellulose and its derivatives
      • 17.10.2.2. Protein-based Materials
        • 17.10.2.2.1. Albumin nanoparticles
        • 17.10.2.2.2. Collagen matrices
        • 17.10.2.2.3. Silk fibroin scaffolds
        • 17.10.2.2.4. Gelatin hydrogels
      • 17.10.2.3. Polysaccharide-based Systems
        • 17.10.2.3.1. Cyclodextrins
        • 17.10.2.3.2. Pectin
        • 17.10.2.3.3. Dextran
        • 17.10.2.3.4. Pullulan
      • 17.10.2.4. Lipid-based Carriers
        • 17.10.2.4.1. Liposomes from natural phospholipids
        • 17.10.2.4.2. Solid lipid nanoparticles
        • 17.10.2.4.3. Nanostructured lipid carriers
      • 17.10.2.5. Plant-derived Materials
        • 17.10.2.5.1. Guar gum
        • 17.10.2.5.2. Carrageenan
        • 17.10.2.5.3. Zein (corn protein)
        • 17.10.2.5.4. Starch-based materials
      • 17.10.2.6. Microbial-derived Polymers
        • 17.10.2.6.1. Polyhydroxyalkanoates (PHAs)
        • 17.10.2.6.2. Bacterial cellulose
        • 17.10.2.6.3. Xanthan gum
      • 17.10.2.7. Stimuli-responsive Biopolymers
        • 17.10.2.7.1. pH-sensitive alginate derivatives
        • 17.10.2.7.2. Thermoresponsive chitosan systems
        • 17.10.2.7.3. Enzyme-responsive materials
      • 17.10.2.8. Bioconjugation Techniques
        • 17.10.2.8.1. Click chemistry for polymer modification
        • 17.10.2.8.2. Enzyme-catalyzed conjugation
        • 17.10.2.8.3. Photo-initiated crosslinking
      • 17.10.2.9. Sustainable Particle Formation
        • 17.10.2.9.1. Spray-drying with green solvents
        • 17.10.2.9.2. Electrospinning of biopolymers
        • 17.10.2.9.3. Supercritical fluid-assisted particle formation
    • 17.10.3. Sustainable Medical Devices
    • 17.10.4. Personalized Chemistry in Medicine
      • 17.10.4.1. Tailored Drug Delivery Systems
      • 17.10.4.2. Personalized Diagnostic Materials
      • 17.10.4.3. Custom-synthesized Therapeutics
      • 17.10.4.4. Biocompatible Materials for Implants
      • 17.10.4.5. 3D-printed Pharmaceuticals
      • 17.10.4.6. Personalized Nutrient Formulations
    • 17.10.5. Companies
  • 17.11. Advanced Materials for 3D Printing
    • 17.11.1. Bio-based 3D Printing Resins
    • 17.11.2. Recyclable and Reusable 3D Printing Materials
    • 17.11.3. Functional and Smart 3D Printing Materials
    • 17.11.4. Companies
  • 17.12. Artificial Intelligence in Chemical Design
    • 17.12.1. Machine Learning for Molecular Design
    • 17.12.2. AI-driven Retrosynthesis Planning
    • 17.12.3. Predictive Modelling of Chemical Properties
    • 17.12.4. AI in Process Optimization
    • 17.12.5. Automated Lab Systems and Robotics
    • 17.12.6. AI for Materials Discovery and Development
  • 17.13. Quantum Chemistry Applications
    • 17.13.1. Quantum Computing for Molecular Simulations
    • 17.13.2. Quantum Sensors in Chemical Analysis
    • 17.13.3. Quantum-inspired Algorithms for Property Prediction
    • 17.13.4. Quantum Approaches to Catalyst Design
    • 17.13.5. Quantum Chemistry in Drug Discovery
    • 17.13.6. Quantum Effects in Nanomaterials
    • 17.13.7. Companies

18. ECONOMIC ASPECTS AND BUSINESS MODELS

  • 18.1. Cost Competitiveness of Sustainable Chemical Technologies
  • 18.2. Investment Trends in Green Chemistry
  • 18.3. New Business Models in the Circular Economy
  • 18.4. Market Dynamics and Consumer Preferences
  • 18.5. Intellectual Property Considerations
  • 18.6. Case Studies
    • 18.6.1. Bio-based Production of Bulk Chemicals
    • 18.6.2. CO2 to Polymers: Innovating in Materials
    • 18.6.3. Waste Plastic to Fuels and Chemicals
    • 18.6.4. Green Pharmaceutical Manufacturing
    • 18.6.5. Sustainable Agriculture Chemicals
    • 18.6.6. Circular Economy in Action: Closing the Loop in Packaging
    • 18.6.7. Revolutionizing Textiles: From Petrochemicals to Bio-based Fibers

19. FUTURE OUTLOOK AND EMERGING TRENDS

  • 19.1. Convergence of Bio, Nano, and Information Technologies
  • 19.2. Quantum Computing in Chemical Research and Development
  • 19.3. Space-based Manufacturing of Chemicals
  • 19.4. Artificial Photosynthesis and Solar Fuels
  • 19.5. Personalized and On-demand Chemical Manufacturing
  • 19.6. The Role of Chemistry in Achieving Net-Zero Emissions
  • 19.7. Circular Economy Solutions
  • 19.8. Artificial Intelligence and Digitalization Impact
  • 19.9. Quantum Chemistry Prospects

20. APPENDICES

  • 20.1. Glossary of Terms
  • 20.2. List of Abbreviations
  • 20.3. Research Methodology

21. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제