시장보고서
상품코드
1850614

세계의 그린 스틸 시장(2026-2036년)

The Global Green Steel Market 2026-2036

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 212 Pages, 85 Tables, 158 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

그린 스틸 시장은 세계에서 가장 탄소 집약적인 산업 중 하나인 철강 산업을 변화시키고 있습니다. 기존 제철은 전 세계 온실가스 배출량의 6-7%를 차지하고 있으며, 기후 변화 목표를 달성하기 위해서는 저탄소 생산으로의 전환이 필수적입니다. 기술 혁신, 규제 당국의 압력, 그리고 기업의 지속가능성에 대한 약속이 증가함에 따라 탄소 배출을 최소화하거나 제로로 만드는 친환경 철강 생산이 그 해결책으로 떠오르고 있습니다. 그린스틸은 기존 고로 제강에 비해 CO2 배출을 획기적으로 줄일 수 있는 다양한 생산방식을 포함합니다. 첫 번째 접근법은 원료탄 대신 재생에너지로 생산된 수소를 사용하여 철광석을 직접 환원철로 환원하고, 청정 전력을 동력원으로 하는 전기 아크로에서 처리하는 방식입니다. 이 수소 기반 직접 환원법은 철강 1톤당 1.8톤의 CO2 배출량을 0.05톤까지 줄일 수 있습니다. 대체 경로로는 재생 가능한 전력으로 재활용된 스크랩을 사용하는 전기 아크로, 기존 공정에 적용되는 탄소 포집 및 저장 기술, 지속 가능한 바이오 탄소 소재의 도입 등이 있습니다.

제철의 미래를 결정하기 위해 여러 기술이 경쟁하고 있습니다. 수소 기반 직접 환원과 전기 아크로의 조합은 가장 큰 배출량 감소를 실현하여 기술 경쟁을 주도하고 있습니다. 철 스크랩을 이용하는 전기 아크로는 가장 성숙한 저탄소화의 길을 보여주고 있지만, 사용 가능한 스크랩이 한정되어 있어 확대에 제약이 있습니다. 탄소 포집, 이용, 저장은 기존 시설을 위한 브릿지 솔루션으로 톤당 40-120달러 상당의 CO2를 회수할 수 있습니다. 수소 루트는 대규모 재생에너지 인프라가 필요하고, CCUS는 높은 자본 비용과 에너지 페널티로 인해 효율이 8-15% 감소하며, 스크랩 기반 생산은 오염 요소로 인한 품질 문제에 직면해 있습니다.

시장은 수요 및 공급의 격차가 확대되고 있으며, 생산은 급속히 가속화되는 수요에 대응하기 위해 고군분투하고 있습니다. 이러한 불균형은 특히 Mercedes-Benz, Volvo, BMW와 같은 주요 제조업체들이 그린스틸 장기 공급 계약을 체결한 자동차 산업 등 기업들의 적극적인 노력을 반영하고 있습니다. 자동차 산업이 채택을 주도하고 있는 이유는 라이프사이클 배출 규제에 따라 재료의 탄소 발자국이 점점 더 중요시되고 있기 때문입니다. 건설은 녹색 공공조달 정책이 인프라 프로젝트에 저탄소 자재료를 요구하고 있기 때문에 두 번째로 큰 용도가 되고 있습니다. 기타 가전, 기계, 철도 인프라, 전자제품 제조 등도 중요한 부문입니다.

이러한 전환은 강력한 규제 메커니즘에 의해 추진되고 있으며, 특히 EU의 Carbon Border Adjustment Mechanism은 탄소 집약적 수입품에 대한 즉각적인 비용 압력을 발생시키고 있습니다. 미국에서는 인플레이션 감소법(Inflation Reduction Act)이 생산세 공제를 제공하는 등 전 세계적으로 유사한 정책이 등장하고 있습니다. 기업의 scope 3 배출량 감축 목표는 고객사가 기후 변화 목표를 달성하기 위해 녹색 철강을 필요로 하는 상황에서 강력한 수요 모멘텀을 창출하고 있습니다. 수소 인프라는 전 세계적으로 수 천억 달러의 막대한 투자가 필요하고, 고품질 철광석의 부족은 직접 환원 공정을 제약하고 있으며, 많은 기술이 아직 시험 단계에 머물러 있습니다. 자본비용은 매우 높으며, CCUS 설비의 경우 플랜트당 10억-50억 달러에 달할 전망입니다. 기타 과제로는 근로자 기술 격차, 공급망의 복잡성, 특히 개발도상국 시장에서의 자금 조달 등이 있습니다.

이 보고서는 세계 그린 스틸 시장을 조사 분석하여 2036년까지의 상세한 생산량 예측, 지역별 경쟁력 역학, 주요 시장별 정책 환경 평가, 종합적인 기술 준비도 평가 등의 정보를 제공합니다.

목차

제1장 주요 요약

  • 시장 상황과 긴급성
  • 중요 기술 평가 : 수소 현실 검증
  • 신기술 승자
  • 지역별 경쟁력 역학
  • 정책 상황
  • 주요 프로젝트의 발전과 재무 목표 현실
  • 경제 교차점
  • 시장 구조 변혁
  • 중대한 보틀넥과 인프라 갭
  • 수정된 수소 수요 예측
  • 정책 제안
  • 결론 : 기술이 정책 낙관 주의에 이긴다

제2장 서론

  • 현재 제강 프로세스
  • '더블 카본'(카본 피크, 탄소 중립) 목표와 초저배출 요건
  • 그린 스틸이란?
  • 스틸 탈탄소화
  • 생산 기술
  • 그린 스틸 첨단 소재
  • 그린 스틸의 장단점
  • 시장과 용도
  • 제강 에너지 효율과 비용 절감
  • 디지털화
  • 바이오매스 제강과 지속가능그린 스틸 생산 체인

제3장 그린 스틸 세계 시장

  • 세계의 제강
  • 그린 스틸 플랜트와 생산량, 현행과 계획중
  • 시장 맵
  • SWOT 분석
  • 시장 동향과 기회
  • 산업 발전, 자금조달, 혁신(2022년-2025년)
  • 시장 성장 촉진요인
  • 시장이 해결해야 할 과제
  • 최종 이용 산업

제4장 세계 시장 생산량과 수요

  • 생산능력(2020년-2036년)
  • 생산량과 수요(2020년-2036년)
  • 매출(2020년-2036년)
  • 경쟁 구도
  • 향후 시장 전망

제5장 기업 개요(기업 46개사 개요)

제6장 조사 방법

제7장 두자어 리스트

제8장 참고 문헌

LSH

The green steel market represents a transformative shift in one of the world's most carbon-intensive industries. Traditional steelmaking contributes 6-7% of global greenhouse gas emissions, making the transition to low-carbon production critical for achieving climate goals. Green steel-produced with minimal or zero carbon emissions-is emerging as the solution, driven by technological innovation, regulatory pressure, and growing corporate commitments to sustainability. Green steel encompasses various production methods that dramatically reduce CO2 emissions compared to conventional blast furnace steelmaking. The primary approach uses hydrogen produced from renewable energy instead of coking coal to reduce iron ore into direct reduced iron, then processes it in electric arc furnaces powered by clean electricity. This hydrogen-based direct reduction route can reduce emissions from 1.8 tonnes of CO2 per tonne of steel to as low as 0.05 tonnes. Alternative pathways include electric arc furnaces using recycled scrap with renewable electricity, carbon capture and storage technologies applied to traditional processes, and the incorporation of sustainable biocarbon materials.

Multiple technologies are competing to define the future of steelmaking. Hydrogen-based direct reduction paired with electric arc furnaces leads the technological race, offering the most substantial emission reductions. Electric arc furnaces using scrap steel represent the most mature low-carbon pathway, though limited scrap availability constrains expansion. Carbon capture, utilization, and storage provides a bridge solution for existing facilities, capturing 40-120 dollars worth of CO2 per tonne, while emerging electrolysis methods promise carbon-free iron production. Each technology faces distinct challenges: hydrogen routes require massive renewable energy infrastructure, CCUS faces high capital costs and energy penalties reducing efficiency by 8-15%, and scrap-based production encounters quality concerns from contaminant elements.

The market faces a widening supply-demand gap, with production struggling to meet rapidly accelerating demand. This imbalance reflects aggressive corporate commitments, particularly from the automotive sector where leading manufacturers like Mercedes-Benz, Volvo, and BMW have secured long-term green steel supply agreements. The automotive industry leads adoption because lifecycle emission regulations increasingly account for material carbon footprints. Construction represents the second major application, with green public procurement policies requiring low-carbon materials for infrastructure projects. Other significant sectors include consumer appliances, machinery, rail infrastructure, and electronics manufacturing.

The transition is propelled by powerful regulatory mechanisms, particularly the EU's Carbon Border Adjustment Mechanism creating immediate cost pressures on carbon-intensive imports. Similar policies are emerging globally, with the US Inflation Reduction Act offering production tax credits. Corporate scope 3 emission reduction targets create strong demand pull, as customer companies need green steel to meet their own climate goals. However, formidable barriers persist: hydrogen infrastructure requires massive investment totaling hundreds of billions globally, high-quality iron ore shortages constrain direct reduction processes, and many technologies remain in pilot phase. Capital costs are extreme, reaching $1-5 billion per plant for CCUS installations. Additional challenges include workforce skill gaps, supply chain complexity, and financing access particularly in developing markets.

"The Global Green Steel Market 2026-2036" provides an authoritative analysis of the rapidly evolving green steel industry during a critical decade of transformation. The report delivers a critical reassessment of the sector's technology landscape, moving beyond early hydrogen-centric optimism to evaluate emerging alternatives including molten oxide electrolysis, biomethane direct reduction with carbon capture, and flash ironmaking.

The analysis encompasses detailed production forecasts through 2036, regional competitiveness dynamics, policy landscape evaluation across major markets, and comprehensive technology readiness assessments. It examines the widening supply-demand gap, investment requirements exceeding hundreds of billions globally, and the infrastructure bottlenecks constraining deployment. The report features extensive economic modeling including production cost convergence scenarios, comparative analysis of capital and operating expenditures across technologies, and hydrogen cost thresholds for competitiveness. Special attention is given to financial realities facing European projects, successful deployment case studies, and the emergence of hot briquetted iron (HBI) trade flows as strategic enablers of global market restructuring.

Regional analysis covers Europe, China, North America, India, Asia-Pacific, Middle East & Africa, and South America, examining diverging technology preferences, renewable energy advantages, and export-oriented capacity development. The report profiles current and planned green steel plants, analyzes supply agreements between producers and major consumers, and evaluates application-specific requirements across seven end-use industries. With 85 detailed tables and 15 figures, this report provides the technical depth and market intelligence required by steel producers, technology developers, investors, policymakers, and industrial consumers navigating the sector's fundamental transformation.

Report contents include:

  • Market context and urgency assessment
  • Critical technology evaluation: hydrogen reality check
  • Emerging technology winners analysis
  • Regional competitiveness dynamics (Europe's diverging fortunes, global leaders)
  • Policy landscape across EU and United States
  • Major project developments: success stories and cautionary tales
  • Economic crossover points and production cost convergence
  • Market structure transformation (capacity shifts, trade reconfiguration, capital intensity)
  • Critical bottlenecks and infrastructure gaps
  • Revised hydrogen demand projections
  • Policy recommendations and technology-driven outlook
  • Current steelmaking processes and carbon emissions analysis
  • Double carbon goals and ultra-low emissions requirements
  • Green steel definition, properties, and clean production advances
  • Economic reality: 2025 market assessment including financial stress analysis
  • Decarbonization technologies and CO2 reduction pathways
  • Economic viability assessment across production routes
  • Hydrogen reality check: cost problems and failed assumptions
  • Emerging technologies: molten oxide electrolysis, electrified biomethane DRI, flash ironmaking
  • Production Technologies
    • Hydrogen role assessment: cost problems, compounding inefficiencies, comparative technology evaluation
    • Hydrogen demand revision and narrow viable niche identification
    • Comparative analysis of all production pathways
    • Hydrogen Direct Reduced Iron (DRI) process details
    • Molten oxide electrolysis: direct electrification pathway with cost breakdown and regional competitiveness
    • Biomethane direct reduction with carbon capture: process description, carbon balance, negative emissions mechanism, economic assessment, supply chains, infrastructure requirements, carbon removal credit markets
    • Flash ironmaking: simplified natural gas process with CCS, cost analysis, regional suitability
    • Carbon Capture, Utilization and Storage (CCUS): comprehensive coverage including BF-BOF applications, technology selection, pre-combustion and post-combustion capture, storage and transportation, utilization options, cost comparisons
    • Alternative technologies: biochar, hydrogen blast furnace, renewable energy powered processes, hydrogen plasma reduction, ferrous bioprocessing, microwave processing, additive manufacturing
    • Technology readiness levels (TRL) for all pathways
    • Advanced materials: composite electrodes, solid oxide materials, hydrogen storage metals, carbon composites, coatings and membranes
  • Global Market Analysis
    • Global steel production overview and conventional steel pricing
    • Green steel pricing: historical development (2023-2024), 2025 market evolution, 2026-2030 outlook
    • Market restructuring and technology shift analysis (2025-2036)
    • Technology mix evolution and regional production shifts
    • HBI trade emergence as strategic enabler
    • Green steel plants: current and planned production capacity globally
    • Market mapping of value chain participants
    • SWOT analysis: strengths, weaknesses, opportunities, threats
    • Market trends and opportunities including technology divergence and regional specialization
    • Industry developments, funding and innovation (2022-2025)
    • Comprehensive market growth drivers analysis
    • Market challenges and barriers assessment
  • End-Use Industry Applications
    • Automotive: market overview, supply agreements, applications across vehicle components
    • Construction: market dynamics and building applications
    • Consumer appliances: demand drivers and product applications
    • Machinery: industrial equipment requirements
    • Rail: infrastructure and rolling stock applications
    • Packaging: steel container market
    • Electronics: specialized steel applications
  • Market Forecasts and Regional Analysis (2020-2036)
    • Production capacity projections by technology type
    • Production vs. demand analysis with regional supply-demand imbalances
    • HBI trade flow projections
    • Demand forecasts by end-use industry
    • Market maturation timeline and inflection points
    • Revenue projections: global, by end-use sector, by region
    • Detailed regional assessments:
      • Europe: technology leadership, policy drivers, financial challenges
      • China: diversified technology approach, domestic and export strategies
      • North America: IRA incentives, EAF expansion, emerging hydrogen projects
      • India: scrap constraints, technology pathways, growth trajectory
      • Asia-Pacific (excluding China): regional dynamics and opportunities
      • Middle East & Africa: renewable energy advantages, export potential
      • South America: near-shore supplier positioning
    • Competitive landscape: key players and market positioning
    • Future market outlook: technology evolution, economic competitiveness, supply chain transformation, investment requirements, risks and uncertainties

The report features detailed profiles of 46 leading companies driving the green steel transformation including Algoma Steel, Aperam BioEnergia, ArcelorMittal SA, Blastr Green Steel, Boston Metal, China Baowu Steel Group, Compania de Aceros del Pacifico (CAP), GravitHy, Georgsmarienhutte Holding GmbH, Electra Steel, Emirates Steel Arkan, Greeniron H2 AB, HBIS Group, Helios, Hybrit Development AB, Hybar LLC, Hydnum Steel, Hyundai Steel, JFE Steel, Jindal Shadeed Group, JSW Steel, Kobe Steel Ltd., Liberty Steel Group, Limelight Steel, Magsort Oy, Meranti Green Steel, Mitsui, Nippon Steel Corporation and more......

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. Market Context and Urgency
  • 1.2. Critical Technology Assessment: The Hydrogen Reality Check
  • 1.3. Emerging Technology Winners
  • 1.4. Regional Competitiveness Dynamics
    • 1.4.1. Europe's Diverging Fortunes
    • 1.4.2. Global Leaders in Low-Carbon Steel
  • 1.5. Policy Landscape
    • 1.5.1. European Union
    • 1.5.2. United States
  • 1.6. Major Project Developments & Financial Realities
    • 1.6.1. Success Stories
    • 1.6.2. Cautionary Tales
  • 1.7. Economic Crossover Points
  • 1.8. Market Structure Transformation
    • 1.8.1. Production Capacity Shifts (2025-2035)
    • 1.8.2. Trade Flow Reconfiguration
    • 1.8.3. Capital Intensity
    • 1.8.4. Financing Challenges
  • 1.9. Critical Bottlenecks & Infrastructure Gaps
  • 1.10. Revised Hydrogen Demand Projections
  • 1.11. Policy Recommendations
  • 1.12. Bottom Line: Technology Trumps Policy Optimism

2. INTRODUCTION

  • 2.1. Current Steelmaking processes
  • 2.2. "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements
  • 2.3. What is green steel?
    • 2.3.1. Properties
    • 2.3.2. Advances in clean production technologies
    • 2.3.3. The Economic Reality: 2025 Market Assessment
      • 2.3.3.1. Policy and Infrastructure Challenges
      • 2.3.3.2. Financial Stress in European Green Steel Projects
      • 2.3.3.3. Successful Projects Demonstrate Viable Pathways
      • 2.3.3.4. Market Reality
  • 2.4. Decarbonization of steel
    • 2.4.1. CO2 Reduction Technologies
      • 2.4.1.1. Economic Viability Assessment
    • 2.4.2. The Hydrogen Reality Check
    • 2.4.3. Emerging Technologies
      • 2.4.3.1. Molten Oxide Electrolysis (MOE)
      • 2.4.3.2. Electrified Biomethane DRI with Carbon Capture
      • 2.4.3.3. Flash Ironmaking
      • 2.4.3.4. Hydrogen's Narrow Viable Niche
    • 2.4.4. Decarbonization target and policies
      • 2.4.4.1. EU Carbon Border Adjustment Mechanism (CBAM)
  • 2.5. Production technologies
    • 2.5.1. The role of hydrogen
      • 2.5.1.1. The Hydrogen Cost Problem
      • 2.5.1.2. Why Hydrogen Costs Remain High: Compounding Inefficiencies
      • 2.5.1.3. Failed Assumptions Behind Hydrogen Optimism
      • 2.5.1.4. Comparative Technology Assessment: Hydrogen vs. Alternatives
      • 2.5.1.5. Hydrogen Demand Revision: Steel's Diminished Role
      • 2.5.1.6. The Narrow Path Forward for Hydrogen in Steel
      • 2.5.1.7. Policy Implications: Avoiding Stranded Assets
    • 2.5.2. Comparative analysis
    • 2.5.3. Hydrogen Direct Reduced Iron (DRI)
    • 2.5.4. Electrolysis
      • 2.5.4.1. Molten Oxide Electrolysis: The Direct Electrification Pathway
    • 2.5.5. Biomethane Direct Reduction with Carbon Capture
      • 2.5.5.1. Overview and Strategic Position
      • 2.5.5.2. Process Description
      • 2.5.5.3. Carbon Balance and Negative Emissions Mechanism
      • 2.5.5.4. Economic Assessment
      • 2.5.5.5. Biomass Supply Chains and Sustainability
      • 2.5.5.6. Biodigester Infrastructure Development Requirements
      • 2.5.5.7. Carbon Capture Technology Implementation
      • 2.5.5.8. CO2 Storage and Utilization Options
      • 2.5.5.9. Optimal Strategy for Biomethane DRI: Hybrid Approach
      • 2.5.5.10. Carbon Removal Credit Markets
      • 2.5.5.11. Technology Readiness and Deployment Timeline
      • 2.5.5.12. Scalability Assessment and Limitations
    • 2.5.6. Flash Ironmaking: Simplified Process with Natural Gas and CCS
      • 2.5.6.1. Process Description
      • 2.5.6.2. Technology Basis: Flash Copper Smelting
      • 2.5.6.3. Economic Analysis
      • 2.5.6.4. Regional Suitability Assessment
      • 2.5.6.5. Strategic Considerations
      • 2.5.6.6. Strategic Role: Transitional Bridge Technology
      • 2.5.6.7. Environmental Performance and Lifecycle Analysis
    • 2.5.7. Carbon Capture, Utilization and Storage (CCUS)
      • 2.5.7.1. Overview
      • 2.5.7.2. BF-BOF (Blast Furnace-Basic Oxygen Furnace)
      • 2.5.7.3. Selection of carbon capture technology
      • 2.5.7.4. Pre-Combustion Carbon Capture for Ironmaking
      • 2.5.7.5. Gas Recycling and Oxyfuel Combustion
      • 2.5.7.6. Sorption Enhanced Water Gas Shift (SEWGS)
      • 2.5.7.7. Amine-Based Post-Combustion CO2 Absorption
      • 2.5.7.8. Carbon Capture for Natural Gas-Based DRI
      • 2.5.7.9. CO2 Storage
      • 2.5.7.10. CO2 Transportation
      • 2.5.7.11. CO2 Utilization for Steel
      • 2.5.7.12. Carbon Capture Costs
      • 2.5.7.13. Carbon Credit and Carbon Offsetting
    • 2.5.8. Biochar replacing coke
    • 2.5.9. Hydrogen Blast Furnace
    • 2.5.10. Renewable energy powered processes
    • 2.5.11. Hydrogen Plasma Iron Ore Reduction
    • 2.5.12. Ferrous Bioprocessing
    • 2.5.13. Microwave Processing
    • 2.5.14. Additive Manufacturing
    • 2.5.15. Technology readiness level (TRL)
  • 2.6. Advanced materials in green steel
    • 2.6.1. Composite electrodes
    • 2.6.2. Solid oxide materials
    • 2.6.3. Hydrogen storage metals
    • 2.6.4. Carbon composite steels
    • 2.6.5. Coatings and membranes
    • 2.6.6. Sustainable binders
    • 2.6.7. Iron ore catalysts
    • 2.6.8. Carbon capture materials
    • 2.6.9. Waste gas utilization
  • 2.7. Advantages and disadvantages of green steel
  • 2.8. Markets and applications
  • 2.9. Energy Savings and Cost Reduction in Steel Production
  • 2.10. Digitalization
  • 2.11. Biomass Steel Production and Sustainable Green Steel Production Chain

3. THE GLOBAL MARKET FOR GREEN STEEL

  • 3.1. Global steel production
    • 3.1.1. Steel prices
    • 3.1.2. Green steel prices
      • 3.1.2.1. Historical Price Development (2023-2024)
      • 3.1.2.2. 2025 Market Evolution
      • 3.1.2.3. 2026-2030 Price Outlook
    • 3.1.3. Market Restructuring and Technology Shift (2025-2036)
      • 3.1.3.1. Technology Mix Evolution
      • 3.1.3.2. Regional Production Shifts
      • 3.1.3.3. HBI Trade Emergence
  • 3.2. Green steel plants and production, current and planned
  • 3.3. Market map
  • 3.4. SWOT analysis
  • 3.5. Market trends and opportunities
    • 3.5.1. Technology Divergence and Regional Specialization (2025-2036)
      • 3.5.1.1. Emerging Technology Hierarchy
      • 3.5.1.2. HBI Trade as Strategic Enabler
      • 3.5.1.3. Implications for Investment Strategy
  • 3.6. Industry developments, funding and innovation 2022-2025
  • 3.7. Market growth drivers
  • 3.8. Market challenges
  • 3.9. End-use industries
    • 3.9.1. Automotive
      • 3.9.1.1. Market overview
      • 3.9.1.2. Applications
    • 3.9.2. Construction
      • 3.9.2.1. Market overview
      • 3.9.2.2. Applications
    • 3.9.3. Consumer appliances
      • 3.9.3.1. Market overview
      • 3.9.3.2. Applications
    • 3.9.4. Machinery
      • 3.9.4.1. Market overview
      • 3.9.4.2. Applications
    • 3.9.5. Rail
      • 3.9.5.1. Market overview
      • 3.9.5.2. Applications
    • 3.9.6. Packaging
      • 3.9.6.1. Market overview
      • 3.9.6.2. Applications
    • 3.9.7. Electronics
      • 3.9.7.1. Market overview
      • 3.9.7.2. Applications

4. GLOBAL MARKET PRODUCTION AND DEMAND

  • 4.1. Production Capacity 2020-2036
  • 4.2. Production vs. Demand 2020-2036
    • 4.2.1. Regional Supply-Demand Imbalances
    • 4.2.2. Demand for Low-Emissions Steel by End-Use Industry
    • 4.2.3. Market Maturation Timeline and Inflection Points
  • 4.3. Revenues 2020-2036
    • 4.3.1. By end-use industry
    • 4.3.2. By region
      • 4.3.2.1. Europe
      • 4.3.2.2. China
      • 4.3.2.3. North America
      • 4.3.2.4. India
      • 4.3.2.5. Asia-Pacific excl. China
      • 4.3.2.6. Middle East & Africa
      • 4.3.2.7. South America
  • 4.4. Competitive landscape
  • 4.5. Future market outlook
    • 4.5.1. Technology Evolution
    • 4.5.2. Economic Competitiveness
    • 4.5.3. Market Structure
    • 4.5.4. Supply Chain Transformation
    • 4.5.5. Policy and Regulation
    • 4.5.6. Investment Requirements and Returns
    • 4.5.7. Customer Adoption
    • 4.5.8. Risks and Uncertainties
    • 4.5.9. Social and Environmental Implications

5. COMPANY PROFILES (46 company profiles)

6. RESEARCH METHODOLOGY

7. LIST OF ACRONYMS

8. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제