½ÃÀ庸°í¼­
»óǰÄÚµå
1632120

¼¼°èÀÇ ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀå(2025-2045³â)

The Global Market for Quantum Computing 2025-2045

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 308 Pages, 81 Tables, 54 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¾çÀÚÄÄÇ»ÆÃ ½ÃÀåÀº ´«ºÎ½Å ±â¼ú ¹ßÀü°ú »ó¾÷Àû °ü½É Áõ°¡·Î ÀÎÇØ º¯È­ÀÇ ½Ã±â¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ¼ºÀåÀÇ ÃËÁø¿äÀÎÀº Á¤ºÎÀÇ ´ë±Ô¸ð ÅõÀÚ, ¹Î°£ ±â¾÷ÀÇ ÁøÀÔ, °¡¼ÓÈ­µÇ´Â ±â¼ú Çõ½Å µî ¿©·¯ °¡Áö ¿äÀÎÀÌ ÀÖ½À´Ï´Ù. ÇöÀç ½ÃÀå »óȲ¿¡¼­´Â Çϵå¿þ¾î °³¹ß, ƯÈ÷ ÃÊÀüµµ ¾çÀÚºñÆ®¿Í À̿ Ʈ·¦ ½Ã½ºÅÛ¿¡¼­ Çϵå¿þ¾î °³¹ßÀÌ °¡Àå Å« ÅõÀÚ ºñÁßÀ» Â÷ÁöÇϰí ÀÖÀ¸¸ç, IBM, Google, Microsoft µî ´ëÇü ±â¼ú ±â¾÷ÀÌ ¾çÀÚ ÇÁ·Î±×·¥À» ÃßÁøÇÏ´Â ÇÑÆí, IonQ, Rigetti, PsiQuantum µîÀÇ Àü¹® ¾÷üµéÀÌ °¢ÀÚÀÇ ±â¼ú¿¡¼­ Å« ÁøÀüÀ» º¸À̰í ÀÖ½À´Ï´Ù. ½ÃÀå¿¡¼­´Â ¾çÀÚ ¼ÒÇÁÆ®¿þ¾î ¹× ¾ÖÇø®ÄÉÀÌ¼Ç °³¹ßµµ Ȱ¹ßÈ÷ ÀÌ·ç¾îÁö°í ÀÖÀ¸¸ç, ±ÝÀ¶, Á¦¾à, ¹°·ù µîÀÇ »ê¾÷À» À§ÇÑ ¾çÀÚ ¾Ë°í¸®Áò ¹× ÀÌ¿ë »ç·Ê¿¡ ƯȭµÈ ¼Ö·ç¼ÇÀÌ °³¹ßµÇ°í ÀÖ½À´Ï´Ù.

Ŭ¶ó¿ìµå ±â¹Ý ¾çÀÚ ÄÄÇ»ÆÃ ¼­ºñ½º´Â Çϵå¿þ¾î¿¡ Á÷Á¢ ÅõÀÚÇÏÁö ¾Ê°íµµ ¾çÀÚ ±â´ÉÀ» ±¤¹üÀ§ÇÏ°Ô ÀÌ¿ëÇÒ ¼ö ÀÖÀ¸¸ç, ºü¸£°Ô ¼ºÀåÇϰí ÀÖ´Â ½ÃÀå ºÐ¾ß·Î, Amazon Bracket, IBM Quantum, Microsoft Azure QuantumÀÌ ÀÌ º¯È­¸¦ ÁÖµµÇϰí ÀÖ½À´Ï´Ù. º¯È­¸¦ ÁÖµµÇϰí ÀÖÀ¸¸ç, Àü ¼¼°è ±â¾÷ ¹× ¿¬±¸ÀÚµéÀÌ ¾çÀÚ ÄÄÇ»ÆÃ ¸®¼Ò½º¸¦ ÀÌ¿ëÇÒ ¼ö ÀÖµµ·Ï Çϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ '¼­ºñ½ºÇü ¾çÀÚ(quantum-as-a-service)' ¸ðµ¨Àº °¡±î¿î ½ÃÀÏ ³»¿¡ ½ÃÀåÀÇ Å« ¼ºÀåÀ» °¡¼ÓÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

ÇâÈÄ ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀåÀº ¿©·¯ °¡Áö Áß¿äÇÑ ÀüȯÁ¡À» ¸ÂÀÌÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ƯÈ÷ ¾çÀÚÄÄÇ»ÆÃÀÌ Å« °æÀï ¿ìÀ§¸¦ °¡Á®´Ù ÁÙ ¼ö ÀÖ´Â »ê¾÷¿¡¼­´Â ƯÁ¤ ¿ëµµ¿¡¼­ ¾çÀÚ ¿ìÀ§°¡ ´Þ¼ºµÇ¸é ±â¾÷¿¡¼­ ¾çÀÚÄÄÇ»ÆÃÀ» äÅÃÇÒ °¡´É¼ºÀÌ ³ô½À´Ï´Ù. ±ÝÀ¶ ¼­ºñ½º, ½Å¾à °³¹ß, Àç·á °úÇÐ µîÀº ¾çÀÚ ÄÄÇ»ÆÃÀÇ ½Ç¿ëÀû ÀÌÁ¡À» °¡Àå ¸ÕÀú ½ÇÇöÇÏ´Â ºÐ¾ß Áß Çϳª°¡ µÉ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ½ÃÀåÀº ¶ÇÇÑ ¼ø¼öÇÑ ¿¬±¸ Ȱµ¿¿¡¼­ º¸´Ù »ó¾÷ÀûÀÎ ÀÀ¿ëÀ¸·Î ÀüȯÇϰí ÀÖ½À´Ï´Ù. Ãʱ⠴ܰèÀÇ ¾çÀÚ ÄÄÇ»ÅÍ´Â ÇöÀç ÁÖ·Î ¿¬±¸ ¸ñÀûÀ¸·Î »ç¿ëµÇ°í ÀÖÁö¸¸, ÇâÈÄ ¸î³â¾È¿¡ ¿À·ù ¼öÁ¤ÀÌ °¡´ÉÇÑ ¾çÀÚ ½Ã½ºÅÛÀÌ °³¹ßµÇ¸é º¸´Ù ½Ç¿ëÀûÀÎ ÀÀ¿ëÀÌ °¡´ÉÇØÁú °ÍÀÔ´Ï´Ù. ÀÌ·¯ÇÑ ÀüȯÀº ƯÈ÷ 2025-2030³â ±â°£ Áß ½ÃÀåÀ» ±ØÀûÀ¸·Î È®´ëÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.

¹Ì±¹ÀÇ National Quantum Initiative, Áß±¹ÀÇ ¾çÀÚÀü·«, EUÀÇ Quantum Flagship µî ´ë±Ô¸ð ±¸»óÀÌ ¸·´ëÇÑ Àڱݰú Àü·«Àû ¹æÇâÀ» Á¦½ÃÇϰí ÀÖÀ¸¸ç, Á¤ºÎ ÅõÀÚ´Â °è¼ÓÇØ¼­ ½ÃÀå »óȲÀ» Çü¼ºÇϰí ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ÇÁ·Î±×·¥µéÀº ¹Î°£ ºÎ¹®ÀÇ ÅõÀÚ¿Í ÇÔ²² ¾çÀÚ ±â¼ú °³¹ßÀ» À§ÇÑ °ß°íÇÑ »ýŰ踦 ±¸ÃàÇϰí ÀÖ½À´Ï´Ù. ½ÃÀåÀÌ ¼º¼÷ÇØÁü¿¡ µû¶ó »ê¾÷ÀÇ ÅëÇÕ°ú Àü¹®È­°¡ µÎµå·¯Áö°Ô ³ªÅ¸³¯ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀϺΠ±â¾÷Àº Ç®½ºÅà ¾çÀÚ ¼Ö·ç¼Ç¿¡ ÁýÁßÇÏ´Â ¹Ý¸é, ´Ù¸¥ ±â¾÷Àº Çϵå¿þ¾î ÄÄÆ÷³ÍÆ®ºÎÅÍ Æ¯Á¤ ¿ëµµÀÇ ¼ÒÇÁÆ®¿þ¾î ¼Ö·ç¼Ç¿¡ À̸£±â±îÁö ¾çÀÚ ÄÄÇ»ÆÃ ½ºÅÃÀÇ Æ¯Á¤ ÄÄÆ÷³ÍÆ®¿¡ ƯȭµÇ¾î ÀÖ½À´Ï´Ù.

¾çÀÚÄÄÇ»ÆÃ °ø±Þ¸ÁÀÇ ¹ßÀüµµ ½ÃÀåÀÇ Áß¿äÇÑ Ãø¸éÀÔ´Ï´Ù. ±â¾÷Àº Á¦¾î ÀüÀÚ±â±â¿¡¼­ ±ØÀú¿Â ½Ã½ºÅÛ±îÁö Ư¼ö ºÎǰ Á¦Á¶¿¡ ÅõÀÚÇϰí ÀÖÀ¸¸ç, ÀÌ´Â »õ·Î¿î ½ÃÀå ±âȸ¿Í ÀáÀçÀû º´¸ñÇö»óÀ» ¾ß±âÇϰí ÀÖ½À´Ï´Ù. ¾çÀÚ ÄÄÇ»ÅÍÀÇ ±Ô¸ð°¡ È®´ëµÊ¿¡ µû¶ó ¾çÀÚ Àü¹® ºÎǰ ¹× Àç·á ½ÃÀåÀº Å©°Ô ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù. ÀÌ·¯ÇÑ ±àÁ¤ÀûÀÎ Ãß¼¼¿¡µµ ºÒ±¸ÇÏ°í ½ÃÀåÀº ¿©·¯ °¡Áö ¹®Á¦¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ³»°áÇÔ¼º ¾çÀÚ ÄÄÇ»ÆÃÀ» ±¸ÇöÇϱâ À§ÇÑ ±â¼úÀû Àå¾Ö¹°, ¼÷·ÃµÈ ¾çÀÚ Àη ¾ç¼ºÀÇ Çʿ伺, °¡±î¿î ¹Ì·¡¿¡ »ó¾÷ÀûÀ¸·Î ½ÇÇö °¡´ÉÇÑ ¿ëµµ¸¦ ½Äº°ÇÏ´Â ¹®Á¦ µîÀÌ ½ÃÀå ¼ºÀå¿¡ ¿µÇâÀ» ¹ÌÄ¥ ¼ö ÀÖ½À´Ï´Ù. ±×·¯³ª ÀÌ·¯ÇÑ µµÀüÀº Çõ½ÅÀ» ÃËÁøÇÏ°í Æ¯Á¤ ¹®Á¦¿¡ ´ëÇÑ ¼Ö·ç¼ÇÀ» Á¦°øÇÏ´Â ±â¾÷¿¡°Ô ±âȸ¸¦ Á¦°øÇÕ´Ï´Ù.

¾çÀÚÄÄÇ»ÆÃ ½ÃÀåÀº ±â¼úÀû Áøº¸¿Í »ó¾÷Àû °ü½ÉÀÌ ¼ö·ÅÇÏ¿© Å« ¼ºÀå ±âȸ¸¦ âÃâÇÏ´Â º¯°îÁ¡¿¡ ¼­ ÀÖ½À´Ï´Ù. ¾çÀÚÄÄÇ»ÆÃÀÇ ´ëÁßÈ­¸¦ ÇâÇÑ ±æÀº º¹ÀâÇÒ ¼ö ÀÖÁö¸¸, ½ÃÀåÀÇ ±Ùº»ÀûÀÎ ÃËÁø¿äÀÎÀº ¿©ÀüÈ÷ °­·ÂÇϸç ÇâÈÄ ¼ö³â°£ °è¼Ó È®´ëµÇ°í ÁøÈ­ÇÒ °ÍÀÓÀ» º¸¿©ÁÝ´Ï´Ù.

¼¼°èÀÇ ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀå¿¡ ´ëÇØ Á¶»çÇßÀ¸¸ç, ¾çÀÚ ÄÄÇ»ÆÃ »ê¾÷, ½ÃÀå µ¿Çâ, ÁÖ¿ä ±â¾÷ µîÀÇ Á¾ÇÕÀû ºÐ¼®À» Á¦°øÇϰí ÀÖ½À´Ï´Ù.

¸ñÂ÷

Á¦1Àå °³¿ä

  • Á¦1°ú Á¦2 ¾çÀÚ Çõ¸í
  • ÇöÀç ¾çÀÚ ÄÄÇ»ÆÃ ½ÃÀåÀÇ »óȲ
    • ±â¼úÀÇ Áøº¸¿Í ¿µ¼ÓÀûÀÎ °úÁ¦
    • ÁÖ¿ä ¹ßÀü
  • ÅõÀÚ »óȲ
  • ¼¼°èÀÇ Á¤ºÎ ±¸»ó
  • ½ÃÀå ±¸µµ
  • ¾çÀÚ ±â¼úÀÇ Ã¤ÅÃÀ» ÇâÇÑ °úÁ¦
  • ½ÃÀå ¸Ê
  • ½ÃÀåÀÌ ÇØ°áÇØ¾ß ÇÒ °úÁ¦
  • SWOT ºÐ¼®
  • ¾çÀÚ ÄÄÇ»ÆÃ ¹ë·ùüÀÎ
  • ½ÃÀå Àü¸Á
  • ¾çÀÚ ÄÄÇ»ÆÃ°ú AI
  • ¼¼°è ½ÃÀå ¿¹Ãø(2018-2045³â)
    • ¸ÅÃâ
    • ¾çÀÚ ÄÄÇ»ÆÃ °¡µ¿ ´ë¼ö ¿¹Ãø(½Ã½ºÅÛ ¼ö)
    • °¡°Ý

Á¦2Àå ¼­·Ð

  • ¾çÀÚ ÄÄÇ»ÆÃÀ̶õ?
  • µ¿ÀÛ ¿ø¸®
  • °íÀüÀû ÄÄÇ»ÆÃ°ú ¾çÀÚ ÄÄÇ»ÆÃ
  • ¾çÀÚ ÄÄÇ»ÆÃ ±â¼ú
  • ±âŸ ±â¼ú°úÀÇ °æÀï

Á¦3Àå ¾çÀÚ ¾Ë°í¸®Áò

  • ¾çÀÚ ¼ÒÇÁÆ®¿þ¾î ½ºÅÃ

Á¦4Àå ¾çÀÚ ÄÄÇ»ÆÃ Çϵå¿þ¾î

  • Å¥ºñÆ® ±â¼ú
  • ¾ÆÅ°ÅØÃ³ ¾îÇÁ·ÎÄ¡

Á¦5Àå ¾çÀÚ ÄÄÇ»ÆÃ ÀÎÇÁ¶ó

  • ÀÎÇÁ¶ó ¿ä°Ç
  • Çϵå¿þ¾î¿¡ ÀÇÁ¸ÇÏÁö ¾Ê´Â Ç÷§Æû
  • Cryostats
  • Å¥ºñÆ® ÆÇµ¶

Á¦6Àå ¾çÀÚ ÄÄÇ»ÆÃ ¼ÒÇÁÆ®¿þ¾î

  • ±â¼úÀÇ ¼³¸í
  • Ŭ¶ó¿ìµå ±â¹Ý ¼­ºñ½º - QCaaS(Quantum Computing as a Service)
  • ½ÃÀå Âü¿© ±â¾÷

Á¦7Àå ½ÃÀå°ú ¿ëµµ

  • ÀǾàǰ
  • È­ÇÐÁ¦Ç°
  • ¿î¼Û
  • ±ÝÀ¶ ¼­ºñ½º
  • ÀÚµ¿Â÷

Á¦8Àå ±âŸ Å©·Î½º¿À¹ö ±â¼ú

  • ¾çÀÚ È­Çаú AI
  • ¾çÀÚ Åë½Å
  • ¾çÀÚ ¼¾¼­

Á¦9Àå ¾çÀÚ ÄÄÇ»ÆÃ¿ë Àç·á

  • ÃÊÀüµµÃ¼
  • Æ÷Åä´Ð½º, ½Ç¸®ÄÜ Æ÷Åä´Ð½º, ±¤ÇÐ ÄÄÆ÷³ÍÆ®
  • ³ª³ëÀç·á

Á¦10Àå ½ÃÀåÀÇ ºÐ¼®

  • ¾÷°èÀÇ ÁÖ¿ä ±â¾÷
  • ÅõÀÚ ÀÚ±ÝÁ¶´Þ

Á¦11Àå ±â¾÷ °³¿ä(±â¾÷ 208»çÀÇ °³¿ä)

Á¦12Àå Á¶»ç ¹æ¹ý

Á¦13Àå ¿ë¾î¿Í Á¤ÀÇ

Á¦14Àå Âü°í ¹®Çå

KSA 25.02.10

The quantum computing market is experiencing a transformative phase, marked by significant technological advancements and increasing commercial interest. This growth is driven by multiple factors, including substantial government investments, private sector participation, and accelerating technological breakthroughs. In the current market landscape, hardware development commands the largest share of investment, particularly in superconducting qubits and trapped ion systems. Major technology companies like IBM, Google, and Microsoft continue to advance their quantum programs, while specialized companies such as IonQ, Rigetti, and PsiQuantum are making significant strides in their respective technologies. The market is also seeing increased activity in quantum software and applications, with companies developing quantum algorithms and use-case-specific solutions for industries including finance, pharmaceuticals, and logistics.

Cloud-based quantum computing services represent a rapidly growing market segment, enabling broader access to quantum capabilities without requiring direct hardware investment. Amazon Braket, IBM Quantum, and Microsoft Azure Quantum are leading this transformation, making quantum computing resources available to enterprises and researchers worldwide. This "quantum-as-a-service" model is expected to drive significant market growth in the near term.

Looking toward the future, the quantum computing market is expected to undergo several crucial transitions. The achievement of quantum advantage in specific applications will likely drive increased enterprise adoption, particularly in industries where quantum computing can provide significant competitive advantages. Financial services, drug discovery, and materials science are expected to be among the first sectors to realize practical quantum advantages. The market is also witnessing a shift from purely research-focused activities to more commercial applications. While early-stage quantum computers currently serve primarily research purposes, the development of error-corrected quantum systems in the coming years will enable more practical applications. This transition is expected to dramatically expand the market, particularly in the 2025-2030 timeframe.

Government investments continue to shape the market landscape, with major initiatives like the US National Quantum Initiative, China's quantum strategy, and the EU Quantum Flagship providing substantial funding and strategic direction. These programs, along with private sector investments, are creating a robust ecosystem for quantum technology development. Industry consolidation and specialization are expected to become more prominent features of the market as it matures. While some companies focus on full-stack quantum solutions, others are specializing in specific components of the quantum computing stack, from hardware components to application-specific software solutions.

The development of the quantum computing supply chain represents another crucial market aspect. Companies are investing in specialized component manufacturing, from control electronics to cryogenic systems, creating new market opportunities and potential bottlenecks. The market for quantum-specific components and materials is expected to grow significantly as quantum computers scale up. Despite these positive trends, the market faces several challenges. Technical hurdles in achieving fault-tolerant quantum computing, the need for skilled quantum workforce development, and the challenge of identifying near-term commercially viable applications all impact market growth. However, these challenges are driving innovation and creating opportunities for companies offering solutions to these specific problems.

The quantum computing market stands at an inflection point, with technological progress and commercial interest converging to create significant growth opportunities. While the path to widespread quantum computing adoption may be complex, the market's fundamental drivers remain strong, suggesting continued expansion and evolution in the coming years.

"The Global Market for Quantum Computing 2025-2045" provides a comprehensive analysis of the quantum computing industry, market trends, technologies, and key players shaping this transformative sector. The report examines the evolution from the first to second quantum revolution and provides detailed insights into the current quantum computing landscape, including technical progress, persistent challenges, and key market developments. This extensive study covers the complete quantum computing ecosystem, from fundamental technologies and hardware architectures to software platforms and end-user applications. The report includes detailed analysis of various qubit technologies including superconducting, trapped ion, silicon spin, topological, photonic, and neutral atom approaches, with comprehensive SWOT analyses for each technology platform.

Key market segments analyzed include pharmaceuticals, chemicals, transportation, financial services, and automotive industries. The report delivers in-depth analysis of quantum chemistry, AI applications, quantum communications, and quantum sensing technologies, highlighting crossover opportunities and synergies between these fields. Detailed coverage of materials for quantum computing encompasses superconductors, photonics, silicon photonics, optical components, and various nanomaterials including 2D materials, carbon nanotubes, diamond, and metal-organic frameworks. The report examines material requirements, challenges, and opportunities across the quantum technology stack.

The market analysis section provides comprehensive investment data, including venture capital activity, M&A developments, corporate investments, and government funding initiatives. Global market forecasts from 2025 to 2045 cover hardware, software, and services, with detailed projections for installed base, pricing trends, and revenue streams. The report includes extensive profiling of over 205 companies across the quantum computing value chain, from hardware manufacturers and software developers to end-use application providers. Company profiles include detailed information on technologies, products, partnerships, and market positioning. Companies profiled include A* Quantum, AbaQus, Aegiq, Agnostiq GmbH, Airbus, Aliro Quantum, Alice&Bob, Alpine Quantum Technologies (AQT), Anyon Systems, Archer Materials, Arclight Quantum, Arctic Instruments, ARQUE Systems, Atlantic Quantum, Atom Computing, Atom Quantum Labs, Atos Quantum, Baidu, BEIT, Bleximo, BlueFors, BlueQubit, Bohr Quantum Technology, BosonQ Ps, C12 Quantum Electronics, Cambridge Quantum Computing, CAS Cold Atom, CEW Systems, Classiq Technologies, ColibriTD, Crystal Quantum Computing, D-Wave Systems, Delft Circuits, Diatope, Dirac, Diraq, Duality Quantum Photonics, EeroQ, eleQtron, Elyah, Entropica Labs, Ephos, EvolutionQ, First Quantum, Fujitsu, Good Chemistry, Google Quantum AI, g2-Zero, Haiqu, HQS Quantum Simulations, HRL, Huayi Quantum, IBM, Icosa Computing, ID Quantique, InfinityQ, Infineon Technologies, Infleqtion, Intel, IonQ and many others (complete list in report).

Key features of the report include:

  • Comprehensive analysis of quantum computing technologies and architectures
  • Detailed market forecasts 2025-2045
  • Analysis of government initiatives and funding landscape
  • Examination of quantum computing infrastructure requirements
  • In-depth material analysis and supply chain considerations
  • Extensive company profiles and competitive landscape analysis
  • Assessment of market challenges and opportunities
  • Analysis of key application areas and end-user industries

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. First and Second quantum revolutions
  • 1.2. Current quantum computing market landscape
    • 1.2.1. Technical Progress and Persistent Challenges
    • 1.2.2. Key developments
  • 1.3. Investment Landscape
  • 1.4. Global Government Initiatives
  • 1.5. Market Landscape
  • 1.6. Challenges for Quantum Technologies Adoption
  • 1.7. Market Map
  • 1.8. Market Challenges
  • 1.9. SWOT analysis
  • 1.10. Quantum Computing Value Chain
  • 1.11. Market Outlook
  • 1.12. Quantum Computing and Artificial Intelligence
  • 1.13. Global market forecast 2018-2045
    • 1.13.1. Revenues
    • 1.13.2. Quantum Computing Installed Base Forecast (Number of Systems)
    • 1.13.3. Pricing

2. INTRODUCTION

  • 2.1. What is quantum computing?
  • 2.2. Operating principle
  • 2.3. Classical vs quantum computing
  • 2.4. Quantum computing technology
    • 2.4.1. Quantum emulators
    • 2.4.2. Quantum inspired computing
    • 2.4.3. Quantum annealing computers
    • 2.4.4. Quantum simulators
    • 2.4.5. Digital quantum computers
    • 2.4.6. Continuous variables quantum computers
    • 2.4.7. Measurement Based Quantum Computing (MBQC)
    • 2.4.8. Topological quantum computing
    • 2.4.9. Quantum Accelerator
  • 2.5. Competition from other technologies

3. QUANTUM ALGORITHMS

  • 3.1. Quantum Software Stack
    • 3.1.1. Quantum Machine Learning
    • 3.1.2. Quantum Simulation
    • 3.1.3. Quantum Optimization
    • 3.1.4. Quantum Cryptography
      • 3.1.4.1. Quantum Key Distribution (QKD)
      • 3.1.4.2. Post-Quantum Cryptography

4. QUANTUM COMPUTING HARDWARE

  • 4.1. Qubit Technologies
    • 4.1.1. Overview
    • 4.1.2. Noise effects
    • 4.1.3. Logical qubits
    • 4.1.4. Quantum Volume
    • 4.1.5. Algorithmic Qubits
    • 4.1.6. Superconducting Qubits
      • 4.1.6.1. Technology description
      • 4.1.6.2. Materials
      • 4.1.6.3. Market players
      • 4.1.6.4. Swot analysis
    • 4.1.7. Trapped Ion Qubits
      • 4.1.7.1. Technology description
      • 4.1.7.2. Hardware
      • 4.1.7.3. Materials
        • 4.1.7.3.1. Integrating optical components
        • 4.1.7.3.2. Incorporating high-quality mirrors and optical cavities
        • 4.1.7.3.3. Engineering the vacuum packaging and encapsulation
        • 4.1.7.3.4. Removal of waste heat
      • 4.1.7.4. Market players
      • 4.1.7.5. Swot analysis
    • 4.1.8. Silicon Spin Qubits
      • 4.1.8.1. Technology description
      • 4.1.8.2. Quantum dots
      • 4.1.8.3. Market players
      • 4.1.8.4. SWOT analysis
    • 4.1.9. Topological Qubits
      • 4.1.9.1. Technology description
        • 4.1.9.1.1. Cryogenic cooling
      • 4.1.9.2. Market players
      • 4.1.9.3. SWOT analysis
    • 4.1.10. Photonic Qubits
      • 4.1.10.1. Technology description
      • 4.1.10.2. Hardware Architecture
      • 4.1.10.3. Market players
      • 4.1.10.4. Swot analysis
    • 4.1.11. Neutral atom (cold atom) qubits
      • 4.1.11.1. Technology description
      • 4.1.11.2. Market players
      • 4.1.11.3. Swot analysis
    • 4.1.12. Diamond-defect qubits
      • 4.1.12.1. Technology description
      • 4.1.12.2. SWOT analysis
      • 4.1.12.3. Market players
    • 4.1.13. Quantum annealers
      • 4.1.13.1. Technology description
      • 4.1.13.2. SWOT analysis
      • 4.1.13.3. Market players
  • 4.2. Architectural Approaches

5. QUANTUM COMPUTING INFRASTRUCTURE

  • 5.1. Infrastructure Requirements
  • 5.2. Hardware agnostic platforms
  • 5.3. Cryostats
  • 5.4. Qubit readout

6. QUANTUM COMPUTING SOFTWARE

  • 6.1. Technology description
  • 6.2. Cloud-based services- QCaaS (Quantum Computing as a Service).
  • 6.3. Market players

7. MARKETS AND APPLICATIONS

  • 7.1. Pharmaceuticals
    • 7.1.1. Market overview
      • 7.1.1.1. Drug discovery
      • 7.1.1.2. Diagnostics
      • 7.1.1.3. Molecular simulations
      • 7.1.1.4. Genomics
      • 7.1.1.5. Proteins and RNA folding
    • 7.1.2. Market players
  • 7.2. Chemicals
    • 7.2.1. Market overview
    • 7.2.2. Market players
  • 7.3. Transportation
    • 7.3.1. Market overview
    • 7.3.2. Market players
  • 7.4. Financial services
    • 7.4.1. Market overview
    • 7.4.2. Market players
  • 7.5. Automotive
    • 7.5.1. Market overview
    • 7.5.2. Market players

8. OTHER CROSSOVER TECHNOLOGIES

  • 8.1. Quantum chemistry and AI
    • 8.1.1. Technology description
    • 8.1.2. Applications
    • 8.1.3. Market players
  • 8.2. Quantum Communications
    • 8.2.1. Technology description
    • 8.2.2. Types
    • 8.2.3. Applications
    • 8.2.4. Market players
  • 8.3. Quantum Sensors
    • 8.3.1. Technology description
    • 8.3.2. Applications
    • 8.3.3. Companies

9. MATERIALS FOR QUANTUM COMPUTING

  • 9.1. Superconductors
    • 9.1.1. Overview
    • 9.1.2. Types and Properties
    • 9.1.3. Temperature (Tc) of superconducting materials
    • 9.1.4. Superconducting Nanowire Single Photon Detectors (SNSPD)
    • 9.1.5. Kinetic Inductance Detectors (KIDs)
    • 9.1.6. Transition Edge Sensors (TES)
    • 9.1.7. Opportunities
  • 9.2. Photonics, Silicon Photonics and Optical Components
    • 9.2.1. Overview
    • 9.2.2. Types and Properties
    • 9.2.3. Vertical-Cavity Surface-Emitting Lasers (VCSELs)
    • 9.2.4. Alkali azides
    • 9.2.5. Optical Fiber and Quantum Interconnects
    • 9.2.6. Semiconductor Single Photon Detectors
    • 9.2.7. Opportunities
  • 9.3. Nanomaterials
    • 9.3.1. Overview
    • 9.3.2. Types and Properties
      • 9.3.2.1. 2D Materials
      • 9.3.2.2. Transition metal dichalcogenide quantum dots
      • 9.3.2.3. Graphene Membranes
      • 9.3.2.4. 2.5D materials
      • 9.3.2.5. Carbon nanotubes
        • 9.3.2.5.1. Single Walled Carbon Nanotubes
        • 9.3.2.5.2. Boron Nitride Nanotubes
      • 9.3.2.6. Diamond
      • 9.3.2.7. Metal-Organic Frameworks (MOFs)
    • 9.3.3. Opportunities

10. MARKET ANALYSIS

  • 10.1. Key industry players
    • 10.1.1. Start-ups
    • 10.1.2. Tech Giants
    • 10.1.3. National Initiatives
  • 10.2. Investment funding
    • 10.2.1. Venture Capital
    • 10.2.2. M&A
    • 10.2.3. Corporate Investment
    • 10.2.4. Government Funding

11. COMPANY PROFILES (208 company profiles)

12. RESEARCH METHODOLOGY

13. TERMS AND DEFINITIONS

14. REFERENCES

ºñ±³¸®½ºÆ®
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
»óǰ ºñ±³Çϱâ
Àüü»èÁ¦