¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.
¾÷°è´Â ÀüÅëÀûÀÎ ¸®Æ¬À̿ ¼Ö·ç¼Ç¿¡¼ ÷´Ü ÈÇÐ ¹× ºñ¿æµå ¸®Æ¬(Beyond Lithium) ´ëüǰÀ¸·Î ÀüȯÇϰí ÀÖÀ¸¸ç, ¹èÅ͸® ±â¼ú ȯ°æÀº Å« º¯È¸¦ ¸ÂÀÌÇϰí ÀÖ½À´Ï´Ù. ¸®Æ¬ÀÌ¿Â(Li-ion) ±â¼úÀÌ ÇöÀç 99% ÀÌ»óÀÇ ½ÃÀå Á¡À¯À²·Î ¼¼°è ¹èÅ͸® ½ÃÀåÀ» µ¶Á¡Çϰí ÀÖ´Â ¹Ý¸é, »õ·Î¿î ±â¼úÀº 2035³â±îÁö ½ÃÀåÀÇ ¾à 25% ÀÌ»óÀ» Â÷ÁöÇÒ °ÍÀ¸·Î ¿¹»óµË´Ï´Ù.
¼¼°èÀÇ Ã·´Ü ¸®Æ¬À̿ ¹èÅ͸® ¹× ºñ¿æµå ¸®Æ¬ ¹èÅ͸® ½ÃÀå¿¡ ´ëÇØ Á¶»ç ºÐ¼®ÇßÀ¸¸ç, °¢ ±â¼úº° ¹èÅ͸® ¼ö¿ä, Â÷¼¼´ë ¸®Æ¬À̿ ±â¼ú, ºñ¿æµå ¸®Æ¬ ¼Ö·ç¼Ç, °æÀï ±¸µµ, 377°³ ±â¾÷ ÇÁ·ÎÆÄÀÏ µîÀÇ Á¤º¸¸¦ ÀüÇØµå¸³´Ï´Ù.
¸ñÂ÷
Á¦1Àå ÁÖ¿ä ¿ä¾à
- ¸®Æ¬À̿ ¹èÅ͸® ½ÃÀå(2025³â)
- ¼¼°è ½ÃÀå ¿¹Ãø(-2035³â)
- ȹµæ °¡´ÉÇÑ ½ÃÀå ±Ô¸ð
- XEV¿ë ¸®Æ¬À̿ ¹èÅ͸® ÆÑ ¼ö¿ä(GWh)
- XEV¿ë ¸®Æ¬À̿ ¹èÅ͸® ½ÃÀå ±Ý¾×(10¾ï ´Þ·¯)
- ¹Ý°íü ¹èÅ͸® ½ÃÀå ¿¹Ãø(GWh)
- ¹Ý°íü ¹èÅ͸® ½ÃÀå ±Ý¾×(10¾ï ´Þ·¯)
- Àü°íü ¹èÅ͸® ½ÃÀå ¿¹Ãø(GWh)
- ³ªÆ®·ý À̿ ¹èÅ͸® ½ÃÀå ¿¹Ãø(GWh)
- ³ªÆ®·ý À̿ ¹èÅ͸® ½ÃÀå ±Ý¾×(10¾ï ´Þ·¯)
- ¸®Æ¬À̿ ¹èÅ͸® ¼ö¿ä vs. ºñ¿æµå ¸®Æ¬À̿ ¹èÅ͸® ¼ö¿ä
- BEV ¾ç±Ø ¿¹Ãø(GWh)
- BEV À½±Ø ¿¹Ãø(GWh)
- BEV À½±Ø ¿¹Ãø(10¾ï ´Þ·¯)
- EV ¾ç±Ø ¿¹Ãø(GWh)
- EV À½±Ø ¿¹Ãø(GWh)
- ÷´Ü À½±Ø ¿¹Ãø(GWh)
- ÷´Ü À½±Ø ¿¹Ãø(10¾ï ´Þ·¯)
- ÷´Ü ¸®Æ¬À̿ ¹èÅ͸® ¼¼°è ½ÃÀå
- Àü±âÀÚµ¿Â÷
- ±×¸®µå ½ºÅ丮Áö
- °¡ÀüÁ¦Ç°
- ÃàÀüÁö
- ½ÃÀå ¿¹Ãø
- ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
- ¹èÅ͸® ½ÃÀå ¸Þ°¡Æ®·»µå
- ¹èÅ͸®¿ë ÷´Ü Àç·á
- ºñ¿æµå ¸®Æ¬ ¹èÅ͸®¸¦ °³¹ßÇÏ´Â µ¿±â
- ¹èÅ͸® ÈÇÐ
Á¦2Àå ¸®Æ¬À̿ ¹èÅ͸®
- ¸®Æ¬ ¹èÅ͸® À¯Çü
- À½±ØÀç·á
- SWOT ºÐ¼®
- ¸®Æ¬À̿ ¹èÅ͸® ½ÃÀå µ¿Çâ
- ¸®Æ¬À̿ ±â¼ú ·Îµå¸Ê
- ½Ç¸®ÄÜ À½±Ø
- ¸®Æ¬À̿ ÀüÇØÁú
- ¾ç±Ø
- ¹ÙÀδõ¿Í Àüµµ¼º ÷°¡Á¦
- ¼¼ÆÛ·¹ÀÌÅÍ
- ¹é±ÝÁ· ±Ý¼Ó
- ¸®Æ¬À̿ ¹èÅ͸® ½ÃÀå ±â¾÷
- ¸®Æ¬À̿ ÀçȰ¿ë
- ¼¼°èÀÇ ¸ÅÃâ
Á¦3Àå ¸®Æ¬ ±Ý¼Ó ¹èÅ͸®
- ±â¼ú ¼³¸í
- Àü°íü ¹èÅ͸®¿Í ¸®Æ¬ ±Ý¼Ó À½±Ø
- ¿¡³ÊÁö ¹Ðµµ Çâ»ó
- ¸®Æ¬ ±Ý¼Ó À½±Ø
- °úÁ¦
- ¿¡³ÊÁö ¹Ðµµ
- ¾Æ³ëµå·¹½º¼¿
- ¸®Æ¬ ±Ý¼Ó ¹èÅ͸®¿Í Àü°íü ¹èÅ͸®
- ÇÏÀ̺긮µå ¹èÅ͸®
- ¿ëµµ
- SWOT ºÐ¼®
- Á¦Ç° °³¹ß¾÷ü
Á¦4Àå ¸®Æ¬È² ¹èÅ͸®
- ±â¼ú ¼³¸í
- ¸®Æ¬È²(Li-S) ¹èÅ͸® µ¿ÀÛ ¿ø¸®
- ºñ¿ë
- Àç·á ±¸¼º
- ¸®Æ¬ °µµ
- ¹ë·ùüÀÎ
- ½ÃÀå
- SWOT ºÐ¼®
- ¼¼°èÀÇ ¸ÅÃâ
- Á¦Ç° °³¹ß¾÷ü
Á¦5Àå Æ¼Åº»ê ¸®Æ¬(LTO)°ú ´Ï¿Àºê»ê ¸®Æ¬ ¹èÅ͸®
- ±â¼ú ¼³¸í
- ¼¼°èÀÇ ¸ÅÃâ
- Á¦Ç° °³¹ß¾÷ü
Á¦6Àå ³ªÆ®·ý ÀÌ¿Â(NAÀÌ¿Â) ¹èÅ͸®
- ±â¼ú ¼³¸í
- ´Ù¸¥ À¯ÇüÀÇ ¹èÅ͸®¿ÍÀÇ ºñ±³ ºÐ¼®
- ¸®Æ¬À̿°úÀÇ ºñ¿ëÀÇ ºñ±³
- ³ªÆ®·ý À̿ ¹èÅ͸® ¼¿ Àç·á
- SWOT ºÐ¼®
- ¼¼°èÀÇ ¸ÅÃâ
- Á¦Ç° °³¹ß¾÷ü
Á¦7Àå ³ªÆ®·ý Ȳ ¹èÅ͸®
Á¦8Àå ¾Ë·ç¹Ì´½À̿ ¹èÅ͸®
- ±â¼ú ¼³¸í
- SWOT ºÐ¼®
- »ó¾÷È
- ¼¼°èÀÇ ¸ÅÃâ
- Á¦Ç° °³¹ß¾÷ü
Á¦9Àå Àü°íü ¹èÅ͸®
- ±â¼ú ¼³¸í
- Ư¡°ú ÀÌÁ¡
- ±â¼ú »ç¾ç
- À¯Çü
- ¸¶ÀÌÅ©·Î ¹èÅ͸®
- ¹úÅ©Çü Àü°íü ¹èÅ͸®
- SWOT ºÐ¼®
- Á¦ÇÑ
- ¼¼°èÀÇ ¸ÅÃâ
- Á¦Ç° °³¹ß¾÷ü
Á¦10Àå Ç÷º¼ºí ¹èÅ͸®
- ±â¼ú ¼³¸í
- ±â¼ú »ç¾ç
- Ç÷º¼ºí ÀÏ·ºÆ®·Î´Ð½º
- Ç÷º¼ºí Àç·á
- Ç÷º¼ºí ¿þ¾î·¯ºí ±Ý¼Ó À¯È² ¹èÅ͸®
- Ç÷º¼ºí ¿þ¾î·¯ºí ±Ý¼Ó °ø±â ¹èÅ͸®
- Ç÷º¼ºí ¸®Æ¬À̿ ¹èÅ͸®
- Ç÷º¼ºí ¸®Æ¬È² ¹èÅ͸®
- Ç÷º¼ºí ¸®Æ¬ ÀÌ»êȸÁ°£ ¹èÅ͸®
- Ç÷º¼ºí ¾Æ¿¬°è ¹èÅ͸®
- ¼¶À¯»ó ¹èÅ͸®
- ¿þ¾î·¯ºí ¿¡³ÊÁö ÀúÀå µð¹ÙÀ̽º¿Í Á¶ÇÕÇÑ ¿¡³ÊÁö ¼öÈ®
- SWOT ºÐ¼®
- ¼¼°èÀÇ ¸ÅÃâ
- Á¦Ç° °³¹ß¾÷ü
Á¦11Àå Åõ¸í ¹èÅ͸®
- ±â¼ú ¼³¸í
- ÄÄÆ÷³ÍÆ®
- SWOT ºÐ¼®
- ½ÃÀå Àü¸Á
Á¦12Àå ºÐÇØ¼º ¹èÅ͸®
- ±â¼ú ¼³¸í
- ÄÄÆ÷³ÍÆ®
- SWOT ºÐ¼®
- ½ÃÀå Àü¸Á
- Á¦Ç° °³¹ß¾÷ü
Á¦13Àå ÇÁ¸°Æ® ¹èÅ͸®
- ±â¼ú »ç¾ç
- ÄÄÆ÷³ÍÆ®
- ¼³°è
- ÁÖ¿ä Æ¯Â¡
- Àμ⠰¡´ÉÇÑ ÁýÀüü
- Àμ⠰¡´ÉÇÑ Àü±Ø
- Àç·á
- ¿ëµµ
- Àμ⠱â¼ú
- ¸®Æ¬ÀÌ¿Â(LIB) ÇÁ¸°Æ® ¹èÅ͸®
- ¾Æ¿¬°è ÇÁ¸°Æ® ¹èÅ͸®
- 3D ÇÁ¸°Æ® ¹èÅ͸®
- SWOT ºÐ¼®
- ¼¼°èÀÇ ¸ÅÃâ
- Á¦Ç° °³¹ß¾÷ü
Á¦14Àå ·¹µ¶½º ÇÃ·Î¿ì ¹èÅ͸®
- ±â¼ú ¼³¸í
- À¯Çü
- ·¹µ¶½º ÇÃ·Î¿ì ¹èÅ͸® ½ÃÀå
- ¼¼°èÀÇ ¸ÅÃâ
Á¦15Àå ¾Æ¿¬°è ¹èÅ͸®
- ±â¼ú ¼³¸í
- ½ÃÀå Àü¸Á
- Á¦Ç° °³¹ß¾÷ü
Á¦16Àå AI ¹èÅ͸® ±â¼ú
Á¦17Àå ÇÁ¸°Æ® ½´ÆÛÄ¿ÆÐ½ÃÅÍ
- °³¿ä
- Àμ⠹æ¹ý
- Àü±Ø Àç·á
- ÀüÇØÁú
Á¦18Àå ¼¿°ú ¹èÅ͸® ¼³°è
Á¦19Àå ±â¾÷ °³¿ä(377°³ ±â¾÷ ÇÁ·ÎÆÄÀÏ)
Á¦20Àå Á¶»ç ¹æ¹ý
Á¦21Àå Âü°í¹®Çå
ksm
The battery technology landscape is undergoing a profound transformation as the industry shifts from conventional lithium-ion solutions toward advanced chemistries and beyond-lithium alternatives. While lithium-ion (Li-ion) technology currently dominates the global battery market with over 99% market share, emerging technologies are poised to capture approximately >25% of the market by 2035. This report provides an in-depth analysis of both advanced Li-ion batteries and beyond-lithium technologies that will revolutionize energy storage across multiple applications from 2025 to 2035.
Report contents include:
- Battery demand in GWh by technology type (2025-2035)
- Market valuation in billions of dollars
- Application-specific adoption curves
- Regional market development
- Material consumption trends for advanced anodes and cathodes
- Analysis of Next-Generation Lithium-Ion Technologies:
- Silicon and silicon-carbon composite anodes
- High and ultra-high nickel cathode materials
- Single crystal cathodes
- Lithium-manganese-rich (LMR-NMC) formulations
- Advanced electrolyte systems
- Lithium manganese iron phosphate (LMFP)
- Beyond-Lithium Solutions:
- Semi-solid-state and solid-state batteries
- Sodium-ion and sodium-sulfur systems
- Lithium-sulfur batteries
- Lithium-metal and anode-less designs
- Zinc-based technologies
- Redox flow batteries
- Aluminum-ion batteries
- Specialized Form Factors:
- Flexible batteries
- Transparent energy storage
- Degradable batteries
- Printed and 3D-printed solutions
- Application Market analysis:
- Electric Vehicle Ecosystem:
- Passenger electric vehicles (BEV/PHEV)
- Electric buses, trucks, and commercial vehicles
- Micro-mobility solutions
- Off-road applications including construction and marine
- Battery sizing requirements by vehicle type
- Grid Energy Storage:
- Large-scale installations
- Behind-the-meter commercial systems
- Residential storage solutions
- Consumer Electronics:
- Next-generation devices
- Wearable technology
- Portable power applications
- Supply Chain and Manufacturing Analysis
- Advanced cathode production methods
- Silicon anode manufacturing processes
- Solid-state battery production techniques
- Recycling technologies for lithium-ion and beyond-lithium batteries
- Raw material requirements and supply chain considerations
- The integration of AI in battery development and production
- Technology readiness assessments and commercialization timelines
- Application-specific battery selection frameworks
- Regional competitive advantages in battery innovation
- Material intensity and sustainability considerations
- Emerging use cases for specialized battery technologies
- Competitive Landscape. The report profiles over 375 companies across the battery value chain, from established manufacturers to innovative start-ups, with detailed analysis of their technology positioning, production capabilities, and strategic partnerships. Companies profiled include 2D Fab AB, 24M Technologies, Inc., 3DOM Inc., 6K Energy, Abound Energy, AC Biode, ACCURE Battery Intelligence, Addionics, Advano, Agora Energy Technologies, Aionics Inc., AirMembrane Corporation, Allegro Energy Pty. Ltd., Alsym Energy, Altairnano / Yinlong, Altris AB, Aluma Power, Altech Batteries Ltd., Ambri, Inc., AMO Greentech, Ampcera, Inc., Amprius, Inc., AMTE Power, Anaphite Limited, Anthro Energy, APB Corporation, Appear Inc., Ateios Systems, Atlas Materials, Australian Advanced Materials, Australian Vanadium Limited, Australia VRFB ESS Company (AVESS), Avanti Battery Company, AZUL Energy Co., Ltd, BAK Power Battery, BASF, BattGenie Inc., Basquevolt, Bedimensional S.p.A, Beijing WeLion New Energy Technology, Bemp Research Company, BenAn Energy Technology, BGT Materials Ltd., Big Pawer, Biwatt Power, Black Diamond Structures, LLC, Blackstone Resources, Blue Current, Inc., Blue Solutions, Blue Spark Technologies, Inc., Bodi, Inc., Brill Power, BrightVolt, Inc., Broadbit Batteries Oy, BTR New Energy Materials, Inc., BYD Company Limited, Cabot Corporation, California Lithium Battery, CAMX Power, CAPCHEM, CarbonScape Ltd., CBAK Energy Technology, Inc., CCL Design, CEC Science & Technology Co., Ltd, Contemporary Amperex Technology Co Ltd (CATL), CellCube, CellsX, Central Glass Co., Ltd., CENS Materials Ltd., CERQ, Ceylon Graphene Technologies (Pvt) Ltd, Cham Battery Technology, Chasm Advanced Materials, Inc., Chemix, Chengdu Baisige Technology Co., Ltd., China Sodium-ion Times, Citrine Informatics, Clarios, Clim8, CMBlu Energy AG, Connexx Systems Corp, Conovate, Coreshell, Customcells, Cymbet, Daejoo Electronic Materials, Dalian Rongke Power, DFD, Dotz Nano, Dreamweaver International, Eatron Technologies, Ecellix, Echion Technologies, EcoPro BM, ElecJet, Elestor, Elegus Technologies, E-Magy, Energy Storage Industries, Enerpoly AB, Enfucell Oy, Enevate, EnPower Greentech, Enovix, Ensurge Micropower ASA, E-Zinc, Eos Energy, Enzinc, Eonix Energy, ESS Tech, EthonAI, EVE Energy Co., Ltd, Exencell New Energy, Factorial Energy, Faradion Limited, Farasis Energy, FDK Corporation, Feon Energy, Inc., FinDreams Battery Co., Ltd., FlexEnergy LLC, Flow Aluminum, Inc., Flux XII, Forge Nano, Inc., Forsee Power, Fraunhofer Institute for Electronic Nano Systems (ENAS), Front Edge Technology, Fuelium, Fuji Pigment Co., Ltd., Fujitsu Laboratories Ltd., Corporation Guangzhou Automobile New Energy (GAC), Ganfeng Lithium, GDI, Gelion Technologies Pty Ltd., Geyser Batteries Oy, General Motors (GM), Global Graphene Group, Gnanomat S.L., Gotion High Tech, GQenergy srl, Grafentek, Grafoid, Graphene Batteries AS, Graphene Manufacturing Group Pty Ltd (GMG), Great Power Energy, Green Energy Storage S.r.l. (GES), GRST, Shenzhen Grepow Battery Co., Ltd. (Grepow), Group14 Technologies, Inc., Guoke Tanmei New Materials, GUS Technology, H2 Inc., Hansol Chemical, HE3DA Ltd., Hexalayer LLC, High Performance Battery Holding AG, HiNa Battery Technologies Limited, Hirose Paper Mfg Co., Ltd., HiT Nano, Hitachi Zosen Corporation, Horizontal Na Energy, HPQ Nano Silicon Powders Inc., Hua Na New Materials, Hybrid Kinetic Group, HydraRedox Iberia S.L., IBU-tec Advanced Materials AG, Idemitsu Kosan Co., Ltd., Ilika plc, Indi Energy, INEM Technologies, Inna New Energy, Innolith, InnovationLab, Inobat, Intecells, Intellegens, Invinity Energy Systems, Ionblox, Inc., Ionic Materials, Ionic Mineral Technologies, Ion Storage Systems LLC, Iontra, I-Ten SA, Janaenergy Technology, Jenax, Inc., Jiana Energy, JIOS Aerogel, JNC Corporation, Johnson Energy Storage, Inc., Johnson Matthey, Jolt Energy Storage, JR Energy Solution, Kemiwatt, Kite Rise Technologies GmbH, KoreaGraph, Korid Energy / AVESS, Koura, Kusumoto Chemicals, Largo, Inc., Le System Co., Ltd, Lepu Sodium Power, LeydenJar Technologies, LG Energy Solutions, LiBest, Inc., Libode New Material, LiCAP Technologies, Inc., Li-Fun Technology, Li-Metal Corp, LiNa Energy, LIND Limited, Lionrock Batteries, LionVolt BV, Li-S Energy, Lithium Werks BV, LIVA Power Management Systems GmbH, Lucky Sodium Storage, Lyten, Inc., Merck & Co., Inc., Microvast, Mitsubishi Chemical Corporation, Monolith AI, Moonwat, mPhase Technologies, Murata Manufacturing Co., Ltd., NanoGraf Corporation, Nacoe Energy, nanoFlocell, Nanom, Nanomakers, Nano One Materials, NanoPow AS, Nanoramic Laboratories, Nanoresearch, Inc., Nanotech Energy Inc., Natrium Energy, Natron Energy, Nawa Techonologies, NDB, NEC Corporation, NEI Corporation, Neo Battery Materials Ltd., New Dominion Enterprises, Nexeon, NGK Insulators Ltd., NIO, Inc., Nippon Chemicon, Nippon Electric Glass, Noco-noco, Noon Energy, Nordische Technologies, Novonix, Nuriplan Co., Ltd., Nuvola Technology, Nuvvon, Nyobolt, OneD Battery Sciences, Our Next Energy (ONE), Paraclete Energy, Paragonage, PEAK Energy, Piersica, Pinflow Energy Storage, PJP Eye Ltd., Polarium, PolyJoule, PolyPlus Battery Company, Posco Chemical, PowerCo SE, prelonic technologies, Prieto Battery, Primearth EV Energy Co., Ltd., Prime Batteries Technology, Primus Power, Printed Energy Pty Ltd., ProfMOF AS and more.....
TABLE OF CONTENTS
1. EXECUTIVE SUMMARY
- 1.1. The Li-ion Battery Market in 2025
- 1.2. Global Market Forecasts to 2035
- 1.2.1. Addressable markets
- 1.2.2. Li-ion battery pack demand for XEV (GWh)
- 1.2.3. Li-ion battery market value for XEV ($B)
- 1.2.4. Semi-solid-state battery market forecast (GWh)
- 1.2.5. Semi-solid-state battery market value ($B)
- 1.2.6. Solid-state battery market forecast (GWh)
- 1.2.7. Sodium-ion battery market forecast (GWh)
- 1.2.8. Sodium-ion battery market value ($B)
- 1.2.9. Li-ion battery demand versus beyond Li-ion batteries demand
- 1.2.10. BEV car cathode forecast (GWh)
- 1.2.11. BEV anode forecast (GWh)
- 1.2.12. BEV anode forecast ($B)
- 1.2.13. EV cathode forecast (GWh)
- 1.2.14. EV Anode forecast (GWh)
- 1.2.15. Advanced anode forecast (GWh)
- 1.2.16. Advanced anode forecast (S$B)
- 1.3. The global market for advanced Li-ion batteries
- 1.3.1. Electric vehicles
- 1.3.1.1. Market overview
- 1.3.1.2. Battery Electric Vehicles
- 1.3.1.3. Electric buses, vans and trucks
- 1.3.1.3.1. Electric medium and heavy duty trucks
- 1.3.1.3.2. Electric light commercial vehicles (LCVs)
- 1.3.1.3.3. Electric buses
- 1.3.1.3.4. Micro EVs
- 1.3.1.4. Electric off-road
- 1.3.1.4.1. Construction vehicles
- 1.3.1.4.2. Electric trains
- 1.3.1.4.3. Electric boats
- 1.3.1.5. Market demand and forecasts
- 1.3.2. Grid storage
- 1.3.2.1. Market overview
- 1.3.2.2. Technologies
- 1.3.2.3. Market demand and forecasts
- 1.3.3. Consumer electronics
- 1.3.3.1. Market overview
- 1.3.3.2. Technologies
- 1.3.3.3. Market demand and forecasts
- 1.3.4. Stationary batteries
- 1.3.4.1. Market overview
- 1.3.4.2. Technologies
- 1.3.4.3. Market demand and forecasts
- 1.3.5. Market Forecasts
- 1.4. Market drivers
- 1.5. Battery market megatrends
- 1.6. Advanced materials for batteries
- 1.7. Motivation for battery development beyond lithium
- 1.8. Battery chemistries
2. LI-ION BATTERIES
- 2.1. Types of Lithium Batteries
- 2.2. Anode materials
- 2.2.1. Graphite
- 2.2.2. Lithium Titanate
- 2.2.3. Lithium Metal
- 2.2.4. Silicon anodes
- 2.3. SWOT analysis
- 2.4. Trends in the Li-ion battery market
- 2.5. Li-ion technology roadmap
- 2.6. Silicon anodes
- 2.6.1. Benefits
- 2.6.2. Silicon anode performance
- 2.6.3. Development in li-ion batteries
- 2.6.3.1. Manufacturing silicon
- 2.6.3.2. Commercial production
- 2.6.3.3. Costs
- 2.6.3.4. Value chain
- 2.6.3.5. Markets and applications
- 2.6.3.5.1. EVs
- 2.6.3.5.2. Consumer electronics
- 2.6.3.5.3. Energy Storage
- 2.6.3.5.4. Portable Power Tools
- 2.6.3.5.5. Emergency Backup Power
- 2.6.3.6. Future outlook
- 2.6.4. Consumption
- 2.6.4.1. By anode material type
- 2.6.4.2. By end use market
- 2.6.5. Alloy anode materials
- 2.6.6. Silicon-carbon composites
- 2.6.7. Silicon oxides and coatings
- 2.6.8. Carbon nanotubes in Li-ion
- 2.6.9. Graphene coatings for Li-ion
- 2.6.10. Prices
- 2.6.11. Companies
- 2.7. Li-ion electrolytes
- 2.8. Cathodes
- 2.8.1. Materials
- 2.8.1.1. High and Ultra-High nickel cathode materials
- 2.8.1.1.1. Types
- 2.8.1.1.2. Benefits
- 2.8.1.1.3. Stability
- 2.8.1.1.4. Single Crystal Cathodes
- 2.8.1.1.5. Commercial activity
- 2.8.1.1.6. Manufacturing
- 2.8.1.1.7. High manganese content
- 2.8.1.2. Zero-cobalt NMx
- 2.8.1.2.1. Overview
- 2.8.1.2.2. Ultra-high nickel, zero-cobalt cathodes
- 2.8.1.2.3. Extending the operating voltage
- 2.8.1.2.4. Operating NMC cathodes at high voltages
- 2.8.1.3. Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC)
- 2.8.1.3.1. Li-Mn-rich cathodes LMR-NMC
- 2.8.1.3.2. Stability
- 2.8.1.3.3. Energy density
- 2.8.1.3.4. Commercialization
- 2.8.1.3.5. Hybrid battery chemistry design for manganese-rich
- 2.8.1.4. Lithium Cobalt Oxide(LiCoO2) - LCO
- 2.8.1.5. Lithium Iron Phosphate(LiFePO4) - LFP
- 2.8.1.6. Lithium Manganese Oxide (LiMn2O4) - LMO
- 2.8.1.7. Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) - NMC
- 2.8.1.8. Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) - NCA
- 2.8.1.9. Lithium manganese phosphate (LiMnP)
- 2.8.1.10. Lithium manganese iron phosphate (LiMnFePO4 or LMFP)
- 2.8.1.10.1. Key characteristics
- 2.8.1.10.2. LMFP energy density
- 2.8.1.10.3. Costs
- 2.8.1.10.4. Saft phosphate-based cathodes
- 2.8.1.10.5. Commercialization
- 2.8.1.10.6. Challenges
- 2.8.1.10.7. LMFP (lithium manganese iron phosphate) market
- 2.8.1.10.8. Companies
- 2.8.1.11. Lithium nickel manganese oxide (LNMO)
- 2.8.1.11.1. Overview
- 2.8.1.11.2. High-voltage spinel cathode LNMO
- 2.8.1.11.3. LNMO energy density
- 2.8.1.11.4. Cathode chemistry selection
- 2.8.1.11.5. LNMO (lithium nickel manganese oxide) high-voltage spinel cathodes cost
- 2.8.1.12. Graphite and LTO
- 2.8.1.13. Silicon
- 2.8.1.14. Lithium metal
- 2.8.2. Alternative Cathode Production
- 2.8.2.1. Production/Synthesis
- 2.8.2.2. Commercial development
- 2.8.2.3. Recycling cathodes
- 2.8.3. Comparison of key lithium-ion cathode materials
- 2.8.4. Emerging cathode material synthesis methods
- 2.8.5. Cathode coatings
- 2.9. Binders and conductive additives
- 2.10. Separators
- 2.11. Platinum group metals
- 2.12. Li-ion battery market players
- 2.13. Li-ion recycling
- 2.13.1. Comparison of recycling techniques
- 2.13.2. Hydrometallurgy
- 2.13.2.1. Method overview
- 2.13.2.1.1. Solvent extraction
- 2.13.2.2. SWOT analysis
- 2.13.3. Pyrometallurgy
- 2.13.3.1. Method overview
- 2.13.3.2. SWOT analysis
- 2.13.4. Direct recycling
- 2.13.4.1. Method overview
- 2.13.4.1.1. Electrolyte separation
- 2.13.4.1.2. Separating cathode and anode materials
- 2.13.4.1.3. Binder removal
- 2.13.4.1.4. Relithiation
- 2.13.4.1.5. Cathode recovery and rejuvenation
- 2.13.4.1.6. Hydrometallurgical-direct hybrid recycling
- 2.13.4.2. SWOT analysis
- 2.13.5. Other methods
- 2.13.5.1. Mechanochemical Pretreatment
- 2.13.5.2. Electrochemical Method
- 2.13.5.3. Ionic Liquids
- 2.13.6. Recycling of Specific Components
- 2.13.6.1. Anode (Graphite)
- 2.13.6.2. Cathode
- 2.13.6.3. Electrolyte
- 2.13.7. Recycling of Beyond Li-ion Batteries
- 2.13.7.1. Conventional vs Emerging Processes
- 2.14. Global revenues
3. LITHIUM-METAL BATTERIES
- 3.1. Technology description
- 3.2. Solid-state batteries and lithium metal anodes
- 3.3. Increasing energy density
- 3.4. Lithium-metal anodes
- 3.5. Challenges
- 3.6. Energy density
- 3.7. Anode-less Cells
- 3.7.1. Overview
- 3.7.2. Benefits
- 3.7.3. Key companies
- 3.8. Lithium-metal and solid-state batteries
- 3.9. Hybrid batteries
- 3.10. Applications
- 3.11. SWOT analysis
- 3.12. Product developers
4. LITHIUM-SULFUR BATTERIES
- 4.1. Technology description
- 4.2. Operating principle of lithium-sulfur (Li-S) batteries
- 4.2.1. Advantages
- 4.2.2. Challenges
- 4.2.3. Commercialization
- 4.3. Costs
- 4.4. Material composition
- 4.5. Lithium intensity
- 4.6. Value chain
- 4.7. Markets
- 4.8. SWOT analysis
- 4.9. Global revenues
- 4.10. Product developers
5. LITHIUM TITANATE OXIDE (LTO) AND NIOBATE BATTERIES
- 5.1. Technology description
- 5.1.1. Lithium titanate oxide (LTO)
- 5.1.2. Niobium titanium oxide (NTO)
- 5.1.2.1. Niobium tungsten oxide
- 5.1.2.2. Vanadium oxide anodes
- 5.2. Global revenues
- 5.3. Product developers
6. SODIUM-ION (NA-ION) BATTERIES
- 6.1. Technology description
- 6.1.1. Cathode materials
- 6.1.1.1. Layered transition metal oxides
- 6.1.1.1.1. Types
- 6.1.1.1.2. Cycling performance
- 6.1.1.1.3. Advantages and disadvantages
- 6.1.1.1.4. Market prospects for LO SIB
- 6.1.1.2. Polyanionic materials
- 6.1.1.2.1. Advantages and disadvantages
- 6.1.1.2.2. Types
- 6.1.1.2.3. Market prospects for Poly SIB
- 6.1.1.3. Prussian blue analogues (PBA)
- 6.1.1.3.1. Types
- 6.1.1.3.2. Advantages and disadvantages
- 6.1.1.3.3. Market prospects for PBA-SIB
- 6.1.2. Anode materials
- 6.1.2.1. Hard carbons
- 6.1.2.2. Carbon black
- 6.1.2.3. Graphite
- 6.1.2.4. Carbon nanotubes
- 6.1.2.5. Graphene
- 6.1.2.6. Alloying materials
- 6.1.2.7. Sodium Titanates
- 6.1.2.8. Sodium Metal
- 6.1.3. Electrolytes
- 6.2. Comparative analysis with other battery types
- 6.3. Cost comparison with Li-ion
- 6.4. Materials in sodium-ion battery cells
- 6.5. SWOT analysis
- 6.6. Global revenues
- 6.7. Product developers
- 6.7.1. Battery Manufacturers
- 6.7.2. Large Corporations
- 6.7.3. Automotive Companies
- 6.7.4. Chemicals and Materials Firms
7. SODIUM-SULFUR BATTERIES
- 7.1. Technology description
- 7.2. Applications
- 7.3. SWOT analysis
8. ALUMINIUM-ION BATTERIES
- 8.1. Technology description
- 8.2. SWOT analysis
- 8.3. Commercialization
- 8.4. Global revenues
- 8.5. Product developers
9. SOLID STATE BATTERIES
- 9.1. Technology description
- 9.1.1. Solid-state electrolytes
- 9.2. Features and advantages
- 9.3. Technical specifications
- 9.4. Types
- 9.5. Microbatteries
- 9.5.1. Introduction
- 9.5.2. Materials
- 9.5.3. Applications
- 9.5.4. 3D designs
- 9.5.4.1. 3D printed batteries
- 9.6. Bulk type solid-state batteries
- 9.7. SWOT analysis
- 9.8. Limitations
- 9.9. Global revenues
- 9.10. Product developers
10. FLEXIBLE BATTERIES
- 10.1. Technology description
- 10.2. Technical specifications
- 10.2.1. Approaches to flexibility
- 10.3. Flexible electronics
- 10.4. Flexible materials
- 10.5. Flexible and wearable Metal-sulfur batteries
- 10.6. Flexible and wearable Metal-air batteries
- 10.7. Flexible Lithium-ion Batteries
- 10.7.1. Types of Flexible/stretchable LIBs
- 10.7.1.1. Flexible planar LiBs
- 10.7.1.2. Flexible Fiber LiBs
- 10.7.1.3. Flexible micro-LiBs
- 10.7.1.4. Stretchable lithium-ion batteries
- 10.7.1.5. Origami and kirigami lithium-ion batteries
- 10.8. Flexible Li/S batteries
- 10.8.1. Components
- 10.8.2. Carbon nanomaterials
- 10.9. Flexible lithium-manganese dioxide (Li-MnO2) batteries
- 10.10. Flexible zinc-based batteries
- 10.10.1. Components
- 10.10.1.1. Anodes
- 10.10.1.2. Cathodes
- 10.10.2. Challenges
- 10.10.3. Flexible zinc-manganese dioxide (Zn-Mn) batteries
- 10.10.4. Flexible silver-zinc (Ag-Zn) batteries
- 10.10.5. Flexible Zn-Air batteries
- 10.10.6. Flexible zinc-vanadium batteries
- 10.11. Fiber-shaped batteries
- 10.11.1. Carbon nanotubes
- 10.11.2. Types
- 10.11.3. Applications
- 10.11.4. Challenges
- 10.12. Energy harvesting combined with wearable energy storage devices
- 10.13. SWOT analysis
- 10.14. Global revenues
- 10.15. Product developers
11. TRANSPARENT BATTERIES
- 11.1. Technology description
- 11.2. Components
- 11.3. SWOT analysis
- 11.4. Market outlook
12. DEGRADABLE BATTERIES
- 12.1. Technology description
- 12.2. Components
- 12.3. SWOT analysis
- 12.4. Market outlook
- 12.5. Product developers
13. PRINTED BATTERIES
- 13.1. Technical specifications
- 13.2. Components
- 13.3. Design
- 13.4. Key features
- 13.5. Printable current collectors
- 13.6. Printable electrodes
- 13.7. Materials
- 13.8. Applications
- 13.9. Printing techniques
- 13.10. Lithium-ion (LIB) printed batteries
- 13.11. Zinc-based printed batteries
- 13.12. 3D Printed batteries
- 13.12.1. 3D Printing techniques for battery manufacturing
- 13.12.2. Materials for 3D printed batteries
- 13.12.2.1. Electrode materials
- 13.12.2.2. Electrolyte Materials
- 13.13. SWOT analysis
- 13.14. Global revenues
- 13.15. Product developers
14. REDOX FLOW BATTERIES
- 14.1. Technology description
- 14.2. Types
- 14.2.1. Vanadium redox flow batteries (VRFB)
- 14.2.1.1. Technology description
- 14.2.1.2. SWOT analysis
- 14.2.1.3. Market players
- 14.2.2. Zinc-bromine flow batteries (ZnBr)
- 14.2.2.1. Technology description
- 14.2.2.2. SWOT analysis
- 14.2.2.3. Market players
- 14.2.3. Polysulfide bromine flow batteries (PSB)
- 14.2.3.1. Technology description
- 14.2.3.2. SWOT analysis
- 14.2.4. Iron-chromium flow batteries (ICB)
- 14.2.4.1. Technology description
- 14.2.4.2. SWOT analysis
- 14.2.4.3. Market players
- 14.2.5. All-Iron flow batteries
- 14.2.5.1. Technology description
- 14.2.5.2. SWOT analysis
- 14.2.5.3. Market players
- 14.2.6. Zinc-iron (Zn-Fe) flow batteries
- 14.2.6.1. Technology description
- 14.2.6.2. SWOT analysis
- 14.2.6.3. Market players
- 14.2.7. Hydrogen-bromine (H-Br) flow batteries
- 14.2.7.1. Technology description
- 14.2.7.2. SWOT analysis
- 14.2.7.3. Market players
- 14.2.8. Hydrogen-Manganese (H-Mn) flow batteries
- 14.2.8.1. Technology description
- 14.2.8.2. SWOT analysis
- 14.2.8.3. Market players
- 14.2.9. Organic flow batteries
- 14.2.9.1. Technology description
- 14.2.9.2. SWOT analysis
- 14.2.9.3. Market players
- 14.2.10. Emerging Flow-Batteries
- 14.2.10.1. Semi-Solid Redox Flow Batteries
- 14.2.10.2. Solar Redox Flow Batteries
- 14.2.10.3. Air-Breathing Sulfur Flow Batteries
- 14.2.10.4. Metal-CO2 Batteries
- 14.2.11. Hybrid Flow Batteries
- 14.2.11.1. Zinc-Cerium Hybrid Flow Batteries
- 14.2.11.1.1. Technology description
- 14.2.11.2. Zinc-Polyiodide Flow Batteries
- 14.2.11.2.1. Technology description
- 14.2.11.3. Zinc-Nickel Hybrid Flow Batteries
- 14.2.11.3.1. Technology description
- 14.2.11.4. Zinc-Bromine Hybrid Flow Batteries
- 14.2.11.4.1. Technology description
- 14.2.11.5. Vanadium-Polyhalide Flow Batteries
- 14.2.11.5.1. Technology description
- 14.3. Markets for redox flow batteries
- 14.4. Global revenues
15. ZN-BASED BATTERIES
- 15.1. Technology description
- 15.1.1. Zinc-Air batteries
- 15.1.2. Zinc-ion batteries
- 15.1.3. Zinc-bromide
- 15.2. Market outlook
- 15.3. Product developers
16. AI BATTERY TECHNOLOGY
- 16.1. Overview
- 16.2. Applications
- 16.2.1. Machine Learning
- 16.2.2. Material Informatics
- 16.2.2.1. Overview
- 16.2.2.2. Companies
- 16.2.3. Cell Testing
- 16.2.3.1. Overview
- 16.2.3.2. Companies
- 16.2.4. Cell Assembly and Manufacturing
- 16.2.4.1. Overview
- 16.2.4.2. Companies
- 16.2.5. Battery Analytics
- 16.2.5.1. Overview
- 16.2.5.2. Companies
- 16.2.6. Second Life Assessment
- 16.2.6.1. Overview
- 16.2.6.2. Companies
17. PRINTED SUPERCAPACITORS
- 17.1. Overview
- 17.2. Printing methods
- 17.3. Electrode materials
- 17.4. Electrolytes
18. CELL AND BATTERY DESIGN
- 18.1. Cell Design
- 18.1.1. Overview
- 18.1.1.1. Larger cell formats
- 18.1.1.2. Bipolar battery architecture
- 18.1.1.3. Thick Format Electrodes
- 18.1.1.4. Dual Electrolyte Li-ion
- 18.1.2. Commercial examples
- 18.1.2.1. Tesla 4680 Tabless Cell
- 18.1.2.2. EnPower multi-layer electrode technology
- 18.1.2.3. Prieto Battery
- 18.1.2.4. Addionics
- 18.1.3. Electrolyte Additives
- 18.1.4. Enhancing battery performance
- 18.2. Cell Performance
- 18.2.1. Energy density
- 18.2.1.1. BEV cell energy
- 18.2.1.2. Cell energy density
- 18.3. Battery Packs
- 18.3.1. Cell-to-pack
- 18.3.2. Cell-to-chassis/body
- 18.3.3. Bipolar batteries
- 18.3.4. Hybrid battery packs
- 18.3.4.1. CATL
- 18.3.4.2. Our Next Energy
- 18.3.4.3. Nio
- 18.3.5. Battery Management System (BMS)
- 18.3.5.1. Overview
- 18.3.5.2. Advantages
- 18.3.5.3. Innovation
- 18.3.5.4. Fast charging capabilities
- 18.3.5.5. Wireless Battery Management System technology
19. COMPANY PROFILES (377 company profiles)
20. RESEARCH METHODOLOGY
- 20.1. Report scope
- 20.2. Research methodology
21. REFERENCES