시장보고서
상품코드
1660110

세계의 산업 탈탄소화 시장(2026-2036년)

The Global Industrial Decarbonization Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 2,232 Pages, 684 Tables, 298 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

산업부문은 세계 온실가스 배출의 약 30%를 차지하고 있으며, 산업 탈탄소화는 순 제로 목표 달성을 향한 가장 중요한 과제 중 하나가 되고 있습니다.

이 보고서는 세계 산업 탈탄소화 시장에 대한 조사 분석을 통해 그린 스틸 생산, 수소 경제 인프라, 탄소 포집 및 저장 시스템, 산업 열전화, 공정 전기 기술, 순환 경제 솔루션, 환경 복구 기술, 그린 건축자재에 대한 실용적인 발견을 제공합니다.

목차

제1장 주요 요약

  • 시장 개요와 범위
  • 그린 스틸
  • 그린 수소
  • 탄소 포집, 활용 및 저장
  • 산업 열 탈탄소화
  • 산업 프로세스의 전기
  • 순환경제 솔루션 : 첨단 재활용에 의한 물질순환의 완결
  • 환경 기술 : 깨끗한 산업 경영 실현
  • 그린 빌딩 기술 : 건축자재 및 공정의 탈탄소화
  • 시장 성장 촉진요인과 미래 전망

제2장 그린 스틸

  • 현재의 제강 공정
  • 「더블 카본」(탄소 피크, 탄소 중립) 목표와 초저 배출 요건
  • 그린 스틸이란
  • 스틸의 탈탄소화
  • 생산기술
  • 그린 스틸의 선진 재료
  • 그린 스틸의 장단점
  • 시장과 용도
  • 스틸 생산에서 에너지 절약과 비용 절감
  • 디지털화
  • 바이오 매스 스틸 생산과 지속 가능한 그린 스틸 생산 체인
  • 그린 스틸 세계 시장
  • 세계의 생산과 수요
  • 기업 프로파일(기업 46개사의 프로파일)

제3장 그린 수소

  • 수소의 분류
  • 세계의 에너지 수요와 소비
  • 수소경제와 생산
  • 수소 생산에 있어서의 CO2 배출의 삭감
  • 그린 수소의 경제성
  • 수소 밸류 체인
  • 국가의 수소에 관한 대처, 정책, 규제
  • 수소 인증
  • 탄소 가격
  • 시장의 과제
  • 시장 맵
  • 세계의 수소 생산
  • 세계 수소 수요 예측
  • 그린 수소 생산
  • 전해 장치 기술
  • 수소의 저장과 수송
  • 수소이용
  • 기업 프로파일(기업 145개사의 프로파일)

제4장 탄소 포집 및 저장

  • 이산화탄소 배출의 주요 발생원
  • 상품으로서의 이산화탄소
  • 기후 목표 달성
  • 시장 성장 촉진요인과 동향
  • 현재 시장과 미래 전망
  • CCUS 투자
  • 정부의 CCUS 대처와 정책 환경
  • 시장 맵
  • 상업 CCUS 시설과 프로젝트
  • CCUS 프로젝트의 경제성
  • CCUS 밸류체인
  • CCUS의 주요 시장 장벽
  • CCUS와 에너지의 트릴렌마
  • CUS의 성장 시장
  • 탄소 가격
  • 세계 시장 예측
  • CO2의 수송
  • 비용
  • 탄소 크레디트
  • CCUS 기술의 수명 주기 평가(LCA)
  • 환경에 미치는 영향 평가
  • 사회적 수용과 여론
  • CO2의 운명
  • 이산화탄소 포집
  • 이산화탄소 제거
  • 기업 프로파일(기업 374개사의 프로파일)

제5장 산업 열 탈탄소화

  • 시장 개요
  • 산업 열 탈탄소화 경제의 4개의 기둥
  • 비용 경쟁력 분석
  • 기술
  • 시장과 용도
  • 시스템 통합
  • 시장 분석
  • 기업 프로파일(기업 39개사의 프로파일)

제6장 산업 프로세스의 전기

  • 그리드 통합 및 전력 시스템
  • 전기 공정 가열
  • 전기화학 공정
  • 전기 모터와 드라이브
  • 신기술
  • 용도
  • 기업 프로파일(기업 126개사의 프로파일)

제7장 순환 경제 솔루션

  • 첨단 분류 및 탐지 기술
  • 분광기술
  • 재활용 기술
  • 재료 회수
  • 기업 프로파일(기업 328개사의 프로파일)

제8장 환경기술

  • 시장 개요
  • 수처리 기술
  • 대기질 관리
  • 토양과 지하수의 수리
  • 디지털 환경 기술
  • 신기술
  • 시장 전망
  • 기업 프로파일(기업 93개사의 프로파일)

제9장 그린 빌딩 기술

  • 시장 개요
  • 세계 수익
  • 지속 가능한 건축자재
  • 단열 기술
  • 스마트 윈도우
  • 건설 방법
  • 에너지 시스템
  • 물 관리
  • 실내 환경 질
  • 재료
  • 시멘트 산업의 CCUS 기술
  • 시멘트 생산용 대체 연료
  • 시장
  • 기업 프로파일(기업 172개사의 프로파일)

제10장 참고문헌

SHW

The industrial sector accounts for approximately 30% of global greenhouse gas emissions, making industrial decarbonization one of the most critical challenges in achieving net-zero targets. This comprehensive 2,200+ page market intelligence report provides an exhaustive analysis of technologies, markets, and strategic opportunities driving the transformation of heavy industry toward carbon neutrality. "The Global Industrial Decarbonization Market 2026-2036" examines eight interconnected pillars of industrial decarbonization, delivering actionable insights across green steel production, hydrogen economy infrastructure, carbon capture and storage systems, industrial heat electrification, process electrification technologies, circular economy solutions, environmental remediation technologies, and green building materials. Each sector analysis includes detailed technology assessments, market forecasts through 2036, competitive landscape mapping, and profiles of 1,300+ leading companies pioneering low-carbon industrial solutions.

Green steel manufacturing represents a pivotal transformation, with this report analyzing hydrogen-based direct reduction, electrolysis-based production, carbon capture integration, and renewable energy-powered processes. Detailed cost analyses, production capacity forecasts, and end-use market assessments across automotive, construction, and manufacturing sectors provide investors and industry stakeholders with critical decision-making intelligence.

The hydrogen economy section delivers comprehensive coverage of production technologies including alkaline, PEM, solid oxide, and anion exchange membrane electrolyzers, with granular cost projections and efficiency comparisons. Market forecasts extend across ammonia production, steel manufacturing, sustainable aviation fuels, maritime applications, and power generation, supported by analysis of 145 hydrogen technology companies and over 50 major production projects globally.

Carbon capture, utilization, and storage (CCUS) receives exhaustive treatment with 500+ pages analyzing point-source capture, direct air capture, and carbon dioxide removal technologies. The report examines 250+ operational and planned CCUS facilities, evaluating capture technologies from chemical absorption and membrane separation to emerging solutions like metal-organic frameworks and electrochemical systems. Detailed cost projections through 2046 and carbon credit market analysis provide essential context for CCUS investment decisions.

Industrial heat decarbonization technologies are analyzed across electric heating systems (resistance, induction, microwave, and plasma), high-temperature heat pumps, biomass solutions, and emerging technologies including concentrated solar thermal and geothermal systems. Temperature-based market segmentation and application-specific analyses across chemical, metal processing, and materials manufacturing sectors enable targeted technology deployment strategies.

The circular economy section provides comprehensive coverage of advanced recycling technologies including pyrolysis, gasification, dissolution, and depolymerization, alongside critical materials recovery from electronic waste, batteries, and industrial byproducts. Market forecasts for 18 critical materials through 2040, combined with extraction and recovery technology assessments, address supply chain resilience for the energy transition.

Environmental technologies covering water treatment, air quality management, and soil remediation are analyzed alongside digital environmental solutions leveraging IoT, AI, and machine learning for optimization and monitoring. Green building technologies complete the analysis with detailed market forecasts for sustainable construction materials, advanced insulation systems, smart windows, modular construction, and 3D printing applications.

Each technology chapter includes SWOT analyses, technology readiness level assessments, competitive landscape mapping, and detailed company profiles with technology descriptions, production capacities, and strategic partnerships. Market forecasts are segmented by technology type, application sector, and geographic region, with particular attention to policy drivers, carbon pricing mechanisms, and regulatory frameworks shaping market development.

This report serves as an essential resource for industrial corporations developing decarbonization roadmaps, technology developers seeking market opportunities, investors evaluating clean technology portfolios, policymakers designing industrial transition strategies, and financial institutions assessing climate risk and opportunity in industrial sectors. The comprehensive analysis of technology costs, performance metrics, and deployment timelines enables evidence-based strategic planning for the industrial transformation required to meet global climate commitments.

Report Contents include:

  • Green Steel Production Technologies
    • Current steelmaking processes and decarbonization pathways
    • Hydrogen-based direct reduced iron (H-DRI) production systems
    • Electrolysis and molten oxide technologies
    • Carbon capture integration for blast furnace-basic oxygen furnace routes
    • Renewable energy integration and grid requirements
    • Biochar, hydrogen blast furnaces, and flash ironmaking
    • Advanced materials including composite electrodes and hydrogen storage metals
    • Production capacity forecasts 2020-2036 by technology and region
    • End-use market analysis: automotive, construction, machinery, rail, packaging, electronics
    • Competitive landscape with 46 company profiles
    • Cost analysis and economic competitiveness projections
  • Green Hydrogen Production and Utilization
    • Hydrogen classification systems and color coding
    • Electrolyzer technologies: alkaline, PEM, solid oxide, anion exchange membrane
    • Cost structures and levelized cost of hydrogen (LCOH) analysis
    • Balance of plant requirements and system integration
    • Production volume and market revenue projections 2024-2036
    • Hydrogen storage and transportation infrastructure
    • Application markets: fuel cells, sustainable aviation fuel, ammonia, methanol, steel, power generation, maritime
    • eFuels and power-to-X technologies
    • Green ammonia and methanol production pathways
    • 145 company profiles across production, storage, and utilization
    • Regional market analysis and policy frameworks
  • Carbon Capture, Utilization, and Storage
    • Point-source capture from power, cement, steel, and chemical industries
    • Post-combustion, pre-combustion, and oxy-fuel combustion technologies
    • Solvent-based systems: amines, physical solvents, and emerging alternatives
    • Solid sorbent technologies including MOFs and zeolites
    • Membrane separation systems
    • Direct air capture: solid and liquid sorbent technologies
    • CO2 utilization in fuels, chemicals, construction materials, and enhanced oil recovery
    • Carbon dioxide removal: BECCS, mineralization, enhanced weathering, biochar
    • Ocean-based CDR methods
    • Carbon credit markets and pricing mechanisms
    • Capture capacity forecasts to 2046 by technology, source, and region
    • 370+ company profiles
    • Cost projections and economic analysis
  • Industrial Heat Decarbonization
    • Electric heating: resistance, induction, microwave, and plasma systems
    • High-temperature industrial heat pumps
    • Biomass combustion and gasification technologies
    • Solar thermal and geothermal solutions
    • Thermal energy storage systems
    • Application analysis: chemical, food processing, paper, glass, ceramics, metals, cement
    • Temperature-based market segmentation
    • Cost competitiveness and carbon abatement analysis
    • Grid integration requirements
    • 39 company profiles
    • Market forecasts and technology deployment roadmaps
  • Electrification of Industrial Processes
    • Grid integration and smart grid technologies
    • Energy storage: battery, thermal, and hybrid systems
    • Renewable energy integration strategies
    • Electric process heating technologies
    • Electrochemical processes and advanced electrolysis
    • Electric motors and variable frequency drives
    • Digital twin and AI/ML optimization
    • Applications across chemical, metal, food, and mining sectors
    • 126 company profiles
    • Technology maturity and market readiness assessment
  • Circular Economy and Advanced Recycling
    • AI-powered sorting and detection technologies
    • Advanced recycling: pyrolysis, gasification, dissolution, depolymerization
    • Chemical recycling of plastics and thermosets
    • Carbon fiber recycling technologies
    • Critical materials recovery from batteries, electronics, and industrial waste
    • Extraction technologies: hydrometallurgical, pyrometallurgical, biometallurgy
    • Recovery methods: solvent extraction, ion exchange, electrowinning
    • Market forecasts 2025-2040 by material type and recovery source
    • 18 critical materials analysis: lithium, cobalt, nickel, rare earths, copper, graphite
    • 277 company profiles
    • Regional market breakdown and supply chain analysis
  • Environmental Technologies
    • Advanced membrane systems for water treatment
    • Advanced oxidation processes
    • Biological treatment and bioremediation
    • Air quality management and emission control
    • Soil and groundwater remediation
    • Environmental IoT and sensor networks
    • AI-driven monitoring and optimization
    • Novel materials: nanomaterials, bio-based solutions, smart materials
    • 93 company profiles
    • Market forecasts 2026-2036 by technology segment
  • Green Building Technologies
    • Sustainable construction materials: low-carbon concrete, bio-based materials, recycled content
    • Advanced insulation: aerogels, vacuum insulation, bio-based systemsSmart windows and electrochromic glazing
    • Modular construction and prefabrication
    • 3D printing and additive manufacturing
    • Building energy systems and heat pumps
    • CCUS integration in cement production
    • Alternative fuels for cement kilns
    • Kiln electrification technologies
    • Market forecasts 2020-2036 by material type, technology, and region
    • 172 company profiles
    • Residential, commercial, and infrastructure market analysis

The report features comprehensive profiles of 150 leading companies driving industrial decarbonization across all technology sectors, including: 1414 Degrees, 374Water, 8 Rivers, ABB, ABIS Aerogel Co., AccuRec Recycling GmbH, ACE Green Recycling, Aclarity, Active Aerogels, Adaptavate, Adani Green Energy, Advanced Ionics, Aduro Clean Technologies, Aemetis, Aerogel Technologies LLC, AeroShield Materials Inc., Agilyx, Air Company, Air Liquide S.A., Air Products, Aker Horizons ASA, Alchemr, Algoma Steel, Allonnia, Alterra Energy, Altilium, Ambercycle, American Battery Technology Company (ABTC), Andritz, Anellotech, Antora Energy, Aperam BioEnergia, APK AG, Applied Carbon, Aquacycl, Aquafil S.p.A., Aquatech International, AquaBattery, Arborea, ArcelorMittal SA, Arkema, Armacell International S.A., Arvia Technology, Asahi Kasei, Ascend Elements, Aspen Aerogels, AspiraDAC Pty Ltd., Atmonia, Avantium, Axens SA, Baker Hughes, BASF, Battolyser Systems, Betolar, BHP, Biomason, Blastr Green Steel, Bloom Energy, Blue Planet Systems Corporation, Boomitra, Borealis AG, Boston Metal, Botree Cycling, Braven Environmental, Brenmiller Energy, Brightmark, Brimstone, C-Capture, Cambridge Carbon Capture Ltd., Cambridge Electric Cement, Caplyzer, Captura Corporation, CarbiCrete, Carbios, Carboliq GmbH, Carbon8 Systems, CarbonBuilt, CarbonCure Technologies Inc., Carbon Engineering Ltd., Carbon Recycling International, Carbon Upcycling Technologies, Carbyon BV, Cassandra Oil AB, CATL, Ceibo, Ceres Power Holdings plc, CGDG, Charm Industrial, Chart Industries, Cheetah Resources, Chevron Corporation, Chevron Phillips Chemical, China Baowu Steel Group, Chiyoda Corporation, Cipher Neutron, CIRC, Cirba Solutions, Circunomics, Clariter, Clean Planet Energy, Climeworks, CMBlu Energy, C-Motive Technologies, Cognite, Coolbrook, Coval Energy B.V., Covestro AG, CreaCycle GmbH, Cummins, CuRe Technology BV, Cyclic Materials, Cylib, C-Zero, Daikin, Dalian Rongke Power, Danfoss, Deep Branch Biotechnology, DeepTech Recycling, DePoly SA, Dimensional Energy, Dioxide Materials, Dioxycle, Domsjo Fabriker AB, Dow Chemicals, Dowa Eco-System Co., Drax, DuPont, Dynelectro ApS, Eastman Chemical Company, Ebb Carbon, Econic Technologies Ltd, Ecopek S.A., EcoPro, Eion Carbon, Elcogen AS, Electra, Electra Battery Materials Corporation, Electric Hydrogen, Electrified Thermal Solutions, Electron Energy Corporation, Elogen H2, Emirates Steel Arken, Enapter and many more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview and Scope
  • 1.2. Green Steel
  • 1.3. Green Hydrogen
  • 1.4. Carbon Capture, Utilization, and Storage
  • 1.5. Industrial Heat Decarbonization
  • 1.6. Electrification of Industrial Processes
  • 1.7. Circular Economy Solutions: Closing Material Loops Through Advanced Recycling
  • 1.8. Environmental Technologies: Enabling Clean Industrial Operations
  • 1.9. Green Building Technologies: Decarbonizing Construction Materials and Processes
  • 1.10. Market Drivers and Future Outlook

2. GREEN STEEL

  • 2.1. Current Steelmaking processes
  • 2.2. "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements
  • 2.3. What is green steel?
    • 2.3.1. Properties
    • 2.3.2. Advances in clean production technologies
  • 2.4. Decarbonization of steel
    • 2.4.1. CO2 Reduction Technologies
    • 2.4.2. Decarbonization target and policies
      • 2.4.2.1. EU Carbon Border Adjustment Mechanism (CBAM)
  • 2.5. Production technologies
    • 2.5.1. The role of hydrogen
    • 2.5.2. Comparative analysis
    • 2.5.3. Hydrogen Direct Reduced Iron (DRI)
    • 2.5.4. Electrolysis
    • 2.5.5. Carbon Capture, Utilization and Storage (CCUS)
      • 2.5.5.1. Overview
      • 2.5.5.2. BF-BOF (Blast Furnace-Basic Oxygen Furnace)
      • 2.5.5.3. Selection of carbon capture technology
      • 2.5.5.4. Pre-Combustion Carbon Capture for Ironmaking
      • 2.5.5.5. Gas Recycling and Oxyfuel Combustion
      • 2.5.5.6. Sorption Enhanced Water Gas Shift (SEWGS)
      • 2.5.5.7. Amine-Based Post-Combustion CO2 Absorption
      • 2.5.5.8. Carbon Capture for Natural Gas-Based DRI
      • 2.5.5.9. CO2 Storage
      • 2.5.5.10. CO2 Transportation
      • 2.5.5.11. CO2 Utilization for Steel
      • 2.5.5.12. Carbon Capture Costs
      • 2.5.5.13. Carbon Credit and Carbon Offsetting
    • 2.5.6. Biochar replacing coke
    • 2.5.7. Hydrogen Blast Furnace
    • 2.5.8. Renewable energy powered processes
    • 2.5.9. Flash ironmaking
    • 2.5.10. Hydrogen Plasma Iron Ore Reduction
    • 2.5.11. Ferrous Bioprocessing
    • 2.5.12. Microwave Processing
    • 2.5.13. Additive Manufacturing
    • 2.5.14. Technology readiness level (TRL)
  • 2.6. Advanced materials in green steel
    • 2.6.1. Composite electrodes
    • 2.6.2. Solid oxide materials
    • 2.6.3. Hydrogen storage metals
    • 2.6.4. Carbon composite steels
    • 2.6.5. Coatings and membranes
    • 2.6.6. Sustainable binders
    • 2.6.7. Iron ore catalysts
    • 2.6.8. Carbon capture materials
    • 2.6.9. Waste gas utilization
  • 2.7. Advantages and disadvantages of green steel
  • 2.8. Markets and applications
  • 2.9. Energy Savings and Cost Reduction in Steel Production
  • 2.10. Digitalization
  • 2.11. Biomass Steel Production and Sustainable Green Steel Production Chain
  • 2.12. The Global Market for Green Steel
    • 2.12.1. Global steel production
      • 2.12.1.1. Steel prices
      • 2.12.1.2. Green steel prices
    • 2.12.2. Green steel plants and production, current and planned
    • 2.12.3. Market map
    • 2.12.4. SWOT analysis
    • 2.12.5. Market trends and opportunities
    • 2.12.6. Market growth drivers
    • 2.12.7. Market challenges
    • 2.12.8. End-use industries
      • 2.12.8.1. Automotive
        • 2.12.8.1.1. Market overview
        • 2.12.8.1.2. Applications
      • 2.12.8.2. Construction
        • 2.12.8.2.1. Market overview
        • 2.12.8.2.2. Applications
      • 2.12.8.3. Consumer appliances
        • 2.12.8.3.1. Market overview
        • 2.12.8.3.2. Applications
      • 2.12.8.4. Machinery
        • 2.12.8.4.1. Market overview
        • 2.12.8.4.2. Applications
      • 2.12.8.5. Rail
        • 2.12.8.5.1. Market overview
        • 2.12.8.5.2. Applications
      • 2.12.8.6. Packaging
        • 2.12.8.6.1. Market overview
        • 2.12.8.6.2. Applications
      • 2.12.8.7. Electronics
        • 2.12.8.7.1. Market overview
        • 2.12.8.7.2. Applications
  • 2.13. Global Production and Demand
    • 2.13.1. Production Capacity 2020-2035
    • 2.13.2. Production vs. Demand 2020-2036
    • 2.13.3. Revenues 2020-2036
      • 2.13.3.1. By end-use industry
      • 2.13.3.2. By region
        • 2.13.3.2.1. North America
        • 2.13.3.2.2. Europe
        • 2.13.3.2.3. China
        • 2.13.3.2.4. Asia-Pacific (excl. China)
        • 2.13.3.2.5. Middle East & Africa
        • 2.13.3.2.6. South America
    • 2.13.4. Competitive landscape
    • 2.13.5. Future market outlook
      • 2.13.5.1. Technology Evolution
      • 2.13.5.2. Economic Competitiveness
      • 2.13.5.3. Market Structure
      • 2.13.5.4. Supply Chain Transformation
      • 2.13.5.5. Policy and Regulation
      • 2.13.5.6. Investment Requirements and Returns
      • 2.13.5.7. Customer Adoption
      • 2.13.5.8. Risks and Uncertainties
      • 2.13.5.9. Social and Environmental Implications
  • 2.14. Company profiles (46 company profiles)

3. GREEN HYDROGEN

  • 3.1. Hydrogen classification
    • 3.1.1. Hydrogen colour shades
  • 3.2. Global energy demand and consumption
  • 3.3. The hydrogen economy and production
  • 3.4. Removing CO2 emissions from hydrogen production
  • 3.5. The Economics of Green Hydrogen
    • 3.5.1. Cost Gaps and Market Imperatives
    • 3.5.2. Hard-to-Abate Sectors
    • 3.5.3. Steel Production
    • 3.5.4. Ammonia Production
    • 3.5.5. Chemical Industry and Refining
    • 3.5.6. Current Electrolyzer Technologies
      • 3.5.6.1. Alkaline Water Electrolyzers: Mature but Constrained
      • 3.5.6.2. Proton Exchange Membrane Electrolyzers: Higher Performance, Higher Cost
      • 3.5.6.3. Solid Oxide Electrolyzers: High Efficiency, High Risk
      • 3.5.6.4. Next-Generation Technologies
        • 3.5.6.4.1. Anion Exchange Membrane Electrolyzers: Bridging the Gap
        • 3.5.6.4.2. Novel Approaches: Beyond Conventional Electrolysis
    • 3.5.7. The Path Forward: Economics and Implementation
  • 3.6. Hydrogen value chain
    • 3.6.1. Production
    • 3.6.2. Transport and storage
    • 3.6.3. Utilization
  • 3.7. National hydrogen initiatives, policy and regulation
  • 3.8. Hydrogen certification
  • 3.9. Carbon pricing
  • 3.10. Market challenges
  • 3.11. Market map
  • 3.12. Global hydrogen production
    • 3.12.1. Industrial applications
    • 3.12.2. Hydrogen energy
      • 3.12.2.1. Stationary use
      • 3.12.2.2. Hydrogen for mobility
    • 3.12.3. Current Annual H2 Production
    • 3.12.4. Hydrogen production processes
      • 3.12.4.1. Hydrogen as by-product
      • 3.12.4.2. Reforming
        • 3.12.4.2.1. SMR wet method
        • 3.12.4.2.2. Oxidation of petroleum fractions
        • 3.12.4.2.3. Coal gasification
      • 3.12.4.3. Reforming or coal gasification with CO2 capture and storage
      • 3.12.4.4. Steam reforming of biomethane
      • 3.12.4.5. Water electrolysis
      • 3.12.4.6. The "Power-to-Gas" concept
      • 3.12.4.7. Fuel cell stack
      • 3.12.4.8. Electrolysers
      • 3.12.4.9. Other
        • 3.12.4.9.1. Plasma technologies
        • 3.12.4.9.2. Photosynthesis
        • 3.12.4.9.3. Bacterial or biological processes
        • 3.12.4.9.4. Oxidation (biomimicry)
    • 3.12.5. Production costs
  • 3.13. Global hydrogen demand forecasts
    • 3.13.1. Market Revenue Projections (2024-2036)
    • 3.13.2. Production Volume Forecast (2024-2036)
    • 3.13.3. Demand by Sector (2024, 2030, 2036).
    • 3.13.4. Regional Market Breakdown
    • 3.13.5. Electrolyzer Market
  • 3.14. Green Hydorgen Production
    • 3.14.1. Overview
    • 3.14.2. Green hydrogen projects
    • 3.14.3. Motivation for use
    • 3.14.4. Decarbonization
    • 3.14.5. Comparative analysis
    • 3.14.6. Role in energy transition
    • 3.14.7. Renewable energy sources
      • 3.14.7.1. Wind power
      • 3.14.7.2. Solar Power
      • 3.14.7.3. Nuclear
      • 3.14.7.4. Capacities
      • 3.14.7.5. Costs
    • 3.14.8. SWOT analysis
  • 3.15. Electrolyzer Technologies
    • 3.15.1. Introduction
    • 3.15.2. Main types
    • 3.15.3. Balance of Plant
    • 3.15.4. Characteristics
    • 3.15.5. Advantages and disadvantages
    • 3.15.6. Electrolyzer market
      • 3.15.6.1. Market trends
      • 3.15.6.2. Market landscape
      • 3.15.6.3. Innovations
      • 3.15.6.4. Cost challenges
      • 3.15.6.5. Scale-up
      • 3.15.6.6. Manufacturing challenges
      • 3.15.6.7. Market opportunity and outlook
    • 3.15.7. Alkaline water electrolyzers (AWE)
      • 3.15.7.1. Technology description
      • 3.15.7.2. AWE plant
      • 3.15.7.3. Components and materials
      • 3.15.7.4. Costs
        • 3.15.7.4.1. Current Cost Structure (2024-2025)
        • 3.15.7.4.2. Levelized Cost of Hydrogen (LCOH) from AWE
      • 3.15.7.5. Companies
    • 3.15.8. Anion exchange membrane electrolyzers (AEMEL)
      • 3.15.8.1. Technology description
      • 3.15.8.2. AEMEL plant
      • 3.15.8.3. Components and materials
        • 3.15.8.3.1. Catalysts
        • 3.15.8.3.2. Anion exchange membranes (AEMs)
        • 3.15.8.3.3. Materials
      • 3.15.8.4. Costs
        • 3.15.8.4.1. Current Cost Structure (2024-2025)
        • 3.15.8.4.2. Performance and Cost Positioning
        • 3.15.8.4.3. Levelized Cost of Hydrogen (LCOH) from AMEL
        • 3.15.8.4.4. Cost Reduction Pathways
      • 3.15.8.5. Companies
    • 3.15.9. Proton exchange membrane electrolyzers (PEMEL)
      • 3.15.9.1. Technology description
      • 3.15.9.2. PEMEL plant
      • 3.15.9.3. Components and materials
        • 3.15.9.3.1. Membranes
        • 3.15.9.3.2. Advanced PEMEL stack designs
        • 3.15.9.3.3. Plug-and-Play & Customizable PEMEL Systems
        • 3.15.9.3.4. PEMELs and proton exchange membrane fuel cells (PEMFCs)
      • 3.15.9.4. Costs
        • 3.15.9.4.1. Current Cost Structure (2024-2025)
        • 3.15.9.4.2. Cost Reduction Pathways (2024-2050)
      • 3.15.9.5. Companies
    • 3.15.10. Solid oxide water electrolyzers (SOEC)
      • 3.15.10.1. Technology description
      • 3.15.10.2. SOEC plant
      • 3.15.10.3. Components and materials
        • 3.15.10.3.1. External process heat
        • 3.15.10.3.2. Clean Syngas Production
        • 3.15.10.3.3. Nuclear power
        • 3.15.10.3.4. SOEC and SOFC cells
          • 3.15.10.3.4.1. Tubular cells
          • 3.15.10.3.4.2. Planar cells
        • 3.15.10.3.5. SOEC Electrolyte
      • 3.15.10.4. Costs
        • 3.15.10.4.1. Current Cost Structure (2024-2025)
        • 3.15.10.4.2. Levelized Cost of Hydrogen (LCOH) from SOEC
      • 3.15.10.5. Companies
    • 3.15.11. Other types
      • 3.15.11.1. Overview
      • 3.15.11.2. CO2 electrolysis
        • 3.15.11.2.1. Electrochemical CO2 Reduction
        • 3.15.11.2.2. Electrochemical CO2 Reduction Catalysts
        • 3.15.11.2.3. Electrochemical CO2 Reduction Technologies
        • 3.15.11.2.4. Low-Temperature Electrochemical CO2 Reduction
        • 3.15.11.2.5. High-Temperature Solid Oxide Electrolyzers
        • 3.15.11.2.6. Cost
        • 3.15.11.2.7. Challenges
        • 3.15.11.2.8. Coupling H2 and Electrochemical CO2
        • 3.15.11.2.9. Products
      • 3.15.11.3. Seawater electrolysis
        • 3.15.11.3.1. Direct Seawater vs Brine (Chlor-Alkali) Electrolysis
        • 3.15.11.3.2. Key Challenges & Limitations
      • 3.15.11.4. Protonic Ceramic Electrolyzers (PCE)
      • 3.15.11.5. Microbial Electrolysis Cells (MEC)
      • 3.15.11.6. Photoelectrochemical Cells (PEC)
      • 3.15.11.7. Companies
    • 3.15.12. Costs
    • 3.15.13. Water and land use for green hydrogen production
  • 3.16. Hydrogen Storage and Transportation
    • 3.16.1. Market overview
    • 3.16.2. Hydrogen transport methods
      • 3.16.2.1. Pipeline transportation
      • 3.16.2.2. Road or rail transport
      • 3.16.2.3. Maritime transportation
      • 3.16.2.4. On-board-vehicle transport
    • 3.16.3. Hydrogen compression, liquefaction, storage
      • 3.16.3.1. Solid storage
      • 3.16.3.2. Liquid storage on support
      • 3.16.3.3. Underground storage
      • 3.16.3.4. Subsea Hydrogen Storage
    • 3.16.4. Market players
  • 3.17. Hydrogen Utilization
    • 3.17.1. Hydrogen Fuel Cells
      • 3.17.1.1. PEM fuel cells (PEMFCs)
      • 3.17.1.2. Solid oxide fuel cells (SOFCs)
      • 3.17.1.3. Alternative fuel cells
    • 3.17.2. Alternative fuel production
      • 3.17.2.1. Solid Biofuels
      • 3.17.2.2. Liquid Biofuels
      • 3.17.2.3. Gaseous Biofuels
      • 3.17.2.4. Conventional Biofuels
      • 3.17.2.5. Advanced Biofuels
      • 3.17.2.6. Feedstocks
      • 3.17.2.7. Production of biodiesel and other biofuels
      • 3.17.2.8. Renewable diesel
      • 3.17.2.9. Biojet and sustainable aviation fuel (SAF)
      • 3.17.2.10. Electrofuels (E-fuels, power-to-gas/liquids/fuels)
        • 3.17.2.10.1. Hydrogen electrolysis
        • 3.17.2.10.2. eFuel production facilities, current and planned
    • 3.17.3. Hydrogen Vehicles
      • 3.17.3.1. Market overview
    • 3.17.4. Aviation
      • 3.17.4.1. Market overview
    • 3.17.5. Ammonia production
      • 3.17.5.1. Market overview
      • 3.17.5.2. Decarbonisation of ammonia production
      • 3.17.5.3. Green ammonia synthesis methods
        • 3.17.5.3.1. Haber-Bosch process
        • 3.17.5.3.2. Biological nitrogen fixation
        • 3.17.5.3.3. Electrochemical production
        • 3.17.5.3.4. Chemical looping processes
      • 3.17.5.4. Green Ammonia Production Costs
      • 3.17.5.5. Blue ammonia
        • 3.17.5.5.1. Blue ammonia projects
      • 3.17.5.6. Chemical energy storage
        • 3.17.5.6.1. Ammonia fuel cells
        • 3.17.5.6.2. Marine fuel
    • 3.17.6. Methanol production
      • 3.17.6.1. Market overview
      • 3.17.6.2. Methanol-to gasoline technology
        • 3.17.6.2.1. Production processes
          • 3.17.6.2.1.1.Anaerobic digestion
          • 3.17.6.2.1.2.Biomass gasification
          • 3.17.6.2.1.3.Power to Methane
    • 3.17.7. Steelmaking
      • 3.17.7.1. Market overview
      • 3.17.7.2. Comparative analysis
      • 3.17.7.3. Hydrogen Direct Reduced Iron (DRI)
    • 3.17.8. Power & heat generation
      • 3.17.8.1. Market overview
        • 3.17.8.1.1. Power generation
        • 3.17.8.1.2. Heat Generation
    • 3.17.9. Maritime
      • 3.17.9.1. Market overview
    • 3.17.10. Fuel cell trains
      • 3.17.10.1. Market overview
  • 3.18. Company Profiles (145 company profiles)

4. CARBON CAPTURE AND STORAGE

  • 4.1. Main sources of carbon dioxide emissions
  • 4.2. CO2 as a commodity
  • 4.3. Meeting climate targets
  • 4.4. Market drivers and trends
  • 4.5. The current market and future outlook
  • 4.6. CCUS investments
    • 4.6.1. Venture Capital Funding
      • 4.6.1.1. 2010-2024
      • 4.6.1.2. CCUS VC deals 2022-2025
  • 4.7. Government CCUS initiatives and policy environment
    • 4.7.1. North America
    • 4.7.2. Europe
    • 4.7.3. Asia
      • 4.7.3.1. Japan
      • 4.7.3.2. Singapore
      • 4.7.3.3. China
  • 4.8. Market map
  • 4.9. Commercial CCUS facilities and projects
    • 4.9.1. Facilities
      • 4.9.1.1. Operational
      • 4.9.1.2. Under development/construction
  • 4.10. Economics of CCUS projects
    • 4.10.1. CAPEX Reduction Strategies
    • 4.10.2. OPEX Reduction Approaches
    • 4.10.3. Emerging Technology Solutions
  • 4.11. CCUS Value Chain
  • 4.12. Key market barriers for CCUS
  • 4.13. CCUS and the energy trilemma
  • 4.14. Growth markets for CUS
  • 4.15. Carbon pricing
    • 4.15.1. Compliance Carbon Pricing Mechanisms
    • 4.15.2. Alternative to Carbon Pricing: 45Q Tax Credits
    • 4.15.3. Business models
      • 4.15.3.1. Full chain
      • 4.15.3.2. Networks and hub model
      • 4.15.3.3. Partial-chain
      • 4.15.3.4. Carbon dioxide utilization business model
    • 4.15.4. The European Union Emission Trading Scheme (EU ETS)
    • 4.15.5. Carbon Pricing in the US
    • 4.15.6. Carbon Pricing in China
    • 4.15.7. Voluntary Carbon Markets
    • 4.15.8. Challenges with Carbon Pricing
  • 4.16. Global market forecasts
    • 4.16.1. CCUS capture capacity forecast by end point
    • 4.16.2. Capture capacity by region to 2046, Mtpa
    • 4.16.3. Revenues
    • 4.16.4. CCUS capacity forecast by capture type
    • 4.16.5. Cost projections 2025-2046
    • 4.16.6. Carbon Capture
      • 4.16.6.1. Source Characterization
      • 4.16.6.2. Purification
      • 4.16.6.3. CO2 capture technologies
    • 4.16.7. Carbon Utilization
      • 4.16.7.1. CO2 utilization pathways
    • 4.16.8. Carbon storage
      • 4.16.8.1. Passive storage
      • 4.16.8.2. Enhanced oil recovery
  • 4.17. Transporting CO2
    • 4.17.1. Methods of CO2 transport
      • 4.17.1.1. Pipeline
      • 4.17.1.2. Ship
      • 4.17.1.3. Road
      • 4.17.1.4. Rail
    • 4.17.2. Safety
  • 4.18. Costs
    • 4.18.1. Cost of CO2 transport
  • 4.19. Carbon credits
  • 4.20. Life Cycle Assessment (LCA) of CCUS Technologies
  • 4.21. Environmental Impact Assessment
  • 4.22. Social acceptance and public perception
  • 4.23. Fate of CO2
  • 4.24. Carbon Dioxide Capture
    • 4.24.1. Historical CO2 capture
    • 4.24.2. CO2 capture technologies
    • 4.24.3. Maturity of technologies
    • 4.24.4. Technology selection
    • 4.24.5. Capture Percentages
      • 4.24.5.1. >90% capture rate
      • 4.24.5.2. 99% capture rate
    • 4.24.6. CO2 capture agent performance
    • 4.24.7. Energy Consumption
    • 4.24.8. TRL
    • 4.24.9. Global Pipeline of Carbon Capture Facilities-Current and PLanned
    • 4.24.10. CO2 capture from point sources
      • 4.24.10.1. Energy Availability and Costs
      • 4.24.10.2. Power plants with CCUS
      • 4.24.10.3. Transportation
      • 4.24.10.4. Global point source CO2 capture capacities
      • 4.24.10.5. By source
      • 4.24.10.6. Blue hydrogen
        • 4.24.10.6.1. Steam-methane reforming (SMR)
        • 4.24.10.6.2. Autothermal reforming (ATR)
        • 4.24.10.6.3. Partial oxidation (POX)
        • 4.24.10.6.4. Sorption Enhanced Steam Methane Reforming (SE-SMR)
        • 4.24.10.6.5. Pre-Combustion vs. Post-Combustion carbon capture
        • 4.24.10.6.6. Blue hydrogen projects
        • 4.24.10.6.7. Costs
        • 4.24.10.6.8. Market players
      • 4.24.10.7. Carbon capture in cement
        • 4.24.10.7.1. CCUS Projects
        • 4.24.10.7.2. Carbon capture technologies
        • 4.24.10.7.3. Costs
        • 4.24.10.7.4. Challenges
      • 4.24.10.8. Maritime carbon capture
    • 4.24.11. Main carbon capture processes
      • 4.24.11.1. Materials
      • 4.24.11.2. Natural Gas Sweetening
      • 4.24.11.3. Post-combustion
        • 4.24.11.3.1. Chemicals/Solvents
        • 4.24.11.3.2. Amine-based post-combustion CO2 absorption
        • 4.24.11.3.3. Physical absorption solvents
        • 4.24.11.3.4. Emerging Solvents for Carbon Capture
        • 4.24.11.3.5. Chilled Ammonia Process (CAP)
        • 4.24.11.3.6. Molten Borates
        • 4.24.11.3.7. Costs
        • 4.24.11.3.8. Alternatives to Solvent-Based Carbon Capture
      • 4.24.11.4. Oxy-fuel combustion
        • 4.24.11.4.1. Oxyfuel CCUS cement projects
        • 4.24.11.4.2. Chemical Looping-Based Capture
      • 4.24.11.5. Liquid or supercritical CO2: Allam-Fetvedt Cycle
      • 4.24.11.6. Pre-combustion
    • 4.24.12. Carbon separation technologies
      • 4.24.12.1. Absorption capture
      • 4.24.12.2. Adsorption capture
        • 4.24.12.2.1. Solid sorbent-based CO2 separation
        • 4.24.12.2.2. Metal organic framework (MOF) adsorbents
        • 4.24.12.2.3. Zeolite-based adsorbents
        • 4.24.12.2.4. Solid amine-based adsorbents
        • 4.24.12.2.5. Carbon-based adsorbents
        • 4.24.12.2.6. Polymer-based adsorbents
        • 4.24.12.2.7. Solid sorbents in pre-combustion
        • 4.24.12.2.8. Sorption Enhanced Water Gas Shift (SEWGS)
        • 4.24.12.2.9. Solid sorbents in post-combustion
      • 4.24.12.3. Membranes
        • 4.24.12.3.1. Membrane-based CO2 separation
        • 4.24.12.3.2. Gas Separation Membranes
        • 4.24.12.3.3. Post-combustion CO2 capture
        • 4.24.12.3.4. Facilitated transport membranes
        • 4.24.12.3.5. Pre-combustion capture
        • 4.24.12.3.6. Advanced membrane materials
          • 4.24.12.3.6.1. Graphene-based membranes
          • 4.24.12.3.6.2. Metal-organic framework (MOF) membranes
        • 4.24.12.3.7. Membranes for Direct Air Capture
      • 4.24.12.4. Liquid or supercritical CO2 (Cryogenic) capture
      • 4.24.12.5. Calcium Looping
        • 4.24.12.5.1. Calix Advanced Calciner
      • 4.24.12.6. Other technologies
        • 4.24.12.6.1. LEILAC process
        • 4.24.12.6.2. CO2 capture with Solid Oxide Fuel Cells (SOFCs)
        • 4.24.12.6.3. CO2 capture with Molten Carbonate Fuel Cells (MCFCs)
        • 4.24.12.6.4. Microalgae Carbon Capture
      • 4.24.12.7. Comparison of key separation technologies
      • 4.24.12.8. Technology readiness level (TRL) of gas separation technologies
    • 4.24.13. Opportunities and barriers
    • 4.24.14. Costs of CO2 capture
    • 4.24.15. CO2 capture capacity
    • 4.24.16. Direct air capture (DAC)
      • 4.24.16.1. Technology description
        • 4.24.16.1.1. Sorbent-based CO2 Capture
        • 4.24.16.1.2. Solvent-based CO2 Capture
        • 4.24.16.1.3. DAC Solid Sorbent Swing Adsorption Processes
        • 4.24.16.1.4. Electro-Swing Adsorption (ESA) of CO2 for DAC
        • 4.24.16.1.5. Solid and liquid DAC
      • 4.24.16.2. Advantages of DAC
      • 4.24.16.3. Deployment
      • 4.24.16.4. Point source carbon capture versus Direct Air Capture
      • 4.24.16.5. Technologies
        • 4.24.16.5.1. Solid sorbents
        • 4.24.16.5.2. Liquid sorbents
        • 4.24.16.5.3. Liquid solvents
        • 4.24.16.5.4. Airflow equipment integration
        • 4.24.16.5.5. Passive Direct Air Capture (PDAC)
        • 4.24.16.5.6. Direct conversion
        • 4.24.16.5.7. Co-product generation
        • 4.24.16.5.8. Low Temperature DAC
        • 4.24.16.5.9. Regeneration methods
      • 4.24.16.6. Electricity and Heat Sources
      • 4.24.16.7. Commercialization and plants
      • 4.24.16.8. Metal-organic frameworks (MOFs) in DAC
      • 4.24.16.9. DAC plants and projects-current and planned
      • 4.24.16.10. Capacity forecasts
      • 4.24.16.11. Costs
      • 4.24.16.12. Market challenges for DAC
      • 4.24.16.13. Market prospects for direct air capture
      • 4.24.16.14. Players and production
      • 4.24.16.15. Co2 utilization pathways
      • 4.24.16.16. Markets for Direct Air Capture and Storage (DACCS)
        • 4.24.16.16.1. Fuels
          • 4.24.16.16.1.1. Overview
          • 4.24.16.16.1.2. Production routes
          • 4.24.16.16.1.3. Methanol
          • 4.24.16.16.1.4. Algae based biofuels
          • 4.24.16.16.1.5. CO2-fuels from solar
          • 4.24.16.16.1.6. Companies
          • 4.24.16.16.1.7. Challenges
        • 4.24.16.16.2. Chemicals, plastics and polymers
          • 4.24.16.16.2.1. Overview
          • 4.24.16.16.2.2. Scalability
          • 4.24.16.16.2.3. Plastics and polymers
            • 4.24.16.16.2.3.1. CO2 utilization products
          • 4.24.16.16.2.4. Urea production
          • 4.24.16.16.2.5. Inert gas in semiconductor manufacturing
          • 4.24.16.16.2.6. Carbon nanotubes
          • 4.24.16.16.2.7. Companies
        • 4.24.16.16.3. Construction materials
          • 4.24.16.16.3.1. Overview
          • 4.24.16.16.3.2. CCUS technologies
          • 4.24.16.16.3.3. Carbonated aggregates
          • 4.24.16.16.3.4. Additives during mixing
          • 4.24.16.16.3.5. Concrete curing
          • 4.24.16.16.3.6. Costs
          • 4.24.16.16.3.7. Companies
          • 4.24.16.16.3.8. Challenges
        • 4.24.16.16.4. CO2 Utilization in Biological Yield-Boosting
          • 4.24.16.16.4.1. Overview
          • 4.24.16.16.4.2. Applications
            • 4.24.16.16.4.2.1. Greenhouses
            • 4.24.16.16.4.2.2. Algae cultivation
            • 4.24.16.16.4.2.3. Microbial conversion
          • 4.24.16.16.4.3. Companies
        • 4.24.16.16.5. Food and feed production
        • 4.24.16.16.6. CO2 Utilization in Enhanced Oil Recovery
          • 4.24.16.16.6.1. Overview
            • 4.24.16.16.6.1.1. Process
            • 4.24.16.16.6.1.2. CO2 sources
          • 4.24.16.16.6.2. CO2-EOR facilities and projects
    • 4.24.17. Hybrid Capture Systems
    • 4.24.18. Artificial Intelligence in Carbon Capture
    • 4.24.19. Integration with Renewable Energy Systems
    • 4.24.20. Mobile Carbon Capture Solutions
    • 4.24.21. Carbon Capture Retrofitting
    • 4.24.22. Carbon Capture in Industry
      • 4.24.22.1. Cement
      • 4.24.22.2. Iron and Steel
        • 4.24.22.2.1. Post-combustion capture for BF-BOF processes
        • 4.24.22.2.2. Pre-Combustion Carbon Capture for Ironmaking
        • 4.24.22.2.3. Gas Recycling and Oxyfuel Combustion for Ironmaking
        • 4.24.22.2.4. Direct reduced iron (DRI) production
      • 4.24.22.3. Power Generation
        • 4.24.22.3.1. Power plants with carbon capture systems
        • 4.24.22.3.2. Coal Power Generation
        • 4.24.22.3.3. Gas Power Generation
          • 4.24.22.3.3.1. Gas Power CCS for Data Centers
      • 4.24.22.3.4. Power sector CCUS cost
  • 4.25. Carbon Dioxide Removal
    • 4.25.1. Conventional CDR on land
      • 4.25.1.1. Wetland and peatland restoration
      • 4.25.1.2. Cropland, grassland, and agroforestry
    • 4.25.2. Technological CDR Solutions
    • 4.25.3. Main CDR methods
    • 4.25.4. Novel CDR methods
    • 4.25.5. Value chain
    • 4.25.6. Deployment of carbon dioxide removal technologies
    • 4.25.7. Technology Readiness Level (TRL): Carbon Dioxide Removal Methods
    • 4.25.8. Carbon Credits
      • 4.25.8.1. Description
      • 4.25.8.2. Carbon pricing
      • 4.25.8.3. Carbon Removal vs Carbon Avoidance Offsetting
      • 4.25.8.4. Carbon credit certification
      • 4.25.8.5. Carbon registries
      • 4.25.8.6. Carbon credit quality
      • 4.25.8.7. Voluntary Carbon Credits
        • 4.25.8.7.1. Definition
        • 4.25.8.7.2. Purchasing
        • 4.25.8.7.3. Key Market Players and Projects
        • 4.25.8.7.4. Pricing
      • 4.25.8.8. Compliance Carbon Credits
        • 4.25.8.8.1. Definition
        • 4.25.8.8.2. Market players
        • 4.25.8.8.3. Pricing
      • 4.25.8.9. Durable carbon dioxide removal (CDR) credits
      • 4.25.8.10. Corporate commitments
      • 4.25.8.11. Increasing government support and regulations
      • 4.25.8.12. Advancements in carbon offset project verification and monitoring
      • 4.25.8.13. Potential for blockchain technology in carbon credit trading
      • 4.25.8.14. Buying and Selling Carbon Credits
        • 4.25.8.14.1. Carbon credit exchanges and trading platforms
        • 4.25.8.14.2. Over-the-counter (OTC) transactions
        • 4.25.8.14.3. Pricing mechanisms and factors affecting carbon credit prices
      • 4.25.8.15. Certification
      • 4.25.8.16. Challenges and risks
    • 4.25.9. Monitoring, reporting, and verification
    • 4.25.10. Government policies
    • 4.25.11. Bioenergy with Carbon Removal and Storage (BiCRS)
      • 4.25.11.1. Feedstocks
      • 4.25.11.2. BiCRS Conversion Pathways
    • 4.25.12. BECCS
      • 4.25.12.1. Technology overview
        • 4.25.12.1.1. Point Source Capture Technologies for BECCS
        • 4.25.12.1.2. Energy efficiency
        • 4.25.12.1.3. Heat generation
        • 4.25.12.1.4. Waste-to-Energy
        • 4.25.12.1.5. Blue Hydrogen Production
      • 4.25.12.2. Biomass conversion
      • 4.25.12.3. CO2 capture technologies
      • 4.25.12.4. BECCS facilities
      • 4.25.12.5. Cost analysis
      • 4.25.12.6. BECCS carbon credits
      • 4.25.12.7. Sustainability
      • 4.25.12.8. Challenges
    • 4.25.13. Mineralization-based CDR
      • 4.25.13.1. Overview
      • 4.25.13.2. Storage in CO2-Derived Concrete
      • 4.25.13.3. Oxide Looping
      • 4.25.13.4. Enhanced Weathering
        • 4.25.13.4.1. Overview
        • 4.25.13.4.2. Benefits
        • 4.25.13.4.3. Monitoring, Reporting, and Verification (MRV)
        • 4.25.13.4.4. Applications
        • 4.25.13.4.5. Commercial activity and companies
        • 4.25.13.4.6. Challenges and Risks
      • 4.25.13.5. Cost analysis
      • 4.25.13.6. SWOT analysis
    • 4.25.14. Afforestation/Reforestation
      • 4.25.14.1. Overview
      • 4.25.14.2. Carbon dioxide removal methods
        • 4.25.14.2.1. Nature-based CDR
        • 4.25.14.2.2. Land-based CDR
      • 4.25.14.3. Technologies
        • 4.25.14.3.1. Remote Sensing
        • 4.25.14.3.2. Drone technology and robotics
        • 4.25.14.3.3. Automated forest fire detection systems
        • 4.25.14.3.4. AI/ML
        • 4.25.14.3.5. Genetics
      • 4.25.14.4. Trends and Opportunities
      • 4.25.14.5. Challenges and Risks
        • 4.25.14.5.1. SWOT analysis
        • 4.25.14.5.2. Soil carbon sequestration (SCS)
          • 4.25.14.5.2.1. Overview
          • 4.25.14.5.2.2. Practices
          • 4.25.14.5.2.3. Measuring and Verifying
          • 4.25.14.5.2.4. Trends and Opportunities
          • 4.25.14.5.2.5. Carbon credits
          • 4.25.14.5.2.6. Challenges and Risks
          • 4.25.14.5.2.7. SWOT analysis
        • 4.25.14.5.3. Biochar
          • 4.25.14.5.3.1. What is biochar?
          • 4.25.14.5.3.2. Carbon sequestration
          • 4.25.14.5.3.3. Properties of biochar
          • 4.25.14.5.3.4. Feedstocks
          • 4.25.14.5.3.5. Production processes
            • 4.25.14.5.3.5.1. Sustainable production
            • 4.25.14.5.3.5.2. Pyrolysis
            • 4.25.14.5.3.5.3. Gasification
            • 4.25.14.5.3.5.4. Hydrothermal carbonization (HTC)
            • 4.25.14.5.3.5.5. Torrefaction
            • 4.25.14.5.3.5.6. Equipment manufacturers
          • 4.25.14.5.3.6. Biochar pricing
          • 4.25.14.5.3.7. Biochar carbon credits
            • 4.25.14.5.3.7.1. Overview
            • 4.25.14.5.3.7.2. Removal and reduction credits
            • 4.25.14.5.3.7.3. The advantage of biochar
            • 4.25.14.5.3.7.4. Prices
            • 4.25.14.5.3.7.5. Buyers of biochar credits
            • 4.25.14.5.3.7.6. Competitive materials and technologies
          • 4.25.14.5.3.8. Bio-oil based CDR
          • 4.25.14.5.3.9. Biomass burial for CO2 removal
          • 4.25.14.5.3.10. Bio-based construction materials for CDR
          • 4.25.14.5.3.11. SWOT analysis
    • 4.25.15. Ocean-based CDR
      • 4.25.15.1. Overview
      • 4.25.15.2. CO2 capture from seawater
      • 4.25.15.3. Ocean fertilisation
        • 4.25.15.3.1. Biotic Methods
        • 4.25.15.3.2. Coastal blue carbon ecosystems
        • 4.25.15.3.3. Algal Cultivation
        • 4.25.15.3.4. Artificial Upwelling
      • 4.25.15.4. Ocean alkalinisation
        • 4.25.15.4.1. Electrochemical ocean alkalinity enhancement
        • 4.25.15.4.2. Direct Ocean Capture
        • 4.25.15.4.3. Artificial Downwelling
      • 4.25.15.5. Monitoring, Reporting, and Verification (MRV)
      • 4.25.15.6. Ocean-based CDR Carbon Credits
      • 4.25.15.7. Trends and Opportunities
      • 4.25.15.8. Ocean-based carbon credits
      • 4.25.15.9. Cost analysis
      • 4.25.15.10. Challenges and Risks
      • 4.25.15.11. SWOT analysis
      • 4.25.15.12. Companies
  • 4.26. Company Profiles (374 company profiles)

5. INDUSTRIAL HEAT DECARBONIZATION

  • 5.1. Market overview
    • 5.1.1. Industrial Heat: Current State and Decarbonization Imperative
    • 5.1.2. Industrial Decarbonization Incentives
    • 5.1.3. Technology Maturity Overview
  • 5.2. The Four Pillars of Industrial Heat Decarbonization Economics
    • 5.2.1. Electricity Cost Dynamics and Competitive Position
    • 5.2.2. Carbon Pricing: The Economic Game-Changer
    • 5.2.3. Business Model Gap: Why Industrial Heat Differs from Power Generation
    • 5.2.4. Temperature-Based Market Segmentation: A Strategic Framework
  • 5.3. Cost Competitiveness Analysis
    • 5.3.1. Carbon Abatement Potential
  • 5.4. Technologies
    • 5.4.1. Electric Heating
      • 5.4.1.1. Resistance Heating
        • 5.4.1.1.1. Direct Resistance
        • 5.4.1.1.2. Indirect Resistance
        • 5.4.1.1.3. Infrared Heating
      • 5.4.1.2. Induction Heating
        • 5.4.1.2.1. High-Frequency Systems
        • 5.4.1.2.2. Medium-Frequency Systems
        • 5.4.1.2.3. Low-Frequency Systems
      • 5.4.1.3. Microwave Heating
        • 5.4.1.3.1. Single-Mode Systems
        • 5.4.1.3.2. Multi-Mode Systems
        • 5.4.1.3.3. Advanced Control Systems
      • 5.4.1.4. Plasma Heating
        • 5.4.1.4.1. Thermal Plasma
        • 5.4.1.4.2. Non-Thermal Plasma
        • 5.4.1.4.3. Hybrid Plasma Systems
    • 5.4.2. Heat Pumps
      • 5.4.2.1. High-Temperature Systems
        • 5.4.2.1.1. Vapor Compression
        • 5.4.2.1.2. Absorption Systems
        • 5.4.2.1.3. Hybrid Configurations
      • 5.4.2.2. Integration Strategies
        • 5.4.2.2.1. Process Integration
        • 5.4.2.2.2. Cascade Systems
        • 5.4.2.2.3. Multi-Source Integration
      • 5.4.2.3. Emerging Technologies
        • 5.4.2.3.1. Chemical Heat Pumps
        • 5.4.2.3.2. Magnetocaloric Systems
        • 5.4.2.3.3. Thermoacoustic Heat Pumps
    • 5.4.3. Biomass Solutions
      • 5.4.3.1. Advanced Feedstock Processing
        • 5.4.3.1.1. Torrefaction
        • 5.4.3.1.2. Pelletization
        • 5.4.3.1.3. Gasification
      • 5.4.3.2. Combustion Technologies
        • 5.4.3.2.1. Fluidized Bed Systems
        • 5.4.3.2.2. Grate Firing Systems
        • 5.4.3.2.3. Pulverized Biomass
      • 5.4.3.3. Emerging Biomass Technologies
        • 5.4.3.3.1. Supercritical Water Gasification
        • 5.4.3.3.2. Plasma-Assisted Combustion
        • 5.4.3.3.3. Chemical Looping
    • 5.4.4. Advanced and Emerging Technologies
      • 5.4.4.1. Solar Thermal
        • 5.4.4.1.1. Concentrated Solar Power
        • 5.4.4.1.2. Solar-Hydrogen Hybrid Systems
      • 5.4.4.2. Geothermal
        • 5.4.4.2.1. Deep Geothermal
        • 5.4.4.2.2. Enhanced Geothermal Systems
      • 5.4.4.3. Novel Heat Storage
        • 5.4.4.3.1. Thermochemical Storage
        • 5.4.4.3.2. Phase Change Materials
        • 5.4.4.3.3. Molten Salt Systems
      • 5.4.4.4. Artificial Intelligence and Digital Technologies
        • 5.4.4.4.1. Predictive Maintenance
        • 5.4.4.4.2. Process Optimization
        • 5.4.4.4.3. Digital Twins
  • 5.5. Markets and Applications
    • 5.5.1. Process Industries
      • 5.5.1.1. Chemical Industry
      • 5.5.1.2. Food Processing
      • 5.5.1.3. Paper and Pulp
      • 5.5.1.4. Glass and Ceramics
    • 5.5.2. Metal Processing
      • 5.5.2.1. Steel Industry
      • 5.5.2.2. Aluminium Production
      • 5.5.2.3. Other Metals
    • 5.5.3. Building Materials
      • 5.5.3.1. Cement Production
      • 5.5.3.2. Brick Manufacturing
      • 5.5.3.3. Other Materials
  • 5.6. System Integration
    • 5.6.1. Heat Recovery Systems
      • 5.6.1.1. Technology Options
      • 5.6.1.2. Efficiency Analysis
      • 5.6.1.3. Implementation Strategies
    • 5.6.2. Process Optimization
      • 5.6.2.1. Energy Management
      • 5.6.2.2. Control Systems
      • 5.6.2.3. Performance Monitoring
  • 5.7. Market Analysis
    • 5.7.1. Cost Analysis
    • 5.7.2. Future Outlook
  • 5.8. Company profiles (39 company profiles)

6. ELECTRIFICATION OF INDUSTRIAL PROCESSES

  • 6.1. Grid Integration and Power Systems
    • 6.1.1. Grid Requirements
      • 6.1.1.1. Power Quality
      • 6.1.1.2. Capacity Planning
      • 6.1.1.3. Smart Grid Integration
    • 6.1.2. Energy Storage Systems
      • 6.1.2.1. Battery Storage
      • 6.1.2.2. Thermal Storage
      • 6.1.2.3. Hybrid Systems
    • 6.1.3. Renewable Energy Integration
      • 6.1.3.1. Solar PV Integration
      • 6.1.3.2. Wind Power Integration
      • 6.1.3.3. Hybrid Power Systems
  • 6.2. Electric Process Heating
    • 6.2.1. Resistance Heating Systems
      • 6.2.1.1. Direct Resistance Heating
      • 6.2.1.2. Indirect Resistance Heating
      • 6.2.1.3. Immersion Heating
      • 6.2.1.4. Advanced Control Systems
    • 6.2.2. Induction Technology
      • 6.2.2.1. High-Frequency Systems
      • 6.2.2.2. Medium-Frequency Systems
      • 6.2.2.3. Low-Frequency Systems
      • 6.2.2.4. Advanced Power Supply
    • 6.2.3. Infrared Heating
      • 6.2.3.1. Short-wave Systems
      • 6.2.3.2. Medium-wave Systems
      • 6.2.3.3. Long-wave Systems
      • 6.2.3.4. Hybrid Solutions
    • 6.2.4. Dielectric Heating
      • 6.2.4.1. Microwave Systems
      • 6.2.4.2. Radio Frequency Systems
      • 6.2.4.3. Advanced Control
    • 6.2.5. Plasma Systems
      • 6.2.5.1. Thermal Plasma
      • 6.2.5.2. Non-Thermal Plasma
      • 6.2.5.3. Hybrid Plasma Systems
  • 6.3. Electrochemical Processes
    • 6.3.1. Advanced Electrolysis Systems
      • 6.3.1.1. Alkaline Electrolysis
      • 6.3.1.2. PEM Electrolysis
      • 6.3.1.3. Solid Oxide Electrolysis
    • 6.3.2. Electrochemical Reactors
      • 6.3.2.1. Flow Reactors
      • 6.3.2.2. Batch Reactors
      • 6.3.2.3. Novel Designs
    • 6.3.3. Membrane Technologies
      • 6.3.3.1. Ion Exchange Membranes
      • 6.3.3.2. Ceramic Membranes
      • 6.3.3.3. Composite Membranes
  • 6.4. Electric Motors and Drives
    • 6.4.1. Advanced Motor Technologies
      • 6.4.1.1. Permanent Magnet Motors
      • 6.4.1.2. Synchronous Reluctance Motors
      • 6.4.1.3. High-Speed Motors
  • 6.5. Emerging Technologies
    • 6.5.1. Digital Twin Technologies
      • 6.5.1.1. Process Modeling
      • 6.5.1.2. Real-time Optimization
    • 6.5.2. AI and Machine Learning
      • 6.5.2.1. Predictive Maintenance
      • 6.5.2.2. Process Optimization
      • 6.5.2.3. Energy Management
    • 6.5.3. Novel Heating Technologies
      • 6.5.3.1. Ultrasonic Heating
      • 6.5.3.2. Electron Beam Processing
      • 6.5.3.3. Laser Processing
  • 6.6. Applications
    • 6.6.1. Chemical Industry
      • 6.6.1.1. Process Electrification
      • 6.6.1.2. Energy Integration
    • 6.6.2. Metal Processing
      • 6.6.2.1. Melting and Casting
      • 6.6.2.2. Heat Treatment
      • 6.6.2.3. Surface Processing
    • 6.6.3. Food and Beverage
      • 6.6.3.1. Heating Processes
      • 6.6.3.2. Cooling Systems
      • 6.6.3.3. Process Integration
    • 6.6.4. Mining and Minerals
      • 6.6.4.1. Equipment Electrification
      • 6.6.4.2. Process Conversion
  • 6.7. Company profiles (126 company profiles)

7. CIRCULAR ECONOMY SOLUTIONS

  • 7.1. Advanced Sorting and Detection Technologies
    • 7.1.1. Artificial Intelligence and Machine Learning
    • 7.1.2. Computer Vision Systems
    • 7.1.3. Deep Learning Algorithms
    • 7.1.4. Real-time Sorting
  • 7.2. Spectroscopic Technologies
    • 7.2.1. NIR Spectroscopy
    • 7.2.2. Raman Spectroscopy
    • 7.2.3. X-ray Technologies
    • 7.2.4. Robotic Sorting Systems
    • 7.2.5. Automated Processing Lines
    • 7.2.6. Quality Control Systems
  • 7.3. Recycling Technologies
    • 7.3.1. Pyrolysis
      • 7.3.1.1. Non-catalytic
      • 7.3.1.2. Catalytic
        • 7.3.1.2.1. Polystyrene pyrolysis
        • 7.3.1.2.2. Pyrolysis for production of bio fuel
        • 7.3.1.2.3. Used tires pyrolysis
          • 7.3.1.2.3.1. Conversion to biofuel
        • 7.3.1.2.4. Co-pyrolysis of biomass and plastic wastes
      • 7.3.1.3. Companies and capacities
    • 7.3.2. Gasification
      • 7.3.2.1. Technology overview
        • 7.3.2.1.1. Syngas conversion to methanol
        • 7.3.2.1.2. Biomass gasification and syngas fermentation
        • 7.3.2.1.3. Biomass gasification and syngas thermochemical conversion
      • 7.3.2.2. Companies and capacities (current and planned)
    • 7.3.3. Dissolution
      • 7.3.3.1. Technology overview
      • 7.3.3.2. Companies and capacities (current and planned)
    • 7.3.4. Depolymerisation
      • 7.3.4.1. Hydrolysis
        • 7.3.4.1.1. Technology overview
        • 7.3.4.1.2. SWOT analysis
      • 7.3.4.2. Enzymolysis
        • 7.3.4.2.1. Technology overview
        • 7.3.4.2.2. SWOT analysis
      • 7.3.4.3. Methanolysis
        • 7.3.4.3.1. Technology overview
        • 7.3.4.3.2. SWOT analysis
      • 7.3.4.4. Glycolysis
        • 7.3.4.4.1. Technology overview
        • 7.3.4.4.2. SWOT analysis
      • 7.3.4.5. Aminolysis
        • 7.3.4.5.1. Technology overview
        • 7.3.4.5.2. SWOT analysis
      • 7.3.4.6. Companies and capacities (current and planned)
    • 7.3.5. Other advanced chemical recycling technologies
      • 7.3.5.1. Hydrothermal cracking
      • 7.3.5.2. Pyrolysis with in-line reforming
      • 7.3.5.3. Microwave-assisted pyrolysis
      • 7.3.5.4. Plasma pyrolysis
      • 7.3.5.5. Plasma gasification
      • 7.3.5.6. Supercritical fluids
      • 7.3.5.7. Carbon fiber recycling
        • 7.3.5.7.1. Processes
        • 7.3.5.7.2. Companies
    • 7.3.6. Advanced recycling of thermoset materials
      • 7.3.6.1. Thermal recycling
        • 7.3.6.1.1. Energy Recovery Combustion
        • 7.3.6.1.2. Anaerobic Digestion
        • 7.3.6.1.3. Pyrolysis Processing
        • 7.3.6.1.4. Microwave Pyrolysis
      • 7.3.6.2. Solvolysis
      • 7.3.6.3. Catalyzed Glycolysis
      • 7.3.6.4. Alcoholysis and Hydrolysis
      • 7.3.6.5. Ionic liquids
      • 7.3.6.6. Supercritical fluids
      • 7.3.6.7. Plasma
      • 7.3.6.8. Companies
  • 7.4. Materials Recovery
    • 7.4.1. Critical Raw Materials
    • 7.4.2. Metals and minerals processed and extracted
      • 7.4.2.1. Copper
        • 7.4.2.1.1. Global copper demand and trends
        • 7.4.2.1.2. Markets and applications
        • 7.4.2.1.3. Copper extraction and recovery
      • 7.4.2.2. Nickel
        • 7.4.2.2.1. Global nickel demand and trends
        • 7.4.2.2.2. Markets and applications
        • 7.4.2.2.3. Nickel extraction and recovery
      • 7.4.2.3. Cobalt
        • 7.4.2.3.1. Global cobalt demand and trends
        • 7.4.2.3.2. Markets and applications
        • 7.4.2.3.3. Cobalt extraction and recovery
      • 7.4.2.4. Rare Earth Elements (REE)
        • 7.4.2.4.1. Global Rare Earth Elements demand and trends
        • 7.4.2.4.2. Markets and applications
        • 7.4.2.4.3. Rare Earth Elements extraction and recovery
        • 7.4.2.4.4. Recovery of REEs from secondary resources
      • 7.4.2.5. Lithium
        • 7.4.2.5.1. Global lithium demand and trends
        • 7.4.2.5.2. Markets and applications
        • 7.4.2.5.3. Lithium extraction and recovery
      • 7.4.2.6. Gold
        • 7.4.2.6.1. Global gold demand and trends
        • 7.4.2.6.2. Markets and applications
        • 7.4.2.6.3. Gold extraction and recovery
      • 7.4.2.7. Uranium
        • 7.4.2.7.1. Global uranium demand and trends
        • 7.4.2.7.2. Markets and applications
        • 7.4.2.7.3. Uranium extraction and recovery
      • 7.4.2.8. Zinc
        • 7.4.2.8.1. Global Zinc demand and trends
        • 7.4.2.8.2. Markets and applications
        • 7.4.2.8.3. Zinc extraction and recovery
      • 7.4.2.9. Manganese
        • 7.4.2.9.1. Global manganese demand and trends
        • 7.4.2.9.2. Markets and applications
        • 7.4.2.9.3. Manganese extraction and recovery
      • 7.4.2.10. Tantalum
        • 7.4.2.10.1. Global tantalum demand and trends
        • 7.4.2.10.2. Markets and applications
        • 7.4.2.10.3. Tantalum extraction and recovery
      • 7.4.2.11. Niobium
        • 7.4.2.11.1. Global niobium demand and trends
        • 7.4.2.11.2. Markets and applications
        • 7.4.2.11.3. Niobium extraction and recovery
      • 7.4.2.12. Indium
        • 7.4.2.12.1. Global indium demand and trends
        • 7.4.2.12.2. Markets and applications
        • 7.4.2.12.3. Indium extraction and recovery
      • 7.4.2.13. Gallium
        • 7.4.2.13.1. Global gallium demand and trends
        • 7.4.2.13.2. Markets and applications
        • 7.4.2.13.3. Gallium extraction and recovery
      • 7.4.2.14. Germanium
        • 7.4.2.14.1. Global germanium demand and trends
        • 7.4.2.14.2. Markets and applications
        • 7.4.2.14.3. Germanium extraction and recovery
      • 7.4.2.15. Antimony
        • 7.4.2.15.1. Global antimony demand and trends
        • 7.4.2.15.2. Markets and applications
        • 7.4.2.15.3. Antimony extraction and recovery
      • 7.4.2.16. Scandium
        • 7.4.2.16.1. Global scandium demand and trends
        • 7.4.2.16.2. Markets and applications
        • 7.4.2.16.3. Scandium extraction and recovery
      • 7.4.2.17. Graphite
        • 7.4.2.17.1. Global graphite demand and trends
        • 7.4.2.17.2. Markets and applications
        • 7.4.2.17.3. Graphite extraction and recovery
    • 7.4.3. Recovery sources
      • 7.4.3.1. Primary sources
      • 7.4.3.2. Secondary sources
        • 7.4.3.2.1. Extraction
          • 7.4.3.2.1.1. Hydrometallurgical extraction
            • 7.4.3.2.1.1.1. Overview
            • 7.4.3.2.1.1.2. Lixiviants
            • 7.4.3.2.1.1.3. SWOT analysis
          • 7.4.3.2.1.2. Pyrometallurgical extraction
            • 7.4.3.2.1.2.1. Overview
            • 7.4.3.2.1.2.2. SWOT analysis
          • 7.4.3.2.1.3. Biometallurgy
            • 7.4.3.2.1.3.1. Overview
            • 7.4.3.2.1.3.2. SWOT analysis
          • 7.4.3.2.1.4. Ionic liquids and deep eutectic solvents
            • 7.4.3.2.1.4.1. Overview
            • 7.4.3.2.1.4.2. SWOT analysis
          • 7.4.3.2.1.5. Electroleaching extraction
            • 7.4.3.2.1.5.1. Overview
            • 7.4.3.2.1.5.2. SWOT analysis
          • 7.4.3.2.1.6. Supercritical fluid extraction
            • 7.4.3.2.1.6.1. Overview
            • 7.4.3.2.1.6.2. SWOT analysis
        • 7.4.3.2.2. Recovery
          • 7.4.3.2.2.1. Solvent extraction
            • 7.4.3.2.2.1.1. Overview
            • 7.4.3.2.2.1.2. Rare-Earth Element Recovery
            • 7.4.3.2.2.1.3. SWOT analysis
          • 7.4.3.2.2.2. Ion exchange recovery
            • 7.4.3.2.2.2.1. Overview
            • 7.4.3.2.2.2.2. SWOT analysis
          • 7.4.3.2.2.3. Ionic liquid (IL) and deep eutectic solvent (DES) recovery
            • 7.4.3.2.2.3.1. Overview
            • 7.4.3.2.2.3.2. SWOT analysis
          • 7.4.3.2.2.4. Precipitation
            • 7.4.3.2.2.4.1. Overview
            • 7.4.3.2.2.4.2. Coagulation and flocculation
            • 7.4.3.2.2.4.3. SWOT analysis
          • 7.4.3.2.2.5. Biosorption
            • 7.4.3.2.2.5.1. Overview
            • 7.4.3.2.2.5.2. SWOT analysis
          • 7.4.3.2.2.6. Electrowinning
            • 7.4.3.2.2.6.1. Overview
            • 7.4.3.2.2.6.2. SWOT analysis
          • 7.4.3.2.2.7. Direct materials recovery
            • 7.4.3.2.2.7.1. Overview
            • 7.4.3.2.2.7.2. Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis
            • 7.4.3.2.2.7.3. Rare-earth Magnet Recycling by Hydrogen Decrepitation
            • 7.4.3.2.2.7.4. Direct Recycling of Li-ion Battery Cathodes by Sintering
            • 7.4.3.2.2.7.5. SWOT analysis
    • 7.4.4. Metal Recovery Technologies
      • 7.4.4.1. Pyrometallurgy
      • 7.4.4.2. Hydrometallurgy
      • 7.4.4.3. Biometallurgy
      • 7.4.4.4. Supercritical Fluid Extraction
      • 7.4.4.5. Electrokinetic Separation
      • 7.4.4.6. Mechanochemical Processing
    • 7.4.5. Global market 2025-2040
      • 7.4.5.1. By Material Type (2025-2040)
      • 7.4.5.2. By Recovery Source (2025-2040)
      • 7.4.5.3. By Region (2025-2040)
  • 7.5. Company profiles (328 company profiles)

8. ENVIRONMENTAL TECHNOLOGIES

  • 8.1. Market Overview
  • 8.2. Water Treatment Technologies
    • 8.2.1. Advanced Membrane Systems
      • 8.2.1.1. Next-Generation Membranes
      • 8.2.1.2. Membrane Processes
      • 8.2.1.3. Anti-Fouling Technologies
    • 8.2.2. Advanced Oxidation Processes (AOP)
      • 8.2.2.1. Photocatalytic Systems
      • 8.2.2.2. Electrochemical AOPs
    • 8.2.3. Biological Treatment Systems
      • 8.2.3.1. Advanced Bioreactors
      • 8.2.3.2. Microbial Solutions
      • 8.2.3.3. Bioaugmentation
  • 8.3. Air Quality Management
    • 8.3.1. Advanced Emission Control
      • 8.3.1.1. Particulate Matter Control
      • 8.3.1.2. Gas Treatment Systems
      • 8.3.1.3. Smart Monitoring Systems
  • 8.4. Soil and Groundwater Remediation
    • 8.4.1. In-Situ Technologies
      • 8.4.1.1. Chemical Treatment
      • 8.4.1.2. Biological Remediation
  • 8.5. Digital Environmental Technologies
    • 8.5.1. Environmental IoT
      • 8.5.1.1. Sensor Networks
      • 8.5.1.2. Data Integration
      • 8.5.1.3. Analytics Platforms
    • 8.5.2. AI and Machine Learning
      • 8.5.2.1. Predictive Monitoring
      • 8.5.2.2. Process Optimization
      • 8.5.2.3. Risk Assessment
  • 8.6. Emerging Technologies
    • 8.6.1. Novel Materials
      • 8.6.1.1. Nanomaterials
      • 8.6.1.2. Bio-based Materials
      • 8.6.1.3. Smart Materials
      • 8.6.1.4. Plasma Systems
      • 8.6.1.5. Supercritical Fluids
      • 8.6.1.6. Electrochemical Processes
  • 8.7. Marketr outlook
  • 8.8. Company profiles (93 company profiles)

9. GREEN BUILDING TECHNOLOGIES

  • 9.1. Market Overview
    • 9.1.1. Benefits of Green Buildings
    • 9.1.2. Global Trends and Drivers
  • 9.2. Global Revenues
    • 9.2.1. Sustainable Materials, by type
    • 9.2.2. Sustainable Materials, by market
    • 9.2.3. Building Energy Systems
    • 9.2.4. Smart Building Technologies
    • 9.2.5. Advanced Construction Methods
    • 9.2.6. Regional Green Building Technology Markets
  • 9.3. Sustainable Construction Materials
    • 9.3.1. Low-carbon Concrete
    • 9.3.2. Sustainable Wood Products
    • 9.3.3. Recycled Materials
    • 9.3.4. Bio-based materials
  • 9.4. Insulation Technologies
    • 9.4.1. Advanced Materials
    • 9.4.2. Installation Methods
    • 9.4.3. Performance Metrics
  • 9.5. Smart Windows
    • 9.5.1. Electrochromic Glass
    • 9.5.2. Thermochromic Systems
    • 9.5.3. Integration Technologies
  • 9.6. Construction Methods
    • 9.6.1. Modular Construction
      • 9.6.1.1. Manufacturing Processes
      • 9.6.1.2. Assembly Systems
      • 9.6.1.3. Quality Control
    • 9.6.2. 3D Printing
      • 9.6.2.1. Material Development
      • 9.6.2.2. Printing System
      • 9.6.2.3. Applications
    • 9.6.3. Passive Design
      • 9.6.3.1. Solar Optimization
      • 9.6.3.2. Natural Ventilation
      • 9.6.3.3. Thermal Mass
  • 9.7. Energy Systems
    • 9.7.1. Renewable Integration
      • 9.7.1.1. Solar PV Systems
      • 9.7.1.2. Heat Pumps
      • 9.7.1.3. Energy Storage
    • 9.7.2. Building Management
      • 9.7.2.1. Smart Controls
      • 9.7.2.2. Energy Monitoring
      • 9.7.2.3. Optimization Systems
  • 9.8. Water Management
    • 9.8.1. Water Efficiency
      • 9.8.1.1. Low-flow Systems
      • 9.8.1.2. Rainwater Harvesting
      • 9.8.1.3. Greywater Systems
    • 9.8.2. Treatment Systems
      • 9.8.2.1. On-site Treatment
      • 9.8.2.2. Recycling Systems
      • 9.8.2.3. Monitoring Technologies
  • 9.9. Indoor Environmental Quality
    • 9.9.1. Air Quality
      • 9.9.1.1. Ventilation Systems
      • 9.9.1.2. Filtration Technology
      • 9.9.1.3. Monitoring Systems
    • 9.9.2. Acoustic Management
      • 9.9.2.1. Sound Insulation
      • 9.9.2.2. Noise Control
      • 9.9.2.3. Design Integration
  • 9.10. Materials
    • 9.10.1. Hemp-based Materials
      • 9.10.1.1. Hemp Concrete (Hempcrete)
      • 9.10.1.2. Hemp Fiberboard
      • 9.10.1.3. Hemp Insulation
    • 9.10.2. Mycelium-based Materials
      • 9.10.2.1. Insulation
      • 9.10.2.2. Structural Elements
      • 9.10.2.3. Acoustic Panels
      • 9.10.2.4. Decorative Elements
    • 9.10.3. Sustainable Concrete and Cement Alternatives
      • 9.10.3.1. Geopolymer Concrete
      • 9.10.3.2. Recycled Aggregate Concrete
      • 9.10.3.3. Lime-Based Materials
      • 9.10.3.4. Self-healing concrete
        • 9.10.3.4.1. Bioconcrete
        • 9.10.3.4.2. Fiber concrete
      • 9.10.3.5. Microalgae biocement
      • 9.10.3.6. Carbon-negative concrete
      • 9.10.3.7. Biomineral binders
      • 9.10.3.8. Clinker substitutes
    • 9.10.4. Natural Fiber Composites
      • 9.10.4.1. Types of Natural Fibers
      • 9.10.4.2. Properties
      • 9.10.4.3. Applications in Construction
    • 9.10.5. Cellulose nanofibers
      • 9.10.5.1. Sandwich composites
      • 9.10.5.2. Cement additives
      • 9.10.5.3. Pump primers
      • 9.10.5.4. Insulation materials
      • 9.10.5.5. Coatings and paints
      • 9.10.5.6. 3D printing materials
    • 9.10.6. Sustainable Insulation Materials
      • 9.10.6.1. Types of sustainable insulation materials
      • 9.10.6.2. Aerogel Insulation
        • 9.10.6.2.1. Silica aerogels
          • 9.10.6.2.1.1.Properties
          • 9.10.6.2.1.2.Thermal conductivity
          • 9.10.6.2.1.3.Mechanical
          • 9.10.6.2.1.4.Silica aerogel precursors
          • 9.10.6.2.1.5.Products
            • 9.10.6.2.1.5.1. Monoliths
            • 9.10.6.2.1.5.2. Powder
            • 9.10.6.2.1.5.3. Granules
            • 9.10.6.2.1.5.4. Blankets
            • 9.10.6.2.1.5.5. Aerogel boards
            • 9.10.6.2.1.5.6. Aerogel renders
          • 9.10.6.2.1.6.3D printing of aerogels
          • 9.10.6.2.1.7.Silica aerogel from sustainable feedstocks
          • 9.10.6.2.1.8.Silica composite aerogels
            • 9.10.6.2.1.8.1. Organic crosslinkers
          • 9.10.6.2.1.9.Cost of silica aerogels
        • 9.10.6.2.2. Aerogel-like foam materials
          • 9.10.6.2.2.1. Properties
          • 9.10.6.2.2.2. Applications
        • 9.10.6.2.3. Metal oxide aerogels
        • 9.10.6.2.4. Organic aerogels
          • 9.10.6.2.4.1. Polymer aerogels
        • 9.10.6.2.5. Biobased and sustainable aerogels (bio-aerogels)
          • 9.10.6.2.5.1. Cellulose aerogels
            • 9.10.6.2.5.1.1. Cellulose nanofiber (CNF) aerogels
            • 9.10.6.2.5.1.2. Cellulose nanocrystal aerogels
            • 9.10.6.2.5.1.3. Bacterial nanocellulose aerogels
          • 9.10.6.2.5.2. Lignin aerogels
          • 9.10.6.2.5.3. Alginate aerogels
          • 9.10.6.2.5.4. Starch aerogels
          • 9.10.6.2.5.5. Chitosan aerogels
        • 9.10.6.2.6. Carbon aerogels
          • 9.10.6.2.6.1. Carbon nanotube aerogels
          • 9.10.6.2.6.2. Graphene and graphite aerogels
        • 9.10.6.2.7. Additive manufacturing (3D printing)
          • 9.10.6.2.7.1. Carbon nitride
          • 9.10.6.2.7.2. Gold
          • 9.10.6.2.7.3. Cellulose
          • 9.10.6.2.7.4. Graphene oxide
        • 9.10.6.2.8. Hybrid aerogels
  • 9.11. CCUS technologies in the cement industry
    • 9.11.1. Products
      • 9.11.1.1. Carbonated aggregates
      • 9.11.1.2. Additives during mixing
      • 9.11.1.3. Carbonates from natural minerals
      • 9.11.1.4. Carbonates from waste
    • 9.11.2. Concrete curing
    • 9.11.3. Costs
    • 9.11.4. Challenges
  • 9.12. Alternative Fuels for Cement Production
    • 9.12.1. Overview
    • 9.12.2. Fossil Fuels Alternatives
    • 9.12.3. Companies
    • 9.12.4. Cement Kilns
      • 9.12.4.1. Fuel Switching
        • 9.12.4.1.1. Projects
        • 9.12.4.1.2. Burner Design Considerations
      • 9.12.4.2. Alternative Fuels for Cement Kilns
        • 9.12.4.2.1. Waste
        • 9.12.4.2.2. Biomass
    • 9.12.5. Net-zero in the Cement Sector
    • 9.12.6. Modern cement plants
    • 9.12.7. Hydrogen in Cement Production
      • 9.12.7.1. Low-carbon hydrogen deployment in cement production
    • 9.12.8. Kiln electrification
      • 9.12.8.1. Overview
      • 9.12.8.2. Rotodynamic Heating Technology
      • 9.12.8.3. Electric Arc Plasma Technologies
      • 9.12.8.4. Resistive Heating
      • 9.12.8.5. Microwave and Induction Heating
      • 9.12.8.6. Carbon capture economics for cement production
      • 9.12.8.7. Electrifying cement plant calciners
    • 9.12.9. Electrochemical Cement Processing
    • 9.12.10. Solar power for cement production
      • 9.12.10.1. Concentrated Solar Power (CSP)
      • 9.12.10.2. CSP in Cement Production Technology
  • 9.13. Markets
    • 9.13.1. Overview
    • 9.13.2. Residential Buildings
    • 9.13.3. Commercial and Office Buildings
    • 9.13.4. Infrastructure
  • 9.14. Company Profiles (172 company profiles)

10. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제