½ÃÀ庸°í¼­
»óǰÄÚµå
1744006

¼¼°èÀÇ ¸®Æ¬ Á÷Á¢ ÃßÃâ ½ÃÀå(2026-2036³â)

The Global Direct Lithium Extraction Market 2026-2036

¹ßÇàÀÏ: | ¸®¼­Ä¡»ç: Future Markets, Inc. | ÆäÀÌÁö Á¤º¸: ¿µ¹® 205 Pages, 99 Tables, 20 Figures | ¹è¼Û¾È³» : Áï½Ã¹è¼Û

    
    
    



¡Ø º» »óǰÀº ¿µ¹® ÀÚ·á·Î Çѱ۰ú ¿µ¹® ¸ñÂ÷¿¡ ºÒÀÏÄ¡ÇÏ´Â ³»¿ëÀÌ ÀÖÀ» °æ¿ì ¿µ¹®À» ¿ì¼±ÇÕ´Ï´Ù. Á¤È®ÇÑ °ËÅ並 À§ÇØ ¿µ¹® ¸ñÂ÷¸¦ Âü°íÇØÁֽñ⠹ٶø´Ï´Ù.

¼¼°èÀÇ ¸®Æ¬ Á÷Á¢ ÃßÃâ(DLE) ½ÃÀåÀº ¸®Æ¬ ä±¼ »ê¾÷¿¡¼­ º¯È­ÀÇ »ó¡À̸ç, ±âÁ¸ ä±¼ÀÇ ÇѰè¿Í ¼¼°è ¼ö¿ä Áõ°¡ÀÇ °ÝÂ÷¸¦ ¸Þ¿ì´Â Áß¿äÇÑ ¼Ö·ç¼ÇÀ¸·Î ºÎ»óÇϰí ÀÖ½À´Ï´Ù. Àü±âÂ÷ Çõ¸í, Àç»ý¿¡³ÊÁö ÀúÀå È®´ë, ÈÞ´ë¿ë ÀüÀÚÁ¦Ç°ÀÇ º¸±ÞÀ¸·Î ¸®Æ¬ ¼Òºñ°¡ Àü·Ê ¾ø´Â ±Ëµµ¸¦ °è¼Ó ±×¸®´Â °¡¿îµ¥ DLE ±â¼úÀº Áö¼Ó°¡´ÉÇÑ ¸®Æ¬ °ø±Þ¸ÁÀ» ½ÇÇöÇÏ´Â Áß¿äÇÑ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐÀº ¸®Æ¬ ÀÚ¿øÀÇ ºÐÆ÷¿Í ÇöÀçÀÇ »ý»ê¹ý »çÀÌ¿¡ ¼³µæ·Â ÀÖ´Â ¹Ì½º¸ÅÄ¡°¡ ÀÖÀ½À» ¹àÈ÷°í ÀÖ½À´Ï´Ù. °ü¼öÀÚ¿øÀº ¼¼°è ¸®Æ¬ ¸ÅÀå·®ÀÇ ¾à 60%¸¦ Â÷ÁöÇÏÁö¸¸ ±âÁ¸ Áõ¹ßÁö¹ýÀÇ Á¦¾àÀÌ ÁÖ¿øÀÎÀÌ µÇ¾î ÃÑ»ý»êÀÇ 35%¹Û¿¡ ±â¿©ÇÏÁö ¾Ê¾Ò½À´Ï´Ù. ÀÌ·¯ÇÑ °ÝÂ÷´Â ƯÈ÷ »ê¾÷ÀÌ °ø±Þ¿øÀÇ ´Ù¾çÈ­¿Í Áö¸®Àû ÁýÁß ¸®½ºÅ©ÀÇ Àú°¨À» ¸ñÇ¥·Î ÇÏ´Â °¡¿îµ¥ DLE ±â¼úÀÌ Ç®¾î³¾ ¼ö ÀÖ´Â ¹Ì°³¹ßÀÇ Å« °¡´É¼ºÀ» ºÎ°¢½Ã۰í ÀÖ½À´Ï´Ù. ±âÁ¸ÀÇ Áõ¹ßÁö¸¦ ÀÌ¿ëÇÑ °ü¼ö ÃßÃâÀº 󸮿¡ 12-24°³¿ùÀÌ ¼Ò¿äµÇ¸ç ȸ¼öÀ²Àº ºÒ°ú 40-60%¶ó´Â °æ¿µ»óÀÇ Å« Á¦¾à¿¡ Á÷¸éÇØ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ Á¦¾à¿¡ ´õÇØ ƯÁ¤ ±âÈijª Áö¸®Àû Á¶°ÇÀ¸·Î ÀÎÇØ °ü¼ö ÃßÃâÀº Áö±Ý±îÁö °æ¾Ï ä±¼º¸´Ù °æÀï·ÂÀÌ ³·Àº °ÍÀ̾ú½À´Ï´Ù. DLE´Â 80-95%°¡ ³Ñ´Â ȸ¼öÀ²·Î ½Å¼ÓÇÑ ¸®Æ¬ ÃßÃâÀ» °¡´ÉÇÏ°Ô ÇÏ´Â µ¿½Ã¿¡ ȯ°æ ¹ßÀÚ±¹À» ÁÙÀ̰í ä±¼ °¡´ÉÇÑ °ü¼öÀÚ¿øÀÇ ¹üÀ§¸¦ È®´ëÇÔÀ¸·Î½á ÀÌ ¹æÁ¤½ÄÀ» ±Ùº»ÀûÀ¸·Î ¹Ù²ß´Ï´Ù.

DLE ½ÃÀå¿¡´Â 6°¡Áö ´Ù¸¥ ±â¼ú Ŭ·¡½º°¡ ÀÖÀ¸¸ç, °¢°¢Àº ƯÁ¤ °æ¿µ °úÁ¦¿Í Ä­¼ö Á¶¼ºÀ» Áö¿øÇÕ´Ï´Ù. ÈíÂø½Ä DLE´Â ÇöÀç, ƯÈ÷ ¾Æ¸£ÇîÆ¼³ª¿Í Áß±¹¿¡¼­ÀÇ »ó¾÷ Àü°³¸¦ ¼±µµÇϰí ÀÖÀ¸¸ç, ¾Ë·ç¹Ì´½ À¯·¡ÀÇ ÈíÂøÁ¦¿Í ¼ö¼ºÀÇ Å»Âø °øÁ¤À» ÀÌ¿ëÇϰí ÀÖ½À´Ï´Ù. À̿±³È¯ ±â¼úÀº ¸®Æ¬ ³óµµ°¡ 100mg/L ¹Ì¸¸ÀÇ ÀúǰÀ§ °¨¼ö¸¦ ó¸®ÇÏ´Â ÇÑÆí, 2,000mg/LÀ» ³Ñ´Â °í³óµµÀÇ ¿ëÃâ¹°À» »ý»êÇÏ´Â ¿ì¼öÇÑ ´É·ÂÀ» ½ÇÁõÇϰí ÀÖ½À´Ï´Ù. ÀÌ ±â¼úÀº ³óÃà Àü°ú ³óÃà ÈÄÀÇ ÇÊ¿ä Á¶°ÇÀ» ¾ø¾Ù ¼ö Àֱ⠶§¹®¿¡ °æ¿µ»óÀÇ Å« ÀÌÁ¡ÀÌ µÇÁö¸¸, »êÀÇ Ãë±ÞÀ̳ª ÀÚÀç°ü¸®¿¡¼­ ¿­È­ÀÇ ¿ì·Á°¡ Àֱ⠶§¹®¿¡ Áö¼ÓÀûÀÎ ¸ð´ÏÅ͸µÀÌ ÇÊ¿äÇÕ´Ï´Ù.

¸âºê·¹ÀÎ ºÐ¸®, Àü±âÈ­ÇÐ ÃßÃâ, È­ÇРħÀü°ú °°Àº »õ·Î¿î DLE ±â¼úÀº ÆÄÀÏ·µ ÀÔÁõºÎÅÍ ½ÇÇè½Ç ¿¬±¸±îÁö ´Ù¾çÇÑ °³¹ß ´Ü°è¿¡ ÀÖ½À´Ï´Ù. ÀÌ·¯ÇÑ ±â¼úÀº ¼±Åüº Çâ»ó°ú È­ÇÐ ¼Òºñ °¨¼Ò¸¦ ¾à¼ÓÇÏÁö¸¸, »ó¾÷Àû °ËÁõÀº ¿©ÀüÈ÷ º¸·ùµÇ°í ÀÖ½À´Ï´Ù. ÁÖ¸ñÇÒ Á¡Àº Ä­¼öÀÇ Á¶¼º¿¡ ÆíÂ÷°¡ Àֱ⠶§¹®¿¡ ÃÖÀûÀÇ ¼º´ÉÀ» ¾ò±â À§Çؼ­´Â °³º° ±â¼ú¿¡ ¸Â´Â Á¢±Ù¹ýÀÌ ÇÊ¿äÇϸç, ¾÷°è´Â º¸ÆíÀûÀÎ DLE ¼Ö·ç¼ÇÀÌ ¾ø´Ù´Â °ÍÀ» ÀÎÁ¤Çϰí ÀÖ´Ù´Â °ÍÀÔ´Ï´Ù.

DLE ½ÃÀåÀº À¯¸ÁÇÑ ¿ø¸®¿¡µµ ºÒ±¸ÇÏ°í ±â¼ú °ËÁõ, ÀüÅëÀûÀÎ ¹æ¹ý°úÀÇ °æÁ¦Àû °æÀï, Áö¼Ó°¡´É¼º ÁöÇ¥ °³¼±ÀÇ Çʿ伺 µî µµÀÔ °úÁ¦¿¡ Á÷¸éÇϰí ÀÖ½À´Ï´Ù. ±×·¯³ª Áö¼ÓÀûÀÎ ±â¼ú ¹ßÀü°ú »ó¾÷ Àü°³ È®´ë, ¾÷°è Àü¹® Áö½ÄÀÇ Çâ»óÀÌ ÀÌ·¯ÇÑ °úÁ¦¸¦ ÇØ°áÇϰí ÀÖÀ¸¸ç, DLE¸¦ ¹Ì·¡ÀÇ ¸®Æ¬ ¼ö¿ä¸¦ Áö¼ÓÀûÀ̰í È¿À²ÀûÀ¸·Î ÃæÁ·½Ã۱â À§ÇÑ ±âÃÊÀûÀÎ ±â¼ú·Î ÀÚ¸®¸Å±èÇϰí ÀÖ½À´Ï´Ù.

¸®Æ¬ ä±¼ »ê¾÷Àº 2036³â±îÁö ¿¬Æò±Õ º¹ÇÕ ¼ºÀå·ü(CAGR) 9.7%·Î ¼ºÀåÇÒ °ÍÀ¸·Î ¿¹ÃøµÇ´Â °¡¿îµ¥, DLE ºÎ¹®Àº µ¹ÃâµÈ ½ÇÀûÀ» ¿Ã¸®°í CAGR·Î 19.6%ÀÇ ÀÌ·ÊÀûÀÎ ¼ºÀåÀÌ ¿¹ÃøµË´Ï´Ù. ÀÌ ´«ºÎ½Å ¼ºÀå ±Ëµµ´Â ÀÌ ±â¼úÀÌ ±âÁ¸¿¡´Â Á¢±ÙÇÒ ¼ö ¾ø¾ú´ø ¸®Æ¬ ÀÚ¿øÀ» Ç®¾î³¾ °¡´É¼ºÀ» ³»Æ÷Çϰí ÀÖÀ½À» ¹Ý¿µÇϰí ÀÖÀ¸¸ç, µ¿½Ã¿¡ ±âÁ¸ ÃßÃâ ¹æ¹ýÀÌ Á÷¸éÇϰí ÀÖ´Â Áö¼Ó °¡´É¼º¿¡ °üÇÑ Áß´ëÇÑ °úÁ¦¿¡µµ ´ëóÇϰí ÀÖ½À´Ï´Ù.

½ÃÀå ¿ªÇÐÀº ¼¼°èÀÇ ¸®Æ¬ ¸ÅÀå·®ÀÇ 60%¸¦ Â÷ÁöÇϸ鼭 ÇöÀç »ý»êÀÇ 35%¿¡¸¸ ±â¿©Çϰí ÀÖ´Â °¨¼öÀÚ¿øÀÌ ¹æ´ëÇÑ ¹Ì°³¹ß °¡´É¼ºÀ» °®°í Àֱ⠶§¹®¿¡ ¸Å·ÂÀûÀÎ ±âȸ°¡ ÀÖÀ½À» ¹àÇô³»°í ÀÖ½À´Ï´Ù. DLE ±â¼úÀº ±âÁ¸ Áõ¹ßÁöÀÇ 40-60%¿¡ ºñÇØ 80-95%ÀÇ È¸¼öÀ²À» ´Þ¼ºÇϰí ó¸® ½Ã°£À» 12-24°³¿ù¿¡¼­ ºÒ°ú ¸î ½Ã°£ ¶Ç´Â ¸çÄ¥·Î ´ÜÃàÇÔÀ¸·Î½á ÀÌ ¹æÁ¤½ÄÀ» ±Ùº»ÀûÀ¸·Î ¹Ù²ß´Ï´Ù. ÀÌ ±ØÀûÀÎ È¿À² Çâ»óÀº, ȯ°æ Dz ÇÁ¸°Æ®ÀÇ ´ëÆøÀûÀÎ »è°¨°ú ESG ÄÄÇø®¾ð½ºÀÇ °­È­µµ ÀÖ¾î, DLE¸¦ Â÷¼¼´ë ¸®Æ¬ »ý»ê¿¡ ÀûÇÕÇÑ ¼Ö·ç¼ÇÀ¸·Î¼­ Æò°¡Çϰí ÀÖ½À´Ï´Ù.

ÀÌ º¸°í¼­´Â ¼¼°èÀÇ ¸®Æ¬ Á÷Á¢ ÃßÃâ ½ÃÀåÀ» Á¶»çÇßÀ¸¸ç, ¸®Æ¬ »ý»ê ¹× ¼ö¿ä ºÐ¼®, ½ÃÀå ¼ºÀå ±Ëµµ ¹× ÅõÀÚ ±âȸ, °¢ ±â¼ú Æò°¡ µîÀÇ Á¤º¸¸¦ Á¦°øÇÕ´Ï´Ù.

¸ñÂ÷

Á¦1Àå ÁÖ¿ä ¿ä¾à

  • ½ÃÀå °³¿ä
    • ¸®Æ¬ÀÇ »ý»ê ¹× ¼ö¿ä
  • ±âÁ¸ ÃßÃâ ¹æ¹ýÀÇ ¹®Á¦Á¡
  • DLE¹ý
    • ±â¼úÀÇ ÀåÁ¡, ´ÜÁ¡ ¹× ºñ¿ë
  • ¸®Æ¬ Á÷Á¢ ÃßÃâ ½ÃÀå
    • ¸®Æ¬ Á÷Á¢ ÃßÃâ ½ÃÀåÀÇ ¼ºÀå ±Ëµµ
    • ½ÃÀå ¿¹Ãø(-2036³â)
    • DLE »ý»ê ¿¹Ãø : ±¹°¡º°(ktpa LCE)
    • DLE ½ÃÀå ±Ô¸ð : ±â¼ú À¯Çüº°(2024-2036³â)
    • ÁÖ¿ä ½ÃÀå ºÎ¹®
    • ´Ü±â Àü¸Á(2024-2026³â)
    • Á߱⠿¹Ãø(2026-2030³â)
    • Àå±â ¿¹Ãø(2030-2035³â)
  • ½ÃÀå ¼ºÀå ÃËÁø¿äÀÎ
    • Àü±âÀÚµ¿Â÷ÀÇ ¼ºÀå
    • ¿¡³ÊÁö ÀúÀå ¼ö¿ä
    • Á¤ºÎ Á¤Ã¥
    • ±â¼úÀÇ Áøº¸
    • Áö¼Ó°¡´É¼º ¸ñÇ¥
    • °ø±Þ ¾ÈÀü¼º
  • ½ÃÀåÀÇ °úÁ¦
    • ±â¼úÀûÀÎ À庮
    • °æÁ¦Àû ½ÇÇö °¡´É¼º
    • ±Ô¸ð È®´ëÀÇ ¹®Á¦
    • ÀÚ¿øÀÇ °¡¿ë¼º
    • ±ÔÁ¦»óÀÇ Àå¾Ö¹°
    • °æÀï
  • »ó¾÷ Ȱµ¿
    • ½ÃÀå ¸Ê
    • ¼¼°èÀÇ ¸®Æ¬ ÃßÃâ ÇÁ·ÎÁ§Æ®
    • DLE ÇÁ·ÎÁ§Æ®
    • ºñÁî´Ï½º ¸ðµ¨
    • ÅõÀÚ

Á¦2Àå ¼­¹®

  • ¸®Æ¬ÀÇ ¿ëµµ
  • ¸®Æ¬ Ä­¼ö ¸ÅÀå¹°
  • Á¤ÀÇ ¹× µ¿ÀÛ ¿øÄ¢
  • DLE ±â¼úÀÇ À¯Çü
  • ±âÁ¸ ÃßÃâ¹ý¿¡ ´ëÇÑ ¿ìÀ§¼º
  • DLE ±â¼ú ºñ±³
  • °¡°Ý
  • ȯ°æ¿¡ ¹ÌÄ¡´Â ¿µÇâ ¹× Áö¼Ó°¡´É¼º
  • ¿¡³ÊÁö ¿ä°Ç
  • ¹° »ç¿ë
  • ȸ¼öÀ²
  • È®À强
  • ÀÚ¿øºÐ¼®

Á¦3Àå ¼¼°è ½ÃÀå ºÐ¼®

  • ½ÃÀå ±Ô¸ð ¹× ¼ºÀå
  • Áö¿ª ½ÃÀå Á¡À¯À²
    • ºÏ¹Ì
    • ³²¹Ì
    • ¾Æ½Ã¾ÆÅÂÆò¾ç
    • À¯·´
  • ºñ¿ë ºÐ¼®
    • ¼³ºñÅõÀÚ ºñ±³
    • OPEXÀÇ ³»¿ª
    • 1Åæ´ç ºñ¿ë ºÐ¼®
  • ¼ö±Þ¿ªÇÐ
    • ÇöÀç °ø±Þ
    • ¼ö¿ä ¿¹Ãø
  • ±ÔÁ¦
  • °æÀï ±¸µµ

Á¦4Àå ±â¾÷ ÇÁ·ÎÆÄÀÏ(±â¾÷ 67»çÀÇ ÇÁ·ÎÆÄÀÏ)

Á¦5Àå ºÎ·Ï

Á¦6Àå Âü°í¹®Çå

AJY

The global direct lithium extraction (DLE) market represents a transformative shift in the lithium mining industry, emerging as a critical solution to bridge the gap between conventional extraction limitations and escalating global demand. As lithium consumption continues its unprecedented trajectory, fuelled by the electric vehicle revolution, renewable energy storage expansion, and the proliferation of portable electronics, DLE technologies are positioning themselves as the key enabler for sustainable lithium supply chains.

The market dynamics reveal a compelling mismatch between lithium resource distribution and current production methodologies. While brine resources constitute approximately 60% of global lithium reserves, they contribute only 35% of total production, primarily due to the constraints of conventional evaporation pond methods. This disparity highlights the substantial untapped potential that DLE technologies can unlock, particularly as the industry seeks to diversify supply sources and reduce geographical concentration risks. Traditional brine extraction through evaporation ponds faces significant operational constraints, requiring 12-24 months for processing with recovery rates of only 40-60%. These limitations, combined with specific climatic and geographical requirements, have historically made brine extraction less competitive than hard rock mining. DLE fundamentally transforms this equation by enabling rapid lithium extraction with recovery rates exceeding 80-95%, while simultaneously reducing environmental footprint and expanding the range of exploitable brine resources.

The DLE market encompasses six distinct technology classes, each addressing specific operational challenges and brine compositions. Adsorption DLE currently leads commercial deployment, particularly in Argentina and China, utilizing aluminum-based sorbents with water-based desorption processes. Ion exchange technologies demonstrate exceptional capability in processing lower-grade brines below 100 mg/L lithium concentration while producing highly concentrated eluates exceeding 2000 mg/L. This technology's ability to eliminate pre- and post-concentration requirements represents a significant operational advantage, though acid handling and material degradation concerns require ongoing monitoring.

Emerging DLE technologies including membrane separation, electrochemical extraction, and chemical precipitation remain in various development stages, from pilot demonstrations to laboratory research. These technologies promise enhanced selectivity and reduced chemical consumption, though commercial validation remains pending. Notably, the industry acknowledges that no universal DLE solution exists, as brine composition variability necessitates tailored technological approaches for optimal performance.

Despite promising fundamentals, the DLE market faces implementation challenges including technology validation, economic competitiveness with conventional methods, and the need for improved sustainability metrics. However, ongoing technological advancement, increasing commercial deployment, and growing industry expertise continue to address these challenges, positioning DLE as the cornerstone technology for meeting future lithium demand sustainably and efficiently.

"The Global Direct Lithium Extraction Market 2026-2036" provides an exhaustive analysis of the DLE industry, delivering strategic insights into the fastest-growing segment of the lithium mining sector. With the lithium mining industry projected to grow at a compound annual growth rate (CAGR) of 9.7% through 2036, the DLE segment emerges as the standout performer, forecasted to achieve an exceptional 19.6% CAGR. This remarkable growth trajectory reflects the technology's potential to unlock previously inaccessible lithium resources while addressing critical sustainability challenges facing traditional extraction methods. The report examines six distinct DLE technology classes-ion exchange, adsorption, membrane separation, electrochemical extraction, solvent extraction, and chemical precipitation-providing detailed technical assessments, commercial viability analyses, and market penetration forecasts. Each technology receives comprehensive SWOT analysis, enabling stakeholders to make informed investment decisions in this rapidly evolving landscape.

Market dynamics reveal compelling opportunities as brine resources, constituting 60% of global lithium reserves but contributing only 35% of current production, present vast untapped potential. DLE technologies fundamentally transform this equation by achieving 80-95% recovery rates compared to conventional evaporation ponds' 40-60%, while reducing processing time from 12-24 months to mere hours or days. This dramatic improvement in efficiency, combined with significantly reduced environmental footprint and enhanced ESG compliance, positions DLE as the preferred solution for next-generation lithium production.

Comprehensive cost analysis including CAPEX comparisons, OPEX breakdowns, and production cost benchmarking enables accurate financial modeling and investment planning. The report quantifies DLE's economic advantages, demonstrating how technological improvements are rapidly closing cost gaps with traditional methods while delivering superior operational metrics. The competitive landscape analysis profiles 67 key industry players, from established mining giants to innovative technology startups, examining their strategic positioning, technological approaches, and market penetration strategies. This intelligence enables stakeholders to identify potential partners, competitors, and acquisition targets in the dynamic DLE ecosystem.

Contents include:

  • Comprehensive lithium production and demand analysis (2020-2036)
  • Global DLE project distribution and capacity assessments
  • Traditional extraction method limitations and market gaps
  • DLE technology classification and comparative analysis
  • Market growth trajectories and investment opportunities
  • Technology Assessment and Analysis
    • Ion exchange technologies: resin-based systems, inorganic exchangers, hybrid approaches
    • Adsorption technologies: physical/chemical adsorption, selective materials, ion sieves
    • Membrane separation: pressure-assisted and potential-assisted processes
    • Electrochemical extraction: battery-based systems, intercalation cells, flow-through designs
    • Solvent extraction: conventional and CO2-based extraction systems
    • Chemical precipitation: overview and implementation challenges
    • Novel hybrid approaches combining multiple technologies
  • Market Dynamics and Forecasting
    • Regional market share analysis across four major geographic regions
    • Cost analysis including CAPEX/OPEX comparisons and production economics
    • Supply-demand dynamics and market balance projections
    • Regulatory landscape analysis and policy impact assessment
    • Competitive positioning and industry consolidation trends
  • Resource Analysis and Applications
    • Comprehensive brine resource classification and quality assessment
    • Clay deposits and geothermal water extraction potential
    • Resource quality matrices and extraction potential evaluation
    • Lithium applications across battery, ceramic, and industrial sectors
    • Sustainability comparisons and environmental impact assessments

The report provides comprehensive profiles of 67 leading companies driving innovation and commercial deployment in the DLE sector including Adionics, Aepnus Technology, Albemarle Corporation, alkaLi, Altillion, American Battery Materials, Anson Resources, Arcadium Lithium, Arizona Lithium, BioMettallum, Century Lithium, CleanTech Lithium, Conductive Energy, Controlled Thermal Resources, Cornish Lithium, E3 Lithium Ltd, Ekosolve, ElectraLith, Ellexco, EnergyX, Energy Sourcer Minerals, Eon Minerals, Eramet, Evove, ExSorbiton, Geo40, Geolith, Go2Lithium (G2L), International Battery Metals (IBAT), Jintai Lithium, KMX Technologies, Koch Technology Solutions (KTS), Lake Resources, Lanke Lithium, Lifthium Energy, Lihytech, Lilac Solutions, Lithios, LithiumBank Resources and more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Overview
    • 1.1.1. Lithium production and demand
      • 1.1.1.1. DLE Projects
      • 1.1.1.2. Global Lithium Production and Demand 2020-2024 (ktpa LCE)
      • 1.1.1.3. Lithium Production Forecast 2025-2035
  • 1.2. Issues with traditional extraction methods
  • 1.3. DLE Methods
    • 1.3.1. Technology Merits, Demerits, and Costs
      • 1.3.1.1. Ion Exchange Technologies
      • 1.3.1.2. Adsorption Technologies
      • 1.3.1.3. Membrane Technologies
      • 1.3.1.4. Electrochemical Technologies
  • 1.4. The Direct Lithium Extraction Market
    • 1.4.1. Growth trajectory for The Direct Lithium Extraction market
    • 1.4.2. Market forecast to 2036
    • 1.4.3. DLE Production Forecast by Country (ktpa LCE)
    • 1.4.4. DLE Market Size by Technology Type (2024-2036)
    • 1.4.5. Key market segments
    • 1.4.6. Short-term outlook (2024-2026)
    • 1.4.7. Medium-term forecasts (2026-2030)
    • 1.4.8. Long-term predictions (2030-2035)
  • 1.5. Market Drivers
    • 1.5.1. Electric Vehicle Growth
    • 1.5.2. Energy Storage Demand
    • 1.5.3. Government Policies
    • 1.5.4. Technological Advancements
      • 1.5.4.1. Process improvements
      • 1.5.4.2. Efficiency gains
      • 1.5.4.3. Cost reduction
    • 1.5.5. Sustainability Goals
    • 1.5.6. Supply Security
  • 1.6. Market Challenges
    • 1.6.1. Technical Barriers
    • 1.6.2. Economic Viability
    • 1.6.3. Scale-up Issues
    • 1.6.4. Resource Availability
    • 1.6.5. Regulatory Hurdles
    • 1.6.6. Competition
      • 1.6.6.1. Traditional methods
      • 1.6.6.2. Alternative technologies
  • 1.7. Commercial activity
    • 1.7.1. Market map
    • 1.7.2. Global lithium extraction projects
    • 1.7.3. DLE Projects
    • 1.7.4. Business models
    • 1.7.5. Investments

2. INTRODUCTION

  • 2.1. Applications of lithium
  • 2.2. Lithium brine deposits
  • 2.3. Definition and Working Principles
    • 2.3.1. Basic concepts and mechanisms
    • 2.3.2. Process chemistry
    • 2.3.3. Technology evolution
  • 2.4. Types of DLE Technologies
    • 2.4.1. Brine Resources
    • 2.4.2. Hard Rock Resources
      • 2.4.2.1. Spodumene Upgrading
      • 2.4.2.2. Spodumene Refining
      • 2.4.2.3. Logistics
    • 2.4.3. Sediment-hosted deposits
    • 2.4.4. Ion Exchange
      • 2.4.4.1. Resin-based systems
      • 2.4.4.2. Inorganic ion exchangers
      • 2.4.4.3. Hybrid systems
      • 2.4.4.4. Companies
      • 2.4.4.5. SWOT analysis
    • 2.4.5. Adsorption
      • 2.4.5.1. Adsorption vs ion exchange
      • 2.4.5.2. Physical adsorption
      • 2.4.5.3. Chemical adsorption
      • 2.4.5.4. Selective materials
        • 2.4.5.4.1. Ion sieves
        • 2.4.5.4.2. Sorbent Composites
      • 2.4.5.5. Companies
      • 2.4.5.6. SWOT analysis
    • 2.4.6. Membrane Separation
      • 2.4.6.1. Pressure-assisted
        • 2.4.6.1.1. Reverse osmosis (RO)
        • 2.4.6.1.2. Membrane fouling
        • 2.4.6.1.3. Microfiltration (MF), ultrafiltration (UF), and nanofiltration (NF)
      • 2.4.6.2. Potential-assisted
        • 2.4.6.2.1. Electrodialysis
        • 2.4.6.2.2. Bipolar
        • 2.4.6.2.3. Capacitive deionization (CDI)
        • 2.4.6.2.4. Membrane distillation (MD)
      • 2.4.6.3. Companies
      • 2.4.6.4. SWOT analysis
    • 2.4.7. Solvent Extraction
      • 2.4.7.1. Overview
        • 2.4.7.1.1. CO2-based extraction systems
      • 2.4.7.2. Companies
      • 2.4.7.3. SWOT analysis
    • 2.4.8. Electrochemical extraction
      • 2.4.8.1. Overview
      • 2.4.8.2. Cost Analysis and Comparison
      • 2.4.8.3. Advantages of Electrochemical Extraction
      • 2.4.8.4. Battery-based
      • 2.4.8.5. Intercalation Cells
      • 2.4.8.6. Hybrid Capacitive
      • 2.4.8.7. Modified Electrodes
      • 2.4.8.8. Flow-through Systems
      • 2.4.8.9. Companies
      • 2.4.8.10. SWOT analysis
    • 2.4.9. Chemical precipitation
      • 2.4.9.1. Overview
      • 2.4.9.2. SWOT analysis
    • 2.4.10. Novel hybrid approaches
  • 2.5. Advantages Over Traditional Extraction
    • 2.5.1. Recovery rates
    • 2.5.2. Environmental impact
    • 2.5.3. Processing time
    • 2.5.4. Product purity
  • 2.6. Comparison of DLE Technologies
  • 2.7. Prices
  • 2.8. Environmental Impact and Sustainability
  • 2.9. Energy Requirements
  • 2.10. Water Usage
  • 2.11. Recovery Rates
    • 2.11.1. By technology type
    • 2.11.2. By resource type
    • 2.11.3. Optimization potential
  • 2.12. Scalability
  • 2.13. Resource Analysis
    • 2.13.1. Brine Resources
    • 2.13.2. Clay Deposits
    • 2.13.3. Geothermal Waters
    • 2.13.4. Resource Quality Assessment
    • 2.13.5. Extraction Potential

3. GLOBAL MARKET ANALYSIS

  • 3.1. Market Size and Growth
  • 3.2. Regional Market Share
    • 3.2.1. North America
    • 3.2.2. South America
    • 3.2.3. Asia Pacific
    • 3.2.4. Europe
  • 3.3. Cost Analysis
    • 3.3.1. CAPEX comparison
    • 3.3.2. OPEX breakdown
    • 3.3.3. Cost Per Ton Analysis
  • 3.4. Supply-Demand Dynamics
    • 3.4.1. Current supply
    • 3.4.2. Demand projections
  • 3.5. Regulations
  • 3.6. Competitive Landscape

4. COMPANY PROFILES (67 company profiles)

5. APPENDICES

  • 5.1. Glossary of Terms
  • 5.2. List of Abbreviations
  • 5.3. Research Methodology

6. REFERENCES

»ùÇà ¿äû ¸ñ·Ï
0 °ÇÀÇ »óǰÀ» ¼±Åà Áß
¸ñ·Ï º¸±â
Àüü»èÁ¦