시장보고서
상품코드
1806663

세계의 산업용 바이오 제조 시장(2026-2036년)

The Global Industrial Biomanufacturing Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 1,316 Pages, 299 Tables, 189 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계의 산업용 바이오 제조 시장은 산업 생산에서 변화의 힘이 되고 있습니다. 이 부문에는 생물학적 공정을 통한 의약품, 산업 화학, 바이오연료, 바이오재료 및 특수제품의 생산이 포함되어 있으며, 인류가 제조에 힘쓰는 방식을 근본적으로 바꾸고 있습니다. 바이오 제조의 중요성은 경제지표를 훨씬 뛰어넘어 지속가능한 산업개발의 초석이 되고 있습니다. 유한한 화석 연료 자원에 의존하는 전통적인 석유화학 제조와는 달리, 바이오 제조은 농업 잔류물, 조류 및 심지어 이산화탄소를 포함한 재생 가능한 생물학적 원료를 이용합니다. 이 전환은 불안정한 석유 시장에 대한 의존도를 줄이면서 자원 부족이라는 심각한 문제를 해결합니다.

이 부문의 순환형 경제에 대한 기여는 특히 큽니다. 바이오 제조 프로세스는 폐기물의 흐름을 가치있는 제품으로 전환하는 것이 뛰어나며 순환 경제의 원칙을 구현합니다. 농업 폐기물은 바이오연료로, 식품 가공 부산물은 특수 화학제품으로, 도시 고형 폐기물은 바이오플라스틱으로 다시 태어납니다. 이러한 폐기물에서 가치로의 전환은 매립지의 부담을 줄이는 동시에 폐기된 재료로부터 경제적 가치를 창출합니다.

환경면에서의 혜택은 크고 측정 가능합니다. 바이오 제조은 일반적으로 온실가스 배출을 기존 공정에 비해 30-80% 줄이고 일부 용도에서는 탄소 중립 및 탄소 부정도 달성합니다. 생물학적 공정의 부드러운 작동 조건(일반적으로 화학 공정의 200-800°C에서 20-80°C)은 에너지 소비를 극적으로 줄입니다. 수자원의 정화와 이용을 동시에 수행하는 폐쇄 루프 시스템과 생물학적 처리 공정으로 인해 물 사용이 종종 감소합니다.

단일클론항체, 백신 및 유전자 치료를 포함한 생물학적 제제는 의료에 혁명을 일으키는 동시에, 다른 부문에 이익을 주는 강력한 규제 프레임워크를 확립해 왔습니다. 산업용 바이오테크놀러지의 응용은 급속히 확대되고 있으며, 바이오기반 화학물질, 효소, 재료가 석유 유래의 대체품을 대체하는 것이 증가하고 있습니다. 혁신의 촉진요인은 특정 용도를 위한 생물학적 시스템의 정밀 공학을 가능하게 하는 합성 생물학의 진보를 포함합니다. CRISPR 유전자 편집, AI, 자동화된 바이오프로세싱은 개발 사이클을 가속화하고 동시에 비용을 절감합니다. 이러한 기술적 진보로 바이오 제조은 확대되는 제품의 범위에서 기존 프로세스에 대해 경제적으로 경쟁력을 갖게 되었습니다.

각국 정부는 세제우대조치, 탄소가격제, 조달 우선권 등을 통해 바이오 제품을 우대하는 정책을 실시하고 있으며, 규제지원은 세계적으로 강화되고 있습니다. 그러나 규모 확대의 복잡성, 규제 당국의 승인 스케줄, 기존의 석유화학 산업과의 경쟁 등의 과제도 여전히 남아 있습니다. 그러나 환경적 필요성, 기술적 능력, 경제적 기회의 수렴으로 인해 생명공학은 지속가능한 산업 개발에 필수적인 요소가 되고 있습니다. 순환경제의 통합은 여러 원료를 다양한 제품 포트폴리오로 가공하고 폐기물 발생을 최소화하면서 자원 이용을 극대화하는 새로운 생체정상 구상에서 특히 두드러집니다. 이러한 통합 접근법은 생물학적 프로세스가 진정으로 순환적인 산업 생태계의 기반으로 작용하는 지속 가능한 제조의 미래를 상징합니다.

본 보고서는 세계 산업용 바이오 제조 시장에 대한 조사 분석을 통해 시장 규모와 성장 예측, 기술 동향과 혁신의 촉진요인, 규제 상황과 정책의 영향, 경쟁 역학과 시장 구조 등의 정보를 제공합니다.

기업 프로파일 내용

  • AbbVie
  • Absci Corp
  • Advanced Biochemical
  • Aemetis
  • AI Proteins
  • Algal Bio
  • Algenol
  • Allozymes
  • Alnylam Pharmaceuticals
  • Alto Neuroscience
  • Amgen
  • AMSilk GmbH
  • Amyris
  • Anellotech
  • Antheia
  • Applied Bioplastics
  • Aquafil
  • Arzeda
  • Arsenal Bioyards
  • AstraZeneca
  • Atomwise
  • Avantium
  • BASF
  • Bayer CropScience
  • BenevolentAI
  • BioAge Labs
  • Biocatalysts Ltd
  • Biogen
  • BioMADE
  • Biomatter Designs
  • BioNTech
  • Biotalys
  • BitBiome
  • Bolt Threads
  • Braskem
  • Brevel
  • Bristol Myers Squibb
  • C16 Biosciences
  • Carbios
  • Cargill
  • Cascade Biocatalysts
  • Cemvita
  • Citroniq Chemicals
  • CJ Biomaterials
  • Codexis
  • Conagen
  • Corteva Agriscience
  • Cradle
  • CSL Behring
  • Danimer Scientific
  • Deep Genomics
  • Differential Bio
  • DSM-Firmenich
  • DuPont
  • Ecovative Design
  • Enduro Genetics
  • Enzymaster
  • Evogene
  • Exscientia
  • FabricNano
  • Foray Bioscience
  • Future Fields
  • Generate Biomedicines
  • Genesis Therapeutics
  • GenesisM
  • Genomatica
  • Gevo
  • Gilead Sciences
  • Ginkgo Bioworks
  • Global Bioenergies
  • Green Earth Institute
  • Healx
  • Hydrosome Labs
  • Iambic Therapeutics
  • Inari
  • Indigo Ag
  • Infinited Fiber Company
  • Insilico Medicine
  • InSpek
  • Insempra
  • Insitro
  • Isomorphic Laboratories
  • Johnson & Johnson
  • Kalion
  • Kaneka Corporation
  • Keel Labs
  • Kraig Biocraft Laboratories
  • LanzaTech
  • Lenzing AG
  • LG Chem
  • Locus Agricultural Solutions
  • Lygos
  • Mango Materials
  • Manus
  • Marrone Bio Innovations
  • METabolic EXplorer
  • Moderna
  • Modern Meadow
  • MojiaBio
  • Moolec Science
  • MycoWorks
  • Nanollose
  • NatureWorks
  • Neste
  • Novartis
  • Novomer
  • Novozymes
  • Paques Biomaterials
  • Pfizer
  • Pivot Bio
  • Pow.Bio
  • Prolific Machines
  • Provectus Algae
  • Recursion Pharmaceuticals
  • Regeneron
  • Renmatix
  • Roche
  • Roquette
  • Samsung Biologics
  • Sanofi
  • Solugen
  • Spiber
  • Syngenta
  • Terramera
  • TotalEnergies Corbion
  • Tropic Biosciences
  • Unilever
  • Vertex Pharmaceuticals
  • Virent
  • Zymergen
  • Zelixir

기타 다수

목차

제1장 주요 요약

  • 산업용 바이오 제조의 정의와 범위
  • 산업용 바이오 제조 프로세스의 개요
  • 산업용 바이오 제조의 주요 구성요소
  • 세계 경제에서 산업용 바이오 제조의 중요성
    • 의료 및 제약 산업에서의 역할
    • 산업용 생명공학과 지속가능성에 미치는 영향
    • 식량 안보
    • 순환형 경제
  • 생명공학의 색
  • 시장
    • 바이오의약품
    • 산업용 효소
    • 바이오연료
    • 바이오 재료 및 바이오플라스틱
    • 특수화학제품
    • 식음료
    • 농업 및 동물의 건강
    • 환경 생명공학
  • 바이오 제조에서의 AI와 로보틱스
  • 바이오 제조에서의 기타 첨단 기술과 신기술

제2장 생산

  • 미생물 발효
  • 포유류 세포 배양
  • 식물 세포 배양
  • 곤충 세포 배양
  • 유전자 변형 동물
  • 유전자 변형 식물
  • 기술
    • 업스트림 처리
    • 발효
    • 다운스트림 처리
    • 처방
    • 바이오프로세스 개발
    • 분석법
    • 합성 생물학의 툴과 기술
    • 대체 원료와 지속가능성
  • 생산규모
    • 실험실 규모
    • 파일럿 규모
    • 상업규모
  • 가동 방식
    • 배치 생산
    • 페드 배치 생산
    • 연속 생산
    • 바이오 제조용 세포 공장
    • 관류 배양
    • 기타 가동 방식
  • 숙주 생물

제3장 바이오의약품

  • 개요
  • 기술/재료 분석
    • 단일클론항체(mAb)
    • 재조합 단백질
    • 백신
    • 세포 및 유전자 치료
    • 혈액 인자
    • 조직 공학 제품
    • 핵산 치료제
    • 펩티드 요법
    • 바이오시밀러 및 바이오베터
    • 나노바디 및 항체 단편
    • 합성 생물학
    • 생성 생물학
  • 시장 분석
    • 주요 기업과 경쟁 구도
    • 시장의 성장 요인과 동향
    • 규칙
    • 밸류체인
    • 미래 전망
    • 기술 성숙도 레벨(TRL)
    • 대상 시장 규모
    • 위험과 기회
    • 세계 전체의 수익
  • 기업 프로파일(기업 131개사의 프로파일)

제4장 산업용 효소(생체 촉매)

  • 개요
    • 바이오 제조 효소
  • 기술/재료 분석
    • 세제용 효소
    • 식품 가공용 효소
    • 섬유 가공용 효소
    • 종이 및 펄프 가공용 효소
    • 가죽 가공용 효소
    • 바이오연료 생산용 효소
    • 동물 사료용 효소
    • 제약 및 진단용 효소
    • 폐기물 관리 및 바이오레메디에이션용 효소
    • 농업 및 작물 개량용 효소
    • 탈탄소화 및 CO2 이용용 효소
  • 시장 분석
    • 주요 기업과 경쟁 구도
    • 시장의 성장 요인과 동향
    • 산업용 효소의 기술적 과제와 기회
    • 효소 처리의 경제 경쟁력
    • 규칙
    • 밸류체인
    • 미래 전망
    • 기술 성숙도 레벨(TRL)
    • 대상 시장 규모
    • 위험과 기회
    • 세계 전체의 수익
  • 기업 프로파일(기업 63사의 프로파일)

제5장 바이오연료

  • 개요
  • 기술/재료 분석
    • 순환형 경제에서의 역할
    • 세계 바이오연료 시장
    • 원료
    • 바이오에탄올
    • 바이오디젤
    • 바이오가스
    • 바이오부탄올
    • 바이오수소
    • 바이오메탄올
    • 바이오 오일 및 바이오차
    • 재생 가능 디젤 연료 및 제트 연료
    • 조류 바이오연료
  • 시장 분석
    • 주요 기업과 경쟁 구도
    • 시장의 성장 요인과 동향
    • 규칙
    • 밸류체인
    • 미래 전망
    • 기술 성숙도 레벨(TRL)
    • 대상 시장 규모
    • 위험과 기회
    • 세계 전체의 수익
  • 기업 프로파일(기업 233사의 프로파일)

제6장 바이오플라스틱

  • 개요
  • 기술/재료 분석
    • 폴리유산(PLA)
    • 폴리하이드록시알칸산(PHA)
    • 바이오 베이스 폴리에틸렌(PE)
    • 바이오 베이스 폴리에틸렌테레프탈레이트(PET)
    • 바이오 베이스 폴리우레탄(PU)
    • 전분계 플라스틱
    • 셀룰로오스계 플라스틱
  • 시장 분석
    • 주요 기업과 경쟁 구도
    • 시장의 성장 요인과 동향
    • 규칙
    • 밸류체인
    • 미래 전망
    • 기술 성숙도 레벨(TRL)
    • 대상 시장 규모
    • 위험과 기회
    • 세계 전체의 수익
  • 기업 프로파일(기업 581사의 프로파일)

제7장 생화학제품

  • 개요
  • 기술/재료 분석
    • 유기산
    • 아미노산
    • 알코올
    • 계면활성제
    • 용제
    • 향료
    • 바이오 베이스 모노머 및 중간체
    • 바이오 베이스 폴리머
    • 바이오 베이스 복합재료 및 혼합물
    • 미용 및 퍼스널케어용 화학제품
    • 폐기물
    • 미생물 및 미네랄원
    • 기타 바이오 제조 제품
  • 시장 분석
    • 주요 기업과 경쟁 구도
    • 시장의 성장 요인과 동향
    • 규칙
    • 밸류체인
    • 미래 전망
    • 기술 성숙도 레벨(TRL)
    • 대상 시장 규모
    • 위험과 기회
    • 주요 시장의 과제
    • 기술적 과제
    • 세계 전체의 수익
  • 기업 프로파일(기업 138개사의 프로파일)

제8장 바이오애그리테크

  • 개요
  • 기술/재료 분석
    • 바이오 농약
    • 바이오 비료
    • 바이오 스티뮬런트
    • 농업용 효소
  • 시장 분석
    • 주요 기업과 경쟁 구도
    • 시장의 성장 요인과 동향
    • 규칙
    • 밸류체인
    • 미래 전망
    • 대상 시장 규모
    • 위험과 기회
    • 세계 전체의 수익
  • 기업 프로파일(기업 105개사의 프로파일)

제9장 조사 방법

제10장 참고문헌

JHS 25.09.16

The global industrial biomanufacturing market represents a transformative force in industrial production. This sector encompasses the production of pharmaceuticals, industrial chemicals, biofuels, biomaterials, and specialty products through biological processes, fundamentally reshaping how humanity approaches manufacturing. Biomanufacturing's significance extends far beyond economic metrics, positioning itself as a cornerstone of sustainable industrial development. Unlike traditional petrochemical manufacturing that relies on finite fossil fuel resources, biomanufacturing utilizes renewable biological feedstocks including agricultural residues, algae, and even carbon dioxide. This transition addresses critical resource scarcity challenges while reducing dependence on volatile petroleum markets.

The sector's contribution to the circular economy is particularly profound. Biomanufacturing processes excel at converting waste streams into valuable products, exemplifying circular economy principles. Agricultural waste becomes biofuels, food processing byproducts transform into specialty chemicals, and municipal solid waste generates bioplastics. This waste-to-value conversion reduces landfill burdens while creating economic value from previously discarded materials.

Environmental benefits are substantial and measurable. Biomanufacturing typically reduces greenhouse gas emissions by 30-80% compared to conventional processes, with some applications achieving carbon neutrality or even carbon negativity. The mild operating conditions of biological processes-typically 20-80 DegreeC versus 200-800 DegreeC for chemical processes-dramatically reduce energy consumption. Water usage often decreases through closed-loop systems and biological treatment processes that simultaneously purify and utilize water resources.

Biomanufactured drugs, including monoclonal antibodies, vaccines, and gene therapies, have revolutionized medical treatment while establishing robust regulatory frameworks that benefit other sectors. Industrial biotechnology applications are rapidly expanding, with bio-based chemicals, enzymes, and materials increasingly replacing petroleum-derived alternatives. Innovation drivers include advances in synthetic biology, which enable precise engineering of biological systems for specific applications. CRISPR gene editing, artificial intelligence, and automated bioprocessing are accelerating development cycles while reducing costs. These technological advances are making biomanufacturing economically competitive with traditional processes across an expanding range of products.

Regulatory support is strengthening globally, with governments implementing policies that favor bio-based products through tax incentives, carbon pricing, and procurement preferences. Challenges persist, including scale-up complexities, regulatory approval timelines, and competition from established petrochemical industries. However, the convergence of environmental necessity, technological capability, and economic opportunity positions biomanufacturing as an essential component of sustainable industrial development. The circular economy integration is particularly evident in emerging biorefinery concepts that process multiple feedstocks into diverse product portfolios, maximizing resource utilization while minimizing waste generation. These integrated approaches represent the future of sustainable manufacturing, where biological processes serve as the foundation for truly circular industrial ecosystems.

"The Global Industrial Biomanufacturing Market 2026-2036" provides an exhaustive analysis of the rapidly expanding biomanufacturing industry. This comprehensive 1,300 page plus market intelligence study examines the transformative shift toward biological production systems across pharmaceuticals, industrial chemicals, biofuels, biomaterials, and specialty applications. The biomanufacturing market represents a critical nexus of sustainability, innovation, and economic growth, addressing global challenges including climate change, resource scarcity, and industrial decarbonization. This sector leverages living systems and biological processes to manufacture products traditionally produced through petrochemical routes, offering superior environmental profiles and often enhanced performance characteristics.

The report analyzes eight primary market segments: biopharmaceuticals, industrial enzymes, biofuels, bioplastics, biochemicals, bio-agritech, specialty chemicals, and emerging applications. Geographic analysis covers North America, Europe, Asia-Pacific, Latin America, and Middle East/Africa markets with detailed country-level assessments. Competitive landscape analysis profiles over 1,050 companies across the value chain, from technology developers to commercial manufacturers. The study identifies key strategic partnerships, mergers and acquisitions, and technology licensing agreements shaping market evolution. Innovation trends including cell-free systems, continuous manufacturing, and circular economy integration receive detailed examination.

Executive Summary and Market Overview

  • Global market sizing and growth projections 2026-2036
  • Technology trends and innovation drivers
  • Regulatory landscape and policy impacts
  • Competitive dynamics and market structure

Production Technologies and Manufacturing Systems

  • Upstream processing: cell culture, fermentation advances
  • Synthetic biology tools: CRISPR, DNA synthesis, protein engineering
  • Downstream processing improvements and automation
  • Alternative feedstocks and sustainability frameworks
  • Scale-up strategies and commercial manufacturing

Biopharmaceuticals Market

  • Monoclonal antibodies, recombinant proteins, vaccines
  • Cell and gene therapies, nucleic acid therapeutics
  • Generative biology and AI-driven drug discovery
  • Market growth drivers, regulatory frameworks
  • Company profiles of 131 leading organizations

Industrial Enzymes and Biocatalysts Market

  • Detergent, food processing, textile applications
  • Bioenergy enzymes and carbon capture technologies
  • Plastics recycling and waste management applications
  • Technology readiness assessments and market forecasts
  • Profiles of 59 specialized enzyme companies

Biofuels Market

  • Bioethanol, biodiesel, biogas production pathways
  • Advanced biofuels: renewable diesel, bio-aviation fuel
  • Feedstock analysis: first through fourth-generation
  • Regional market dynamics and policy frameworks
  • Analysis of 212 biofuel companies globally

Bioplastics Market

  • PLA, PHAs, bio-based polyethylene markets
  • Cellulose-based and starch-based alternatives
  • Application markets and performance characteristics
  • Sustainability profiles and end-of-life management
  • Comprehensive profiles of 585 companies

Biochemicals Market

  • Organic acids, amino acids, alcohol production
  • Bio-based monomers and polymer intermediates
  • Beauty and personal care applications
  • Market economics and competitive positioning
  • Analysis of 158 biochemical companies

Bio-Agritech Market

  • Biopesticides, biofertilizers, biostimulants
  • Agricultural enzymes and crop enhancement
  • Regulatory frameworks and adoption patterns
  • Market growth projections by application
  • Profiles of 105 bio-agritech innovators

Companies Profiled Include:

  • AbbVie
  • Absci Corp
  • Advanced Biochemical
  • Aemetis
  • AI Proteins
  • Algal Bio
  • Algenol
  • Allozymes
  • Alnylam Pharmaceuticals
  • Alto Neuroscience
  • Amgen
  • AMSilk GmbH
  • Amyris
  • Anellotech
  • Antheia
  • Applied Bioplastics
  • Aquafil
  • Arzeda
  • Arsenal Bioyards
  • AstraZeneca
  • Atomwise
  • Avantium
  • BASF
  • Bayer CropScience
  • BenevolentAI
  • BioAge Labs
  • Biocatalysts Ltd
  • Biogen
  • BioMADE
  • Biomatter Designs
  • BioNTech
  • Biotalys
  • BitBiome
  • Bolt Threads
  • Braskem
  • Brevel
  • Bristol Myers Squibb
  • C16 Biosciences
  • Carbios
  • Cargill
  • Cascade Biocatalysts
  • Cemvita
  • Citroniq Chemicals
  • CJ Biomaterials
  • Codexis
  • Conagen
  • Corteva Agriscience
  • Cradle
  • CSL Behring
  • Danimer Scientific
  • Deep Genomics
  • Differential Bio
  • DSM-Firmenich
  • DuPont
  • Ecovative Design
  • Enduro Genetics
  • Enzymaster
  • Evogene
  • Exscientia
  • FabricNano
  • Foray Bioscience
  • Future Fields
  • Generate Biomedicines
  • Genesis Therapeutics
  • GenesisM
  • Genomatica
  • Gevo
  • Gilead Sciences
  • Ginkgo Bioworks
  • Global Bioenergies
  • Green Earth Institute
  • Healx
  • Hydrosome Labs
  • Iambic Therapeutics
  • Inari
  • Indigo Ag
  • Infinited Fiber Company
  • Insilico Medicine
  • InSpek
  • Insempra
  • Insitro
  • Isomorphic Laboratories
  • Johnson & Johnson
  • Kalion
  • Kaneka Corporation
  • Keel Labs
  • Kraig Biocraft Laboratories
  • LanzaTech
  • Lenzing AG
  • LG Chem
  • Locus Agricultural Solutions
  • Lygos
  • Mango Materials
  • Manus
  • Marrone Bio Innovations
  • METabolic EXplorer
  • Moderna
  • Modern Meadow
  • MojiaBio
  • Moolec Science
  • MycoWorks
  • Nanollose
  • NatureWorks
  • Neste
  • Novartis
  • Novomer
  • Novozymes
  • Paques Biomaterials
  • Pfizer
  • Pivot Bio
  • Pow.Bio
  • Prolific Machines
  • Provectus Algae
  • Recursion Pharmaceuticals
  • Regeneron
  • Renmatix
  • Roche
  • Roquette
  • Samsung Biologics
  • Sanofi
  • Solugen
  • Spiber
  • Syngenta
  • Terramera
  • TotalEnergies Corbion
  • Tropic Biosciences
  • Unilever
  • Vertex Pharmaceuticals
  • Virent
  • Zymergen
  • and Zelixir

and many more.....

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Definition and Scope of Industrial Biomanufacturing
  • 1.2. Overview of Industrial Biomanufacturing Processes
  • 1.3. Key Components of Industrial Biomanufacturing
  • 1.4. Importance of Industrial Biomanufacturing in the Global Economy
    • 1.4.1. Role in Healthcare and Pharmaceutical Industries
    • 1.4.2. Impact on Industrial Biotechnology and Sustainability
    • 1.4.3. Food Security
    • 1.4.4. Circular Economy
  • 1.5. Colours of Biotechnology
  • 1.6. Markets
    • 1.6.1. Biopharmaceuticals
    • 1.6.2. Industrial Enzymes
    • 1.6.3. Biofuels
    • 1.6.4. Biomaterials and Bioplastics
    • 1.6.5. Specialty Chemicals
    • 1.6.6. Food and Beverage
    • 1.6.7. Agriculture and Animal Health
    • 1.6.8. Environmental Biotechnology
  • 1.7. AI and Robotics in Biomanufacturing
  • 1.8. Other Advanced and Emerging Technologies in Biomanufacturing

2. PRODUCTION

  • 2.1. Microbial Fermentation
  • 2.2. Mammalian Cell Culture
  • 2.3. Plant Cell Culture
  • 2.4. Insect Cell Culture
  • 2.5. Transgenic Animals
  • 2.6. Transgenic Plants
  • 2.7. Technologies
    • 2.7.1. Upstream Processing
      • 2.7.1.1. Cell Culture
        • 2.7.1.1.1. Overview
        • 2.7.1.1.2. Types of Cell Culture Systems
        • 2.7.1.1.3. Factors Affecting Cell Culture Performance
        • 2.7.1.1.4. Advances in Cell Culture Technology
          • 2.7.1.1.4.1. Single-use systems
          • 2.7.1.1.4.2. Process analytical technology (PAT)
          • 2.7.1.1.4.3. Cell line development
    • 2.7.2. Fermentation
      • 2.7.2.1. Overview
        • 2.7.2.1.1. Types of Fermentation Processes
        • 2.7.2.1.2. Factors Affecting Fermentation Performance
        • 2.7.2.1.3. Advances in Fermentation Technology
          • 2.7.2.1.3.1. High-cell-density fermentation
          • 2.7.2.1.3.2. Continuous processing
          • 2.7.2.1.3.3. Metabolic engineering
          • 2.7.2.1.3.4. Synthetic biology applications
          • 2.7.2.1.3.5. Cell-free systems
          • 2.7.2.1.3.6. Continuous vs batch biomanufacturing
    • 2.7.3. Downstream Processing
      • 2.7.3.1. Purification
        • 2.7.3.1.1. Overview
        • 2.7.3.1.2. Types of Purification Methods
        • 2.7.3.1.3. Factors Affecting Purification Performance
        • 2.7.3.1.4. Advances in Purification Technology
          • 2.7.3.1.4.1. Affinity chromatography
          • 2.7.3.1.4.2. Membrane chromatography
          • 2.7.3.1.4.3. Continuous chromatography
          • 2.7.3.1.4.4. Downstream processing (DSP) improvements
          • 2.7.3.1.4.5. Tangential flow filtration (TFF) in downstream bioprocessing
    • 2.7.4. Formulation
      • 2.7.4.1. Overview
        • 2.7.4.1.1. Types of Formulation Methods
        • 2.7.4.1.2. Factors Affecting Formulation Performance
        • 2.7.4.1.3. Advances in Formulation Technology
          • 2.7.4.1.3.1. Controlled release
          • 2.7.4.1.3.2. Nanoparticle formulation
          • 2.7.4.1.3.3. 3D printing
    • 2.7.5. Bioprocess Development
      • 2.7.5.1. Scale-up
        • 2.7.5.1.1. Overview
        • 2.7.5.1.2. Factors Affecting Scale-up Performance
        • 2.7.5.1.3. Scale-up Strategies
      • 2.7.5.2. Optimization
        • 2.7.5.2.1. Overview
        • 2.7.5.2.2. Factors Affecting Optimization Performance
        • 2.7.5.2.3. Optimization Strategies
        • 2.7.5.2.4. Machine learning to improve biomanufacturing processes
        • 2.7.5.2.5. Process intensification and high-cell-density fermentation
        • 2.7.5.2.6. Hybrid biotechnological-chemical approaches
    • 2.7.6. Analytical Methods
      • 2.7.6.1. Quality Control
        • 2.7.6.1.1. Overview
        • 2.7.6.1.2. Types of Quality Control Tests
        • 2.7.6.1.3. Factors Affecting Quality Control Performance
      • 2.7.6.2. Characterization
        • 2.7.6.2.1. Overview
        • 2.7.6.2.2. Types of Characterization Methods
        • 2.7.6.2.3. Factors Affecting Characterization Performance
    • 2.7.7. Synthetic Biology Tools and Techniques
      • 2.7.7.1. DNA synthesis
      • 2.7.7.2. CRISPR-Cas9 systems
      • 2.7.7.3. Protein/enzyme engineering
      • 2.7.7.4. Computer-aided design
      • 2.7.7.5. Strain construction and optimization
      • 2.7.7.6. Robotics and automation
      • 2.7.7.7. Artificial intelligence and machine learning
    • 2.7.8. Alternative Feedstocks and Sustainability
      • 2.7.8.1. C1 feedstocks: Metabolic pathways
      • 2.7.8.2. C2 feedstocks
      • 2.7.8.3. Lignocellulosic biomass feedstocks
      • 2.7.8.4. Blue biotechnology feedstocks
      • 2.7.8.5. Routes for carbon capture in biotechnology
  • 2.8. Scale of Production
    • 2.8.1. Laboratory Scale
      • 2.8.1.1. Overview
      • 2.8.1.2. Scale and Equipment
      • 2.8.1.3. Advantages
      • 2.8.1.4. Disadvantages
    • 2.8.2. Pilot Scale
      • 2.8.2.1. Overview
      • 2.8.2.2. Scale and Equipment
      • 2.8.2.3. Advantages
      • 2.8.2.4. Disadvantages
    • 2.8.3. Commercial Scale
      • 2.8.3.1. Overview
      • 2.8.3.2. Scale and Equipment
      • 2.8.3.3. Advantages
      • 2.8.3.4. Disadvantages
  • 2.9. Mode of Operation
    • 2.9.1. Batch Production
      • 2.9.1.1. Overview
      • 2.9.1.2. Advantages
      • 2.9.1.3. Disadvantages
      • 2.9.1.4. Applications
    • 2.9.2. Fed-batch Production
      • 2.9.2.1. Overview
      • 2.9.2.2. Advantages
      • 2.9.2.3. Disadvantages
      • 2.9.2.4. Applications
    • 2.9.3. Continuous Production
      • 2.9.3.1. Overview
      • 2.9.3.2. Advantages
      • 2.9.3.3. Disadvantages
      • 2.9.3.4. Applications
      • 2.9.3.5. Key fermentation parameter comparison
    • 2.9.4. Cell factories for biomanufacturing
      • 2.9.4.1. Range of organisms
      • 2.9.4.2. Escherichia coli (E.coli)
      • 2.9.4.3. Corynebacterium glutamicum (C. glutamicum)
      • 2.9.4.4. Bacillus subtilis (B. subtilis)
      • 2.9.4.5. Saccharomyces cerevisiae (S. cerevisiae)
      • 2.9.4.6. Yarrowia lipolytica (Y. lipolytica)
      • 2.9.4.7. Non-model organisms
    • 2.9.5. Perfusion Culture
      • 2.9.5.1. Overview
      • 2.9.5.2. Advantages
      • 2.9.5.3. Disadvantages
      • 2.9.5.4. Applications
      • 2.9.5.5. Perfusion bioreactors
    • 2.9.6. Other Modes of Operation
      • 2.9.6.1. Immobilized Cell Culture
        • 2.9.6.1.1. Immobilized enzymes
        • 2.9.6.1.2. Immobilized catalysts
      • 2.9.6.2. Two-Stage Production
      • 2.9.6.3. Hybrid Systems
  • 2.10. Host Organisms

3. BIOPHARMACEUTICALS

  • 3.1. Overview
  • 3.2. Technology/materials analysis
    • 3.2.1. Monoclonal Antibodies (mAbs)
    • 3.2.2. Recombinant Proteins
    • 3.2.3. Vaccines
    • 3.2.4. Cell and Gene Therapies
    • 3.2.5. Blood Factors
    • 3.2.6. Tissue Engineering Products
    • 3.2.7. Nucleic Acid Therapeutics
    • 3.2.8. Peptide Therapeutics
    • 3.2.9. Biosimilars and Biobetters
    • 3.2.10. Nanobodies and Antibody Fragments
    • 3.2.11. Synthetic biology
      • 3.2.11.1. Metabolic engineering
        • 3.2.11.1.1. DNA synthesis
        • 3.2.11.1.2. CRISPR
          • 3.2.11.1.2.1. CRISPR/Cas9-modified biosynthetic pathways
      • 3.2.11.2. Protein/Enzyme Engineering
      • 3.2.11.3. Strain construction and optimization
      • 3.2.11.4. Synthetic biology and metabolic engineering
      • 3.2.11.5. Smart bioprocessing
      • 3.2.11.6. Cell-free systems
      • 3.2.11.7. Chassis organisms
      • 3.2.11.8. Biomimetics
      • 3.2.11.9. Sustainable materials
      • 3.2.11.10. Robotics and automation
        • 3.2.11.10.1. Robotic cloud laboratories
        • 3.2.11.10.2. Automating organism design
        • 3.2.11.10.3. Artificial intelligence and machine learning
      • 3.2.11.11. Fermentation Processes
    • 3.2.12. Generative Biology
      • 3.2.12.1. Generative Adversarial Networks (GANs)
        • 3.2.12.1.1. Variational Autoencoders (VAEs)
        • 3.2.12.1.2. Normalizing Flows
        • 3.2.12.1.3. Autoregressive Models
        • 3.2.12.1.4. Evolutionary Generative Models
      • 3.2.12.2. Design Optimization
        • 3.2.12.2.1. Evolutionary Algorithms (e.g., Genetic Algorithms, Evolutionary Strategies)
          • 3.2.12.2.1.1. Genetic Algorithms (GAs)
          • 3.2.12.2.1.2. Evolutionary Strategies (ES)
        • 3.2.12.2.2. Reinforcement Learning
        • 3.2.12.2.3. Multi-Objective Optimization
        • 3.2.12.2.4. Bayesian Optimization
      • 3.2.12.3. Computational Biology
        • 3.2.12.3.1. Molecular Dynamics Simulations
        • 3.2.12.3.2. Quantum Mechanical Calculations
        • 3.2.12.3.3. Systems Biology Modeling
        • 3.2.12.3.4. Metabolic Engineering Modeling
      • 3.2.12.4. Data-Driven Approaches
        • 3.2.12.4.1. Machine Learning
        • 3.2.12.4.2. Graph Neural Networks
        • 3.2.12.4.3. Unsupervised Learning
        • 3.2.12.4.4. Active Learning and Bayesian Optimization
      • 3.2.12.5. Agent-Based Modeling
      • 3.2.12.6. Hybrid Approaches
  • 3.3. Market analysis
    • 3.3.1. Key players and competitive landscape
    • 3.3.2. Market Growth Drivers and Trends
    • 3.3.3. Regulations
    • 3.3.4. Value chain
    • 3.3.5. Future outlook
    • 3.3.6. Technology Readiness Level (TRL)
    • 3.3.7. Addressable Market Size
    • 3.3.8. Risks and Opportunities
    • 3.3.9. Global revenues
      • 3.3.9.1. By application market
      • 3.3.9.2. By regional market
  • 3.4. Company profiles (131 company profiles)

4. INDUSTRIAL ENZYMES (BIOCATALYSTS)

  • 4.1. Overview
    • 4.1.1. Bio-manufactured enzymes
  • 4.2. Technology/materials analysis
    • 4.2.1. Detergent Enzymes
    • 4.2.2. Food Processing Enzymes
    • 4.2.3. Textile Processing Enzymes
    • 4.2.4. Paper and Pulp Processing Enzymes
    • 4.2.5. Leather Processing Enzymes
    • 4.2.6. Biofuel Production Enzymes
      • 4.2.6.1. Enzymes for lignocellulosic derived bioethanol
      • 4.2.6.2. Cellulases for lignocellulosic bioethanol
      • 4.2.6.3. Hemicellulases and synergistic enzyme cocktails
      • 4.2.6.4. Thermostable and extremophilic enzymes
      • 4.2.6.5. Cost-performance metrics for thermostable enzymes
    • 4.2.7. Animal Feed Enzymes
    • 4.2.8. Pharmaceutical and Diagnostic Enzymes
    • 4.2.9. Waste Management and Bioremediation Enzymes
      • 4.2.9.1. Enzymes for plastics recycling
      • 4.2.9.2. Enzymatic depolymerization
      • 4.2.9.3. Challenges in enzymatic depolymerization
    • 4.2.10. Agriculture and Crop Improvement Enzymes
    • 4.2.11. Enzymes for Decarbonization and CO2 Utilization
      • 4.2.11.1. Carbonic anhydrase in CO2 capture technologies
      • 4.2.11.2. Formate dehydrogenase and CO2-to-chemicals pathways
      • 4.2.11.3. Selected enzymatic approaches to CO2 capture and conversion
  • 4.3. Market analysis
    • 4.3.1. Key players and competitive landscape
    • 4.3.2. Market Growth Drivers and Trends
    • 4.3.3. Technology challenges and opportunities for industrial enzymes
    • 4.3.4. Economic competitiveness of enzymatic processing
    • 4.3.5. Regulations
    • 4.3.6. Value chain
    • 4.3.7. Future outlook
    • 4.3.8. Technology Readiness Level (TRL)
    • 4.3.9. Addressable Market Size
    • 4.3.10. Risks and Opportunities
    • 4.3.11. Global revenues
      • 4.3.11.1. By application market
      • 4.3.11.2. By regional market
  • 4.4. Company profiles (63 company profiles)

5. BIOFUELS

  • 5.1. Overview
  • 5.2. Technology/materials analysis
    • 5.2.1. Role in the circular economy
    • 5.2.2. The global biofuels market
    • 5.2.3. Feedstocks
      • 5.2.3.1. First-generation (1-G)
      • 5.2.3.2. Second-generation (2-G)
        • 5.2.3.2.1. Lignocellulosic wastes and residues
        • 5.2.3.2.2. Biorefinery lignin
      • 5.2.3.3. Third-generation (3-G)
        • 5.2.3.3.1. Algal biofuels
          • 5.2.3.3.1.1. Properties
          • 5.2.3.3.1.2. Advantages
      • 5.2.3.4. Fourth-generation (4-G)
      • 5.2.3.5. Advantages and disadvantages, by generation
    • 5.2.4. Bioethanol
      • 5.2.4.1. First-generation bioethanol (from sugars and starches)
      • 5.2.4.2. Second-generation bioethanol (from lignocellulosic biomass)
      • 5.2.4.3. Third-generation bioethanol (from algae)
    • 5.2.5. Biodiesel
      • 5.2.5.1. Biodiesel by generation
      • 5.2.5.2. SWOT analysis
      • 5.2.5.3. Production of biodiesel and other biofuels
        • 5.2.5.3.1. Pyrolysis of biomass
        • 5.2.5.3.2. Vegetable oil transesterification
        • 5.2.5.3.3. Vegetable oil hydrogenation (HVO)
          • 5.2.5.3.3.1. Production process
        • 5.2.5.3.4. Biodiesel from tall oil
        • 5.2.5.3.5. Fischer-Tropsch BioDiesel
        • 5.2.5.3.6. Hydrothermal liquefaction of biomass
        • 5.2.5.3.7. CO2 capture and Fischer-Tropsch (FT)
        • 5.2.5.3.8. Dymethyl ether (DME)
      • 5.2.5.4. Prices
      • 5.2.5.5. Global production and consumption
    • 5.2.6. Biogas
      • 5.2.6.1. Feedstocks
      • 5.2.6.2. Biomethane
        • 5.2.6.2.1. Production pathways
          • 5.2.6.2.1.1. Landfill gas recovery
          • 5.2.6.2.1.2. Anaerobic digestion
          • 5.2.6.2.1.3. Thermal gasification
      • 5.2.6.3. SWOT analysis
      • 5.2.6.4. Global production
      • 5.2.6.5. Prices
        • 5.2.6.5.1. Raw Biogas
        • 5.2.6.5.2. Upgraded Biomethane
      • 5.2.6.6. Bio-LNG
        • 5.2.6.6.1. Markets
          • 5.2.6.6.1.1. Trucks
          • 5.2.6.6.1.2. Marine
        • 5.2.6.6.2. Production
        • 5.2.6.6.3. Plants
      • 5.2.6.7. bio-CNG (compressed natural gas derived from biogas)
      • 5.2.6.8. Carbon capture from biogas
      • 5.2.6.9. Biosyngas
        • 5.2.6.9.1. Production
        • 5.2.6.9.2. Prices
    • 5.2.7. Biobutanol
      • 5.2.7.1. Production
      • 5.2.7.2. Prices
    • 5.2.8. Biohydrogen
      • 5.2.8.1. Description
        • 5.2.8.1.1. Dark fermentation
        • 5.2.8.1.2. Photofermentation
        • 5.2.8.1.3. Biophotolysis (direct and indirect)
          • 5.2.8.1.3.1. Direct Biophotolysis:
          • 5.2.8.1.3.2. Indirect Biophotolysis:
      • 5.2.8.2. SWOT analysis
      • 5.2.8.3. Production of biohydrogen from biomass
        • 5.2.8.3.1. Biological Conversion Routes
          • 5.2.8.3.1.1. Bio-photochemical Reaction
          • 5.2.8.3.1.2. Fermentation and Anaerobic Digestion
        • 5.2.8.3.2. Thermochemical conversion routes
          • 5.2.8.3.2.1. Biomass Gasification
          • 5.2.8.3.2.2. Biomass Pyrolysis
          • 5.2.8.3.2.3. Biomethane Reforming
      • 5.2.8.4. Applications
      • 5.2.8.5. Prices
    • 5.2.9. Biomethanol
      • 5.2.9.1. Gasification-based biomethanol
      • 5.2.9.2. Biosynthesis-based biomethanol
      • 5.2.9.3. SWOT analysis
      • 5.2.9.4. Methanol-to gasoline technology
        • 5.2.9.4.1. Production processes
          • 5.2.9.4.1.1. Anaerobic digestion
          • 5.2.9.4.1.2. Biomass gasification
          • 5.2.9.4.1.3. Power to Methane
    • 5.2.10. Bio-oil and Biochar
      • 5.2.10.1. Pyrolysis-based bio-oil
      • 5.2.10.2. Hydrothermal liquefaction-based bio-oil
      • 5.2.10.3. Biochar from pyrolysis and gasification processes
      • 5.2.10.4. Advantages of bio-oils
      • 5.2.10.5. Production
        • 5.2.10.5.1. Fast Pyrolysis
        • 5.2.10.5.2. Costs of production
        • 5.2.10.5.3. Upgrading
      • 5.2.10.6. SWOT analysis
      • 5.2.10.7. Applications
      • 5.2.10.8. Bio-oil producers
      • 5.2.10.9. Prices
    • 5.2.11. Renewable Diesel and Jet Fuel
      • 5.2.11.1. Renewable diesel
        • 5.2.11.1.1. Production
        • 5.2.11.1.2. SWOT analysis
        • 5.2.11.1.3. Global consumption
        • 5.2.11.1.4. Prices
      • 5.2.11.2. Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)
        • 5.2.11.2.1. Description
        • 5.2.11.2.2. SWOT analysis
        • 5.2.11.2.3. Global production and consumption
        • 5.2.11.2.4. Production pathways
        • 5.2.11.2.5. Prices
        • 5.2.11.2.6. Bio-aviation fuel production capacities
        • 5.2.11.2.7. Challenges
        • 5.2.11.2.8. Global consumption
    • 5.2.12. Algal biofuels
      • 5.2.12.1. Conversion pathways
      • 5.2.12.2. SWOT analysis
      • 5.2.12.3. Production
      • 5.2.12.4. Market challenges
      • 5.2.12.5. Prices
      • 5.2.12.6. Producers
  • 5.3. Market analysis
    • 5.3.1. Key players and competitive landscape
    • 5.3.2. Market Growth Drivers and Trends
    • 5.3.3. Regulations
    • 5.3.4. Value chain
    • 5.3.5. Future outlook
    • 5.3.6. Technology Readiness Level (TRL)
    • 5.3.7. Addressable Market Size
    • 5.3.8. Risks and Opportunities
    • 5.3.9. Global revenues
      • 5.3.9.1. By biofuel type
      • 5.3.9.2. Applications Market
      • 5.3.9.3. By regional market
  • 5.4. Company profiles (233 company profiles)

6. BIOPLASTICS

  • 6.1. Overview
  • 6.2. Technology/materials analysis
    • 6.2.1. Polylactic acid (PLA)
    • 6.2.2. Polyhydroxyalkanoates (PHAs)
      • 6.2.2.1. Types
      • 6.2.2.2. Polyhydroxybutyrate (PHB)
      • 6.2.2.3. Polyhydroxyvalerate (PHV)
    • 6.2.3. Bio-based polyethylene (PE)
    • 6.2.4. Bio-based polyethylene terephthalate (PET)
    • 6.2.5. Bio-based polyurethanes (PUs)
    • 6.2.6. Starch-based plastics
    • 6.2.7. Cellulose-based plastics
  • 6.3. Market analysis
    • 6.3.1. Key players and competitive landscape
    • 6.3.2. Market Growth Drivers and Trends
    • 6.3.3. Regulations
    • 6.3.4. Value chain
    • 6.3.5. Future outlook
    • 6.3.6. Technology Readiness Level (TRL)
    • 6.3.7. Addressable Market Size
    • 6.3.8. Risks and Opportunities
    • 6.3.9. Global revenues
      • 6.3.9.1. By type
      • 6.3.9.2. By application market
      • 6.3.9.3. By regional market
  • 6.4. Company profiles (581 company profiles)

7. BIOCHEMICALS

  • 7.1. Overview
  • 7.2. Technology/materials analysis
    • 7.2.1. Organic acids
      • 7.2.1.1. Lactic acid
        • 7.2.1.1.1. D-lactic acid
        • 7.2.1.1.2. L-lactic acid
      • 7.2.1.2. Succinic acid
      • 7.2.1.3. Itaconic acid
      • 7.2.1.4. Citric acid
      • 7.2.1.5. Acetic acid
    • 7.2.2. Amino acids
      • 7.2.2.1. Glutamic acid
      • 7.2.2.2. Lysine
      • 7.2.2.3. Threonine
      • 7.2.2.4. Methionine
      • 7.2.2.5. Vitamins produced using biotechnology
        • 7.2.2.5.1. Vitamin B2 (Riboflavin)
        • 7.2.2.5.2. Vitamin B12 (Cobalamin)
        • 7.2.2.5.3. Vitamin C (Ascorbic Acid)
        • 7.2.2.5.4. Vitamin B7 (Biotin)
        • 7.2.2.5.5. Vitamin B3 (Niacin / Nicotinic Acid)
        • 7.2.2.5.6. Vitamin B9 (Folic Acid / Folate)
    • 7.2.3. Alcohols
      • 7.2.3.1. Ethanol
      • 7.2.3.2. Butanol
      • 7.2.3.3. Isobutanol
      • 7.2.3.4. Propanediol
    • 7.2.4. Surfactants
      • 7.2.4.1. Biosurfactants (e.g., rhamnolipids, sophorolipids)
        • 7.2.4.1.1. Rhamnolipids
        • 7.2.4.1.2. Sophorolipids
        • 7.2.4.1.3. Mannosylerythritol lipids (MELs)
        • 7.2.4.1.4. Cellobiose lipids
        • 7.2.4.1.5. Designer glycolipids and lipopeptides via synthetic biology
      • 7.2.4.2. Alkyl polyglucosides (APGs)
    • 7.2.5. Solvents
      • 7.2.5.1. Ethyl lactate
      • 7.2.5.2. Dimethyl carbonate
      • 7.2.5.3. Glycerol
    • 7.2.6. Flavours and fragrances
      • 7.2.6.1. Vanillin
      • 7.2.6.2. Nootkatone
      • 7.2.6.3. Limonene
      • 7.2.6.4. Bio-manufactured fragrances and aromatics
      • 7.2.6.5. Biotech-derived fragrance precursors
      • 7.2.6.6. Ambroxan
      • 7.2.6.7. Flavour enhancers
      • 7.2.6.8. Disodium Inosinate (IMP)
      • 7.2.6.9. Disodium Guanylate (GMP)
      • 7.2.6.10. Monatin
    • 7.2.7. Bio-based monomers and intermediates
      • 7.2.7.1. Succinic acid
      • 7.2.7.2. 1,4-Butanediol (BDO)
      • 7.2.7.3. Isoprene
      • 7.2.7.4. Ethylene
      • 7.2.7.5. Propylene
      • 7.2.7.6. Adipic acid
      • 7.2.7.7. Acrylic acid
      • 7.2.7.8. Sebacic acid
    • 7.2.8. Bio-based polymers
      • 7.2.8.1. Polybutylene succinate (PBS)
      • 7.2.8.2. Polyamides (nylons)
      • 7.2.8.3. Polyethylene furanoate (PEF)
      • 7.2.8.4. Polytrimethylene terephthalate (PTT)
      • 7.2.8.5. Polyethylene isosorbide terephthalate (PEIT)
    • 7.2.9. Bio-based composites and blends
      • 7.2.9.1. Wood-plastic composites (WPCs)
      • 7.2.9.2. Biofiller-reinforced plastics
      • 7.2.9.3. Biofiber-reinforced plastics
      • 7.2.9.4. Polymer blends with bio-based components
    • 7.2.10. Beauty and Personal Care Chemicals
      • 7.2.10.1. Hyaluronic acid production
      • 7.2.10.2. Squalene and Squalane alternatives
      • 7.2.10.3. Collagen
      • 7.2.10.4. Bio-based UV filters and photoprotective compounds
      • 7.2.10.5. Melanin
      • 7.2.10.6. Emollients
    • 7.2.11. Waste
      • 7.2.11.1. Food waste
      • 7.2.11.2. Agricultural waste
      • 7.2.11.3. Forestry waste
      • 7.2.11.4. Aquaculture/fishing waste
      • 7.2.11.5. Municipal solid waste
      • 7.2.11.6. Industrial waste
      • 7.2.11.7. Waste oils
    • 7.2.12. Microbial and mineral sources
      • 7.2.12.1. Microalgae
      • 7.2.12.2. Macroalgae
      • 7.2.12.3. Cyanobacteria
      • 7.2.12.4. Mineral sources
    • 7.2.13. Other Bio-manufactured Products
      • 7.2.13.1. Cement alternatives from biomanufacturing
      • 7.2.13.2. Precision fermentation products
  • 7.3. Market analysis
    • 7.3.1. Key players and competitive landscape
      • 7.3.1.1. Company landscape in specialty chemicals biotechnology
      • 7.3.1.2. Bio-manufactured beauty ingredient production capacities
    • 7.3.2. Market Growth Drivers and Trends
      • 7.3.2.1. Trends and drivers in biotechnology
      • 7.3.2.2. Government support of biotechnology
      • 7.3.2.3. Carbon taxes
    • 7.3.3. Regulations
    • 7.3.4. Value chain
      • 7.3.4.1. Economic viability factors
      • 7.3.4.2. Effect of feedstock prices
      • 7.3.4.3. Scale-up effects on cost
    • 7.3.5. Future outlook
    • 7.3.6. Technology Readiness Level (TRL)
    • 7.3.7. Addressable Market Size
    • 7.3.8. Risks and Opportunities
    • 7.3.9. Major market challenges
    • 7.3.10. Technical challenges
    • 7.3.11. Global revenues
      • 7.3.11.1. By type
      • 7.3.11.2. By application market
      • 7.3.11.3. By regional market
  • 7.4. Company profiles (138 company profiles)

8. BIO-AGRITECH

  • 8.1. Overview
  • 8.2. Technology/materials analysis
    • 8.2.1. Biopesticides
      • 8.2.1.1. Semiochemical
      • 8.2.1.2. Macrobial Biological Control Agents
      • 8.2.1.3. Microbial pesticides
      • 8.2.1.4. Biochemical pesticides
      • 8.2.1.5. Plant-incorporated protectants (PIPs)
    • 8.2.2. Biofertilizers
    • 8.2.3. Biostimulants
      • 8.2.3.1. Microbial biostimulants
        • 8.2.3.1.1. Nitrogen Fixation
        • 8.2.3.1.2. Formulation Challenges
      • 8.2.3.2. Natural Product Biostimulants
      • 8.2.3.3. Manipulating the Microbiome
      • 8.2.3.4. Synthetic Biology
      • 8.2.3.5. Non-microbial biostimulants
    • 8.2.4. Agricultural Enzymes
      • 8.2.4.1. Types of Agricultural Enzymes
  • 8.3. Market analysis
    • 8.3.1. Key players and competitive landscape
    • 8.3.2. Market Growth Drivers and Trends
    • 8.3.3. Regulations
    • 8.3.4. Value chain
    • 8.3.5. Future outlook
    • 8.3.6. Addressable Market Size
    • 8.3.7. Risks and Opportunities
    • 8.3.8. Global revenues
      • 8.3.8.1. By application market
      • 8.3.8.2. By regional market
  • 8.4. Company profiles (105 company profiles)

9. RESEARCH METHODOLOGY

10. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제