시장보고서
상품코드
1856788

세계의 6G 시장(2026-2046년)

The Global 6G Market 2026-2046

발행일: | 리서치사: Future Markets, Inc. | 페이지 정보: 영문 386 Pages, 224 Tables, 24 Figures | 배송안내 : 즉시배송

    
    
    



※ 본 상품은 영문 자료로 한글과 영문 목차에 불일치하는 내용이 있을 경우 영문을 우선합니다. 정확한 검토를 위해 영문 목차를 참고해주시기 바랍니다.

세계 6G 시장은 2026년 실험적 전개, 2030-2031년 출시 시기의 폭발적인 상업적 성장, 2046년까지 시장 성숙에 따른 지속가능한 확장으로 점진적으로 발전하는 변혁의 기회를 보여주고 있습니다. 이러한 진화는 AI 네이티브 네트워크 아키텍처, 재구성 가능한 지능형 표면을 통한 분산형 인텔리전스, 기존 종량제를 대체하는 가치 기반 연결성 모델에 의해 추진되는 무선 인프라의 근본적인 재구축을 반영합니다. 시장 구성은 예측 기간 동안 극적으로 변화할 것입니다. 초기에는 인프라 하드웨어가 지배적이지만, 자본 집약적인 구축에서 반복적인 매니지드 서비스, 엣지 컴퓨팅 플랫폼, 매스마켓용 디바이스 도입으로 산업이 이동함에 따라 서비스와 디바이스가 점차 큰 비중을 차지하게 될 것입니다. 사업자가 AI 최적화, 네트워크 슬라이싱, 애플리케이션 인에이블먼트 플랫폼의 수익화에 성공하고, 예측 가능한 구독 수익이 결국 인프라 투자를 능가하게 되면, 서비스 혁신이 특히 중요하다는 것을 알 수 있습니다.

기술 혁신은 네트워크의 경제성을 근본적으로 변화시킵니다. 재구성 가능한 지능형 표면은 기존 기지국 구축 비용의 몇 분의 1의 비용으로 수동 신호 조작을 통한 범위 확장에 혁명을 가져옵니다. 서브 테라헤르츠 부품, 열 관리 솔루션, 첨단 소재는 5G보다 훨씬 더 높은 주파수에서 작동하는 극한의 기술적 과제를 해결하고 전문 부품 제조업체와 소재 공급업체에 큰 기회를 가져다 줄 것입니다. 다양한 용도는 여러 산업 분야에서 6G의 가치 제안이 정당하다는 것을 입증하고 있습니다. 엔터프라이즈 자동화, 의료 원격의료, 자율주행차, XR 경험, 대규모 IoT 구축은 인프라 투자를 정당화할 수 있는 설득력 있는 사용 사례를 보여주고 있습니다. 산업 및 기업용은 초저지연과 신뢰성을 보장하는 프리미엄을 지불할 의향이 있어 초기 채택을 촉진하는 반면, 소비자용은 디바이스 생태계가 성숙하고 대중 시장 경제가 폭넓은 채택을 가능하게함에 따라 가속도가 붙는다.

세계 6G 통신 시장에서는 AI와 무선 인프라의 혁신적인 융합이 일어나고 있으며, 이는 엔비디아가 노키아에 10억 달러를 투자하고 양사가 차세대 6G 셀룰러 기술 개발을 위해 전략적 파트너십을 맺은 것에서 알 수 있습니다. 이번 제휴는 단순한 금융 거래를 넘어 물리 계층의 신호 처리에서 자율적인 네트워크 오케스트레이션에 이르기까지 기계 학습 알고리즘이 네트워크 스택의 모든 계층에 통합되는 AI 네이티브 네트워크로의 통신 산업 기본 아키텍처의 전환을 의미합니다. 통신 산업의 기본 아키텍처의 변화를 보여줍니다.

AI 통합의 전략적 중요성은 6G의 전례 없는 복잡성에 기인합니다. 7GHz에서 서브 테라헤르츠 대역(100-300GHz)의 주파수로 운영되는 6G 네트워크는 수천 개의 소자를 가진 거대한 MIMO 안테나 어레이를 조정하고, 지상과 위성의 하이브리드 네트워크를 구성하고, 개별적으로 제어할 수 있는 수천 개의 소자를 포함하는 메타물질 RIS 패널을 동적으로 구성해야 합니다. 방대한 센서 데이터 스트림을 처리하고 마이크로초 단위의 의사결정을 할 수 있는 AI 시스템만이 6G의 야심찬 목표(1Tbps 이상의 피크 속도, 100마이크로초 미만의 대기 시간, 5G의 100배에 달하는 에너지 효율)를 달성할 수 있습니다.

이 보고서는 세계 6G 시장을 조사하여 기술 로드맵, 시장 예측, 실현 가능한 재료, 경쟁 역학에 대한 종합적인 분석을 제공합니다.

목차

제1장 주요 요약

  • 1G에서 6G로
  • AI 네이티브 6G 혁명
  • 5G 네트워크로부터의 진화
  • 6G 시장(2025년)
  • 6G 시장 전망
  • 시장 촉진요인 및 동향
  • 시장 과제와 병목현상
  • 6G 통신 시스템 및 하드웨어에 대한 중요한 결론
  • 로드맵
  • 세계 시장 수익(-2046년)
  • 용도
  • 6G의 지리적 시장
  • 주요 시장 기업
  • 6G 프로젝트 : 국가별
  • 6G의 지속가능성

제2장 소개

  • 6G란?
  • 진화하는 이동통신
  • 5G의 전개
  • 다차원적 가치 제안
  • 6G의 잠재적 고부가가치 용도
  • 용도 및 필요한 대역폭
  • AI가 네트워크 트래픽에 미치는 영향
  • 자율주행차
  • 6G 출시 타임라인
  • 6G 주파수 대역
  • 100GHz 이상의 주파수
  • 기술의 상호의존성
  • 세계 동향

제3장 6G 무선 시스템

  • 고속 데이터 전송률 6G 무선의 기술적 목표
  • 6G 트랜시버 아키텍처
  • 6G 무선 시스템의 기술 요소
  • 대역폭 및 변조
  • 100Gbps-1Tbps의 무선 지원 대역폭 요구 사항
  • 대역폭 및 MIMO
  • 6G 무선 성능
  • 100Gbps 이상
  • 무선 링크 범위 및 시스템 이득
  • 하드웨어 갭
  • 포화 출력 전력과 주파수의 관계
  • 전력 소비량

제4장 기지국과 비지상 네트워크

  • UM-MIMO와 소실 기지국
  • 인공위성과 드론
  • 드론의 인터넷
  • 고고도 플랫폼 스테이션(HAPS)
  • 6G 비지상 네트워크(NTN)

제5장 6G용 반도체

  • 소개
  • RF 트랜지스터의 성능
  • Si계 반도체
  • GaAs와 GaN
  • InP(인듐 인화물)
  • THz 통신의 반도체 과제
  • 반도체 공급망

제6장 6G용 위상배열 안테나

  • 6G 안테나의 주요 요구 사항
  • 밀리미터파 위상 배열 시스템의 과제
  • 안테나 아키텍처
  • 6G 안테나의 과제
  • 전력 및 안테나 어레이 크기
  • 5G 위상 배열 안테나
  • 안테나 제조업체
  • 기술 벤치마크
  • GHz 위상 어레이
  • 안테나 유형
  • 위상 배열 모듈

제7장 6G를 위한 첨단 패키징

  • 진화 촉진요인
  • 포장 요건
  • 안테나 패키징 기술 옵션
  • 밀리미터파 안테나 통합
  • 차세대 페이즈드 어레이 타겟
  • 안테나 패키지 및 작동 주파수
  • 통합 기술
  • CMOS에 InP를 통합하는 접근 방식
  • 안테나 통합의 과제
  • AIP용 기판 소재
  • 6G용 안테나 온 칩(AoC)
  • 5G에서 6G로 진화하는 하드웨어 구성요소의 진화

제8장 6G용 소재 및 기술

  • 재료의 과제 영역
  • 6G ZED 화합물과 탄소 동소체
  • 열 냉각 및 전도성 재료
  • 6G용 열 메타물질
  • 6G용 이오노겔
  • 첨단 차열 및 단열
  • 저손실 유전체
  • 광학 및 서브 테라헤르츠 6G 소재
  • 메타물질 기반의 6G RIS용 소재
  • 6G OTA, T-RIS용 전기기능화 투명유리
  • mmWave 및 THz용 저손실 재료
  • 무기 화합물
  • 요소
  • 유기 화합물
  • 6G 유전체
  • 메타 머티리얼
  • 열 관리
  • 그래핀과 2D 소재
  • 광섬유
  • 스마트 EM 디바이스
  • 광활성 재료
  • 탄화규소
  • 상변화 재료
  • 이산화바나듐
  • 마이크로메카닉스, MEMS, 마이크로유체학, 마이크로유체학
  • 솔리드 스테이트 냉각

제9장 6G용 MIMO

  • 무선 통신의 MIMO
  • mMIMO의 과제
  • 분산 MIMO
  • 셀프리 대규모 MIMO(대규모 분산 MIMO)
  • 6G 대규모 MIMO
  • 셀프리미엄 MIMO
  • 셀룰러 MIMO의 장점과 과제
  • 셀룰러 Massive MIMO

제10장 제로 에너지 장치(ZED)와 배터리 폐기

  • 개요
  • ZED 관련 기술
  • 제로 에너지, 배터리 프리 6G
  • 무선 네트워크 전력 소비
  • 기술
  • 6G ZED 소재 및 기술

제11장 6G 개발 로드맵

  • 6G 주파수 대역
  • 미국 연방 주파수 대역
  • 규제 환경(2025년)
  • 독립형 롤아웃 및 비독립형 롤아웃
  • 6G용 개방형 RAN
  • 유럽 주파수 대역 경쟁
  • 세계 6G 관련 정부 구상
  • 6G 개발 로드맵 - 한국
  • 6G 개발 로드맵 - 일본
  • 차세대 이동통신 인프라 연구 자금 조달 모델
  • 6G 개발 로드맵 - 미국

제12장 기업 개요

  • AALTO HAPS
  • AGC Japan
  • Alcan Systems
  • Alibaba China
  • Alphacore
  • Ampleon
  • Apple
  • Atheraxon
  • Commscope
  • Echodyne
  • Ericsson
  • Fractal Antenna Systems
  • Freshwave
  • Fujitsu
  • Greenerwave
  • Huawei
  • Kymeta
  • Kyocera
  • LATYS Intelligence
  • LG Electronics
  • META
  • NEC Corporation
  • Nokia
  • NTT DoCoMo
  • NXP Semiconductors
  • NVIDIA
  • Omniflow
  • Orange France
  • Panasonic
  • Picocom
  • Pivotal Commware
  • Plasmonics
  • Qualcomm
  • Radi-Cool
  • Renesas Electronics Corporation
  • Samsung
  • Sekisui
  • SensorMetrix
  • SK telecom
  • Solvay
  • Sony
  • Teraview
  • TMYTEK
  • Vivo Mobile Communications
  • ZTE

제13장 조사 방법

제14장 참고문헌

KSM 25.11.13

The global 6G market represents a transformational opportunity evolving from experimental deployments in 2026 through explosive commercial growth during 2030-2031 launch phases, before moderating to sustainable expansion as markets mature through 2046. This evolution reflects fundamental reimagining of wireless infrastructure driven by AI-native network architectures, distributed intelligence through Reconfigurable Intelligent Surfaces, and value-based connectivity models replacing traditional volume-driven pricing. Market composition shifts dramatically throughout the forecast period. Infrastructure hardware dominates early phases but services and devices progressively capture larger shares as the industry transitions from capital-intensive buildouts to recurring managed services, edge computing platforms, and mass-market device adoption. The services transformation proves particularly significant as operators successfully monetize AI-driven optimization, network slicing, and application enablement platforms generating predictable subscription revenues that eventually exceed infrastructure equipment spending.

Technology innovation fundamentally reshapes network economics. Reconfigurable Intelligent Surfaces revolutionize coverage extension through passive signal manipulation costing fractions of traditional base station deployments. Sub-terahertz components, thermal management solutions, and advanced materials address extreme technical challenges of operating at frequencies substantially higher than 5G, creating substantial opportunities for specialized component manufacturers and materials suppliers. Application diversity validates 6G's value proposition across multiple verticals. Enterprise automation, healthcare telemedicine, autonomous vehicles, extended reality experiences, and massive IoT deployments demonstrate compelling use cases that justify infrastructure investments. Industrial and enterprise applications drive early adoption with willingness to pay premium pricing for guaranteed ultra-low latency and reliability, while consumer applications accelerate later as device ecosystems mature and mass-market economics enable broad adoption.

The global 6G communications market is experiencing a transformative convergence of artificial intelligence and wireless infrastructure, exemplified by Nvidia's landmark $1 billion investment in Nokia and their strategic partnership to develop next-generation 6G cellular technology. This collaboration represents far more than a financial transaction-it signals the telecommunications industry's fundamental architectural shift toward AI-native networks where machine learning algorithms are embedded throughout every layer of the network stack, from physical layer signal processing to autonomous network orchestration.

The strategic importance of AI integration stems from 6G's unprecedented complexity. Operating at frequencies from 7 GHz through sub-terahertz bands (100-300 GHz), 6G networks must coordinate massive MIMO antenna arrays with thousands of elements, orchestrate hybrid terrestrial-satellite networks, and dynamically configure metamaterial RIS panels containing thousands of individually controllable elements. Manual network optimization at this scale proves impossible; only AI systems capable of processing vast sensor data streams and making microsecond-level decisions can achieve 6G's ambitious targets: peak rates exceeding 1 Tbps, latency below 100 microseconds, and energy efficiency 100 times greater than 5G.

"The Global 6G Market 2026-2046" provides authoritative intelligence on the emerging sixth-generation wireless communications market, delivering comprehensive analysis of technology roadmaps, market forecasts, enabling materials, and competitive dynamics shaping this $830 billion opportunity. This 380-page plus report addresses critical questions facing telecommunications operators, equipment vendors, semiconductor manufacturers, materials suppliers, and investors seeking to capitalize on the transformative shift from 5G to 6G networks expected to commercialize between 2028-2030.

The report delivers granular market forecasts segmented by infrastructure type (base stations, reconfigurable intelligent surfaces, customer premises equipment), devices (smartphones, AR/VR headsets, automotive modules, IoT sensors), components and materials (RF front-end semiconductors, advanced substrates, thermal management solutions), and services (network deployment, managed operations, edge computing platforms). Geographic analysis covers North America, Asia Pacific (China, Japan, South Korea, India), Europe, and emerging markets, with detailed assessment of regional deployment strategies, government funding initiatives, and spectrum allocation progress.

Extensive technical analysis evaluates critical enabling technologies including sub-terahertz semiconductors (InP, GaN, SiGe), reconfigurable intelligent surfaces and metamaterials, massive MIMO and cell-free architectures, AI-native network optimization, zero-energy devices and ambient backscatter communications, advanced packaging approaches (antenna-in-package, antenna-on-chip), and thermal management solutions addressing extreme heat dissipation challenges at 100-300 GHz frequencies. The report identifies technology readiness levels, development bottlenecks, and commercialization timelines for each critical component.

Market driver analysis examines application opportunities across autonomous vehicles, industrial automation, healthcare telemedicine, extended reality experiences, holographic communications, and persistent AR overlays-quantifying bandwidth requirements, latency constraints, and revenue potential for each vertical. Competitive landscape assessment profiles strategies of leading equipment vendors (Huawei, Nokia, Ericsson, Samsung), semiconductor manufacturers (Qualcomm, NXP, Renesas), innovative antenna and metamaterial specialists, and telecommunications operators planning 6G deployments.

Sustainability analysis addresses 6G's ambitious target of 100x improved energy efficiency versus 5G baseline, evaluating power consumption roadmaps, renewable energy integration strategies, and carbon footprint reduction pathways essential for environmental and economic viability. The report incorporates primary research from industry stakeholders, technical publications from standards bodies (3GPP, ITU-R), government research programs, patent analysis, and academic research, providing evidence-based projections through 2046.

Report Contents Include:

  • Market Analysis & Forecasts:
    • Global 6G market revenue forecasts 2026-2046 with annual projections
    • Infrastructure market segmentation by deployment location and region
    • Device market forecasts by category with unit shipment projections
    • Components and materials market analysis by technology type
    • Services market evolution and recurring revenue opportunities
    • Application-specific market sizing across 10+ vertical segments
    • Regional market analysis with country-level detail for major markets
  • Technology Assessment:
    • 6G radio system architecture and performance targets
    • Semiconductor technology comparison (InP, GaN, GaAs, SiGe, CMOS)
    • Reconfigurable intelligent surfaces (RIS) and metamaterial roadmaps
    • Phased array antenna technologies and packaging approaches
    • Advanced materials enabling 6G (low-loss dielectrics, thermal management)
    • MIMO evolution from massive to cell-free architectures
    • Zero-energy devices and battery elimination strategies
    • Non-terrestrial networks (satellites, HAPS, drones) integration
  • Strategic Intelligence:
    • Government 6G programs and funding initiatives by country
    • Spectrum allocation status and World Radiocommunication Conference roadmap
    • Standards development timeline and technology readiness assessment
    • Competitive positioning of major equipment vendors and semiconductor suppliers
    • Deployment strategies comparing standalone versus non-standalone approaches
    • Open RAN evolution and regional adoption strategies
    • Sustainability targets and power efficiency improvement roadmaps
  • Application Analysis:
    • Connected autonomous vehicle systems and cooperative perception
    • Industrial automation and Industry 4.0 applications
    • Healthcare solutions including remote surgery and patient monitoring
    • Extended reality (AR/VR/MR) market opportunities
    • Holographic communications technical requirements and market sizing
    • Persistent AR overlays and ambient intelligence infrastructure
    • Real-time digital twins for manufacturing and infrastructure
  • Materials & Components:
    • Advanced substrate materials (LTCC, LCP, glass) for low-loss propagation
    • Thermal management solutions (phase change materials, graphene, diamond)
    • Metamaterials for RIS and electromagnetic manipulation
    • Transparent conductive materials for building-integrated deployments
    • Energy harvesting technologies for zero-power IoT devices
    • Packaging technologies (antenna-in-package, 3D integration)
    • Optical components for fiber-wireless convergence
  • Companies Profiled include: AALTO HAPS, AGC Japan, Alcan Systems, Alibaba China, Alphacore, Ampleon, Apple, Atheraxon, Commscope, Echodyne, Ericsson, Fractal Antenna Systems, Freshwave, Fujitsu, Greenerwave, Huawei, Kymeta, Kyocera, LATYS Intelligence, LG Electronics, META, NEC Corporation, Nokia, NTT DoCoMo, NXP Semiconductors, NVIDIA, Omniflow, Orange France, Panasonic, Picocom, Pivotal Commware, Plasmonics, Qualcomm, Radi-Cool, Renesas Electronics Corporation, Samsung, Sekisui, SensorMetrix, SK telecom, Solvay, Sony, Teraview, TMYTEK, Vivo Mobile Communications, and ZTE.

TABLE OF CONTENTS

1. EXECUTIVE SUMMARY

  • 1.1. From 1G to 6G
  • 1.2. The AI-Native 6G Revolution
  • 1.3. Evolution from 5G Networks
    • 1.3.1. Limitations with 5G
    • 1.3.2. Benefits of 6G
    • 1.3.3. Advanced materials in 6G
    • 1.3.4. Recent hardware developments
  • 1.4. The 6G Market in 2025
    • 1.4.1. Regional Market Activity
    • 1.4.2. Investment Landscape
    • 1.4.3. Market Constraints in 2025
  • 1.5. Market outlook for 6G
    • 1.5.1. Growth of Mobile Traffic
      • 1.5.1.1. Optimistic Scenario
      • 1.5.1.2. Conservative Scenario
      • 1.5.1.3. Regional Divergence
      • 1.5.1.4. Implications for 6G
    • 1.5.2. Proliferation in Consumer Technology
      • 1.5.2.1. Smartphone Evolution
      • 1.5.2.2. Beyond Smartphones
    • 1.5.3. Industrial and Enterprise Transformation
    • 1.5.4. Economic Competitiveness
    • 1.5.5. Sustainability
      • 1.5.5.1. Energy Efficiency Imperative
  • 1.6. Market drivers and trends
  • 1.7. Market challenges and bottlenecks
    • 1.7.1. Critical Bottlenecks
  • 1.8. Key Conclusions for 6G Communications Systems and Hardware
  • 1.9. Roadmap
    • 1.9.1. Critical Path Analysis
  • 1.10. Global Market Revenues to 2046
    • 1.10.1. 6G Infrastructure Market by Deployment Location
    • 1.10.2. 6G Infrastructure Market by Region
    • 1.10.3. 6G Base Station Market
    • 1.10.4. Reconfigurable Intelligent Surfaces (RIS) Market
    • 1.10.5. 6G Thermal Management Market
    • 1.10.6. 6G Application Markets
    • 1.10.7. 6G Device Market Forecast by Category
    • 1.10.8. 6G Components & Materials Market
    • 1.10.9. 6G Services Market
  • 1.11. Applications
    • 1.11.1. Connected Autonomous Vehicle Systems
    • 1.11.2. Next Generation Industrial Automation
    • 1.11.3. Healthcare Solutions
    • 1.11.4. Immersive Extended Reality Experiences
  • 1.12. Geographical Markets for 6G
    • 1.12.1. North America
    • 1.12.2. Asia Pacific
      • 1.12.2.1. China
      • 1.12.2.2. Japan
      • 1.12.2.3. South Korea
      • 1.12.2.4. India
    • 1.12.3. Europe
  • 1.13. Main Market Players
  • 1.14. 6G Projects by Country
  • 1.15. Sustainability in 6G

2. INTRODUCTION

  • 2.1. What is 6G?
  • 2.2. Evolving Mobile Communications
  • 2.3. 5G deployment
    • 2.3.1. Motivation for 6G
    • 2.3.2. Growth in Mobile Data Traffic
      • 2.3.2.1. Growth of Mobile Traffic Slows
    • 2.3.3. Future of Traffic
      • 2.3.3.1. Continued Exponential Growth (Optimist View)
      • 2.3.3.2. Structural Deceleration (Realist View)
      • 2.3.3.3. Plateau and Decline (Pessimist View)
    • 2.3.4. Traffic Growth Plateau in China
    • 2.3.5. Video Streaming
  • 2.4. Multi-Dimensional Value Proposition
  • 2.5. Potential 6G High-Value Applications
    • 2.5.1. Holographic Communication
    • 2.5.2. Persistent AR Overlays
    • 2.5.3. Cooperative Perception for Autonomous Systems
    • 2.5.4. Real-Time Digital Twins
  • 2.6. Applications and Required Bandwidths
  • 2.7. Artificial Intelligence's impact on network traffic
    • 2.7.1. AI Workload: On-Device vs Cloud
  • 2.8. Autonomous vehicles
    • 2.8.1. Autonomous Vehicle Communications
    • 2.8.2. Cooperative Perception
    • 2.8.3. Vehicle platooning
  • 2.9. 6G Rollout Timeline
    • 2.9.1. Regional Deployment Timeline
  • 2.10. 6G Spectrum
    • 2.10.1. 6G Candidate Spectrum Bands
    • 2.10.2. Bands vs Bandwidth
    • 2.10.3. Bandwidth-Coverage Tradeoff
    • 2.10.4. 6G Spectrum and Deployment
      • 2.10.4.1. Economic Deployment Model
        • 2.10.4.1.1. Phase 1: Evolutionary 6G (2029-2034)
        • 2.10.4.1.2. Phase 2: Revolutionary 6G (2034-2040+)
  • 2.11. Frequencies Beyond 100GHz
    • 2.11.1. Atmospheric Absorption Windows
    • 2.11.2. Sub-THz Application Viability
    • 2.11.3. 6G Applications
  • 2.12. Technology Interdependencies
  • 2.13. Global Trends

3. 6G RADIO SYSTEMS

  • 3.1. Technical Targets for High Data-Rate 6G Radios
  • 3.2. 6G Transceiver Architecture
  • 3.3. Technical Elements in 6G Radio Systems
  • 3.4. Bandwidth and Modulation
  • 3.5. Bandwidth Requirements for Supporting 100 Gbps - 1 Tbps Radios
    • 3.5.1. Practical Bandwidth Allocation
  • 3.6. Bandwidth and MIMO
  • 3.7. 6G Radio Performance
  • 3.8. Beyond 100 Gbps
  • 3.9. Radio Link Range vs System Gain
  • 3.10. Hardware Gap
  • 3.11. Saturated Output Power vs Frequency
  • 3.12. Power consumption
    • 3.12.1. Power Consumption of PA Scale with Frequency
    • 3.12.2. Power Consumption on the Transceiver Side (1, 2, 3)
      • 3.12.2.1. Receive Chain Power Analysis

4. BASE STATIONS AND NON-TERRESTRIAL NETWORKS

  • 4.1. UM-MIMO and Vanishing Base Stations
    • 4.1.1. Sequence
    • 4.1.2. RIS-Enabled, Self-Powered 6G UM-MIMO Base Station Design
      • 4.1.2.1. System Architecture
      • 4.1.2.2. Power Management
      • 4.1.2.3. Performance Characteristics
    • 4.1.3. Base Station Power and Cooling
      • 4.1.3.1. Power Consumption Drivers
      • 4.1.3.2. Economic and Environmental Impact
      • 4.1.3.3. Solutions and Mitigation Strategies
    • 4.1.4. Semiconductor Technologies for 6G Base Stations
      • 4.1.4.1. Power Amplifiers
      • 4.1.4.2. Transceivers and Beamformers
      • 4.1.4.3. Baseband Processing
      • 4.1.4.4. RIS Control
    • 4.1.5. Base Station and MIMO Technology Advances
      • 4.1.5.1. Integrated Active Antenna Systems
      • 4.1.5.2. Open RAN Architecture
      • 4.1.5.3. AI and Machine Learning Integration
      • 4.1.5.4. Network Slicing
      • 4.1.5.5. Edge Computing Integration
  • 4.2. Satellites and Drones
    • 4.2.1. How Satellites Benefit from 6G
    • 4.2.2. How 6G Benefits from Satellites
    • 4.2.3. Drone Integration Benefits
  • 4.3. Internet of Drones
    • 4.3.1. Network Architecture
    • 4.3.2. Technical Challenges
    • 4.3.3. Market Outlook
  • 4.4. High Altitude Platform Stations (HAPS)
    • 4.4.1. HAPS Platforms
    • 4.4.2. Communications Payload
    • 4.4.3. Advantages
    • 4.4.4. Challenges
    • 4.4.5. Status and Timeline
  • 4.5. 6G Non-Terrestrial Networks (NTN)
    • 4.5.1. Connectivity Gap
      • 4.5.1.1. Dimensions of the Gap
      • 4.5.1.2. Quantification
      • 4.5.1.3. Regional Characteristics
    • 4.5.2. Development of LEO NTNs
      • 4.5.2.1. Major Constellations
      • 4.5.2.2. Technology Evolution
    • 4.5.3. NTN Technologies
      • 4.5.3.1. Geostationary Orbit (GEO) Satellites
      • 4.5.3.2. Medium Earth Orbit (MEO) Satellites
      • 4.5.3.3. Low Earth Orbit (LEO) Satellites
      • 4.5.3.4. Very Low Earth Orbit (VLEO)
    • 4.5.4. HAPS vs LEO vs GEO
      • 4.5.4.1. Deployment Speed and Flexibility
      • 4.5.4.2. Operational Complexity
      • 4.5.4.3. Coverage Characteristics
      • 4.5.4.4. Economic Models
    • 4.5.5. Direct to Cell (D2C)
      • 4.5.5.1. Technical Challenge
      • 4.5.5.2. Satellite Solutions
      • 4.5.5.3. Performance Expectations
      • 4.5.5.4. Market Positioning
    • 4.5.6. NTNs for D2C
      • 4.5.6.1. Link Budget Components
      • 4.5.6.2. HAPS Analysis
      • 4.5.6.3. LEO Analysis
      • 4.5.6.4. MEO and GEO Analysis
    • 4.5.7. Technologies for Non-Terrestrial Networks
      • 4.5.7.1. Satellite Bus and Platform Technologies
      • 4.5.7.2. Phased Array Antennas
      • 4.5.7.3. Satellite Payload Processing
      • 4.5.7.4. Inter-Satellite Optical Links
      • 4.5.7.5. Ground Segment Infrastructure

5. SEMICONDUCTORS FOR 6G

  • 5.1. Introduction
  • 5.2. RF Transistors Performance
  • 5.3. Si-based Semiconductors
    • 5.3.1. CMOS
      • 5.3.1.1. Bulk vs SOI
      • 5.3.1.2. SiGe
  • 5.4. GaAs and GaN
    • 5.4.1. GaN's Opportunity in 6G
    • 5.4.2. GaN-on-Si, SiC or Diamond for RF
    • 5.4.3. GaAs Positioning in 6G
    • 5.4.4. State-of-the-Art GaAs Based Amplifier
    • 5.4.5. GaAs vs GaN for RF Power Amplifiers
    • 5.4.6. Power Amplifier Technology Benchmarking
  • 5.5. InP (Indium Phosphide)
    • 5.5.1. InP HEMT vs InP HBT
      • 5.5.1.1. InP Opportunities for 6G
    • 5.5.2. Heterogeneous Integration of InP with SiGe BiCMOS
  • 5.6. Semiconductor Challenges for THz Communications
    • 5.6.1. Mitigation Strategies
  • 5.7. Semiconductor Supply Chain

6. PHASE ARRAY ANTENNAS FOR 6G

  • 6.1. Key 6G Antenna Requirements
  • 6.2. Challenges in mmWave Phased Array Systems
    • 6.2.1. Primary Challenges
  • 6.3. Antenna Architectures
  • 6.4. Challenges in 6G Antennas
  • 6.5. Power and Antenna Array Size
  • 6.6. 5G Phased Array Antenna
  • 6.7. Antenna Manufacturers
  • 6.8. Technology Benchmarking
  • 6.9. GHz Phased Array
  • 6.10. Antenna Types
  • 6.11. Phased Array Modules
    • 6.11.1. Technology Readiness Assessment

7. ADVANCED PACKAGING FOR 6G

  • 7.1. Evolution Drivers
  • 7.2. Packaging Requirements
    • 7.2.1. Electrical Performance Demands
    • 7.2.2. Thermal Management Imperatives
  • 7.3. Antenna Packaging Technology Options
    • 7.3.1. Technology Selection Criteria
  • 7.4. mmWave Antenna Integration
    • 7.4.1. Antenna-on-Board (AoB)
    • 7.4.2. Antenna-in-Package (AiP)
    • 7.4.3. Antenna-on-Chip (AoC)
    • 7.4.4. Performance Analysis
  • 7.5. Next Generation Phased Array Targets
    • 7.5.1. System-Level Requirements Translation
    • 7.5.2. Technology Roadmap Implications
  • 7.6. Antenna Packaging vs Operational Frequency
    • 7.6.1. Frequency-Dependent Loss Mechanisms
  • 7.7. Integration Technologies
    • 7.7.1. Performance vs Cost
    • 7.7.2. Flexibility vs Optimization
  • 7.8. Approaches to Integrate InP on CMOS
    • 7.8.1. Integration Challenge
    • 7.8.2. Die-to-Die Hybrid Assembly
    • 7.8.3. Wafer-Level Bonding
    • 7.8.4. Epitaxial Transfer
  • 7.9. Antenna Integration Challenges
    • 7.9.1. Dimensional Tolerance Requirements
    • 7.9.2. Thermal Management Scaling
    • 7.9.3. Manufacturing Yield Economics
  • 7.10. Substrate Materials for AiP
  • 7.11. Antenna on Chip (AoC) for 6G
  • 7.12. Evolution of Hardware Components from 5G to 6G

8. MATERIALS AND TECHNOLOGIES FOR 6G

  • 8.1. Material Challenge Domains
    • 8.1.1. Material Property Interdependencies
  • 8.2. 6G ZED Compounds and Carbon Allotropes
  • 8.3. Thermal Cooling and Conductor Materials
  • 8.4. Thermal Metamaterials for 6G
  • 8.5. Ionogels for 6G
  • 8.6. Advanced Heat Shielding and Thermal Insulation
  • 8.7. Low-Loss Dielectrics
  • 8.8. Optical and Sub-THz 6G Materials
  • 8.9. Materials for Metamaterial-Based 6G RIS
  • 8.10. Electrically-Functionalized Transparent Glass for 6G OTA, T-RIS
    • 8.10.1. Transparent Conductive Oxides (TCO)
    • 8.10.2. Metal Meshes
    • 8.10.3. Printed Silver Nanowires
    • 8.10.4. Graphene
  • 8.11. Low-Loss Materials for mmWave and THz
  • 8.12. Inorganic Compounds
    • 8.12.1. Overview
    • 8.12.2. Materials
  • 8.13. Elements
    • 8.13.1. Overview
    • 8.13.2. Materials
  • 8.14. Organic Compounds
    • 8.14.1. Overview
    • 8.14.2. Materials
  • 8.15. 6G Dielectrics
    • 8.15.1. Overview
    • 8.15.2. Companies
    • 8.15.3. SWOT Analysis
  • 8.16. Metamaterials
    • 8.16.1. Overview
    • 8.16.2. Metamaterials for RIS in Telecommunication
      • 8.16.2.1. RIS Operating Principles
    • 8.16.3. RIS Performance and Economics
      • 8.16.3.1. Passive Beamforming
      • 8.16.3.2. Hybrid Beamforming with RIS
      • 8.16.3.3. Adaptive Beamforming Techniques
    • 8.16.4. Applications
      • 8.16.4.1. Reconfigurable Antennas
      • 8.16.4.2. Wireless Sensing
      • 8.16.4.3. Wi-Fi/Bluetooth
      • 8.16.4.4. 5G and 6G Metasurfaces for Wireless Communications
        • 8.16.4.4.1. 5G Applications
        • 8.16.4.4.2. 6G Evolution
      • 8.16.4.5. Hypersurfaces
      • 8.16.4.6. Active Material Patterning
      • 8.16.4.7. Optical ENZ Metamaterials
      • 8.16.4.8. Liquid Crystal Polymers
        • 8.16.4.8.1. LCP Applications in 6G
  • 8.17. Thermal Management
    • 8.17.1. Overview
    • 8.17.2. Thermal Materials and Structures for 6G
      • 8.17.2.1. Advanced Ceramics
      • 8.17.2.2. Diamond-based Materials
      • 8.17.2.3. Graphene and Carbon Nanotubes
      • 8.17.2.4. Phase Change Materials (PCMs)
      • 8.17.2.5. Advanced Polymers
      • 8.17.2.6. Metal Matrix Composites
      • 8.17.2.7. Two-Dimensional Materials
      • 8.17.2.8. Nanofluid Coolants
      • 8.17.2.9. Thermal Metamaterials
      • 8.17.2.10. Hydrogels
      • 8.17.2.11. Aerogels
      • 8.17.2.12. Pyrolytic Graphite
      • 8.17.2.13. Thermoelectrics
        • 8.17.2.13.1. Cooling Applications
        • 8.17.2.13.2. Energy Harvesting
  • 8.18. Graphene and 2D Materials
    • 8.18.1. Overview
    • 8.18.2. Applications
      • 8.18.2.1. Supercapacitors, LiC and Pseudocapacitors
      • 8.18.2.2. Graphene Transistors
      • 8.18.2.3. Graphene THz Device Structures
  • 8.19. Fiber Optics
    • 8.19.1. Overview
    • 8.19.2. Materials and Applications in 6G
      • 8.19.2.1. Key Optical Materials
      • 8.19.2.2. 6G Fiber-Wireless Architecture
  • 8.20. Smart EM Devices
    • 8.20.1. Overview
    • 8.20.2. Technical Challenges
    • 8.20.3. Current Status
  • 8.21. Photoactive Materials
    • 8.21.1. Overview
    • 8.21.2. Applications in 6G
      • 8.21.2.1. Optically-Controlled RIS
  • 8.22. Silicon Carbide
    • 8.22.1. Overview
    • 8.22.2. Applications in 6G
      • 8.22.2.1. GaN-on-SiC Power Amplifiers
      • 8.22.2.2. Thermal Management
      • 8.22.2.3. RF Substrates
  • 8.23. Phase-Change Materials
    • 8.23.1. Overview
    • 8.23.2. Applications in 6G
      • 8.23.2.1. Reconfigurable Metamaterials
      • 8.23.2.2. Reconfigurable Antennas
      • 8.23.2.3. RF Switches
        • 8.23.2.3.1. Commercialization Challenges
  • 8.24. Vanadium Dioxide
    • 8.24.1. Overview
    • 8.24.2. Applications in 6G
      • 8.24.2.1. Ultrafast RF Switches
      • 8.24.2.2. Thermally-Triggered Devices
      • 8.24.2.3. Tunable Metamaterials
  • 8.25. Micro-mechanics, MEMS and Microfluidics
    • 8.25.1. Overview
    • 8.25.2. Applications in 6G
      • 8.25.2.1. MEMS RF Switches
      • 8.25.2.2. MEMS Tunable Capacitors
      • 8.25.2.3. MEMS Phase Shifters
      • 8.25.2.4. Microfluidic Cooling
      • 8.25.2.5. Commercial Status
  • 8.26. Solid State Cooling
    • 8.26.1. Overview
    • 8.26.2. Thermoelectric Cooling
    • 8.26.3. Electrocaloric and Magnetocaloric Cooling

9. MIMO FOR 6G

  • 9.1. MIMO in Wireless Communications
    • 9.1.1. MIMO Evolution Timeline
  • 9.2. Challenges with mMIMO
    • 9.2.1. Channel State Information Acquisition
    • 9.2.2. Computational Complexity
    • 9.2.3. Hardware Impairments
    • 9.2.4. Cost and Power Consumption
  • 9.3. Distributed MIMO
    • 9.3.1. Architecture
    • 9.3.2. Benefits
    • 9.3.3. Challenges
  • 9.4. Cell-free Massive MIMO (Large-Scale Distributed MIMO)
    • 9.4.1. Concept
    • 9.4.2. Network Topology
    • 9.4.3. Performance Benefits
  • 9.5. 6G Massive MIMO
    • 9.5.1. Frequency-Specific Factors
    • 9.5.2. Processing Architecture
    • 9.5.3. AI/ML Integration
    • 9.5.4. Deployment Strategies
  • 9.6. Cell-Free MIMO
    • 9.6.1. Cellular System Limitations
    • 9.6.2. Cell-Free Solutions
    • 9.6.3. Economic Considerations
    • 9.6.4. Interpretation
  • 9.7. Benefits and Challenges of Cell-Free MIMO
    • 9.7.1. Benefits
    • 9.7.2. Challenges
  • 9.8. Cell-Free Massive MIMO
    • 9.8.1. Overview
    • 9.8.2. Network MIMO (CoMP - Coordinated Multi-Point)
    • 9.8.3. Cell-Free mMIMO Distinctive Features
    • 9.8.4. Transition Strategy
    • 9.8.5. Commercial Readiness
    • 9.8.6. Market Projections

10. ZERO ENERGY DEVICES (ZED) AND BATTERY ELIMINATION

  • 10.1. Overview
    • 10.1.1. Critical Success Factors
    • 10.1.2. Market Impact
  • 10.2. ZED-Related Technology
    • 10.2.1. Technology Convergence
    • 10.2.2. Drivers for ZED and Battery-Free
      • 10.2.2.1. Operational Impossibility
      • 10.2.2.2. Economic Imperative
      • 10.2.2.3. Environmental Sustainability
      • 10.2.2.4. Reliability and Autonomy
      • 10.2.2.5. Lessons from Deployments
  • 10.3. Zero-Energy and Battery-Free 6G
    • 10.3.1. Infrastructure
    • 10.3.2. Client Devices
  • 10.4. Electricity consumption of wireless networks
    • 10.4.1. Network Energy Consumption Trends
    • 10.4.2. Energy Harvesting
  • 10.5. Technologies
    • 10.5.1. On-Board Harvesting Technologies Compared and Prioritized
    • 10.5.2. 6G ZED Design Approaches
    • 10.5.3. Device Architecture
      • 10.5.3.1. System Integration
      • 10.5.3.2. Architecture Variants
    • 10.5.4. Energy Harvesting
      • 10.5.4.1. Power Management Optimization
      • 10.5.4.2. Transducer Efficiency
      • 10.5.4.3. Impedance Matching
    • 10.5.5. Device Battery-Free Storage
      • 10.5.5.1. Supercapacitors
      • 10.5.5.2. Lithium-Ion Capacitors (LIC)
      • 10.5.5.3. Selection Guidelines
      • 10.5.5.4. "Massless Energy" for ZED
        • 10.5.5.4.1. Performance
        • 10.5.5.4.2. 6G ZED Applications
        • 10.5.5.4.3. Challenges
        • 10.5.5.4.4. Status
    • 10.5.6. Ambient Backscatter Communications AmBC, Crowd Detectable CD-ZED, SWIPT
      • 10.5.6.1. Performance Characteristics
      • 10.5.6.2. 6G Integration
      • 10.5.6.3. Crowd Detectable CD-ZED
      • 10.5.6.4. Simultaneous Wireless Information and Power Transfer (SWIPT)
      • 10.5.6.5. Performance
  • 10.6. 6G ZED Materials and Technologies
    • 10.6.1. Metamaterials
    • 10.6.2. IRS (Intelligent Reflecting Surfaces)
    • 10.6.3. RIS (Reconfigurable Intelligent Surfaces)
    • 10.6.4. Simultaneous Wireless Information and Power Transfer (SWIPT)
    • 10.6.5. Ambient Backscatter Communications (AmBC)
      • 10.6.5.1. Advanced AmBC Techniques
      • 10.6.5.2. 6G Native Integration
    • 10.6.6. Energy Harvesting for 6G
      • 10.6.6.1. Photovoltaics
        • 10.6.6.1.1. Technology Options
        • 10.6.6.1.2. Indoor Optimization
      • 10.6.6.2. Ambient RF
        • 10.6.6.2.1. Power Availability
        • 10.6.6.2.2. Rectifier Technology
        • 10.6.6.2.3. Multi-Band Harvesting
      • 10.6.6.3. Electrodynamic
        • 10.6.6.3.1. Characteristics
        • 10.6.6.3.2. Applications
      • 10.6.6.4. Piezoelectric materials
        • 10.6.6.4.1. Materials
        • 10.6.6.4.2. Harvester Designs
      • 10.6.6.5. Triboelectric nanogenerators (TENGs
        • 10.6.6.5.1. Operating Principle
        • 10.6.6.5.2. Performance
        • 10.6.6.5.3. 6G Applications
        • 10.6.6.5.4. Challenges
      • 10.6.6.6. Thermoelectric generators (TEGs)
        • 10.6.6.6.1. Performance
        • 10.6.6.6.2. Temperature Sources
        • 10.6.6.6.3. 6G ZED Applications
      • 10.6.6.7. Pyroelectric materials
        • 10.6.6.7.1. Mechanism
        • 10.6.6.7.2. Performance
        • 10.6.6.7.3. Applications
        • 10.6.6.7.4. Limitations
      • 10.6.6.8. Thermal Hydrovoltaic
        • 10.6.6.8.1. Mechanisms
        • 10.6.6.8.2. Performance
        • 10.6.6.8.3. Status
      • 10.6.6.9. Biofuel Cells
        • 10.6.6.9.1. Types
        • 10.6.6.9.2. Performance
        • 10.6.6.9.3. Applications
        • 10.6.6.9.4. Challenges
        • 10.6.6.9.5. Status
    • 10.6.7. Ultra-Low-Power Electronics
      • 10.6.7.1. Technologies
      • 10.6.7.2. Future Targets (2030)
      • 10.6.7.3. Design Techniques
      • 10.6.7.4. Supercapacitors
        • 10.6.7.4.1. Advanced Supercapacitor Technologies
      • 10.6.7.5. Hybrid Approaches
        • 10.6.7.5.1. Lithium-Ion Capacitors (LIC)
        • 10.6.7.5.2. Sodium-Ion Batteries
        • 10.6.7.5.3. Lithium Titanate (LTO) Batteries
      • 10.6.7.6. Pseudocapacitors
        • 10.6.7.6.1. Operating Principle
        • 10.6.7.6.2. Performance
        • 10.6.7.6.3. 6G ZED Applications
        • 10.6.7.6.4. Status
        • 10.6.7.6.5. Research Directions

11. 6G DEVELOPMENT ROADMAPS

  • 11.1. Spectrum for 6G
  • 11.2. US Federal Spectrum
  • 11.3. Regulatory Status (2025)
  • 11.4. Standalone vs Non-Standalone Rollout
  • 11.5. Open RAN for 6G
    • 11.5.1. Regional Open RAN Positioning
  • 11.6. Competition for Spectrum in Europe
    • 11.6.1. Key Challenges
  • 11.7. Global 6G Government Initiatives
    • 11.7.1. Program Effectiveness Factors
  • 11.8. 6G Development Roadmap - South Korea
    • 11.8.1. Technology Focus Areas
    • 11.8.2. South Korea - mmWave Challenges
  • 11.9. 6G Development Roadmap - Japan
    • 11.9.1. Beyond 5G Program Structure
    • 11.9.2. Deployment Timeline and Market Strategy
  • 11.10. Funding Models to Research the Next Mobile Communication Infrastructure
  • 11.11. 6G Development Roadmap - US

12. COMPANY PROFILES

  • 12.1. AALTO HAPS
  • 12.2. AGC Japan
  • 12.3. Alcan Systems
  • 12.4. Alibaba China
  • 12.5. Alphacore
  • 12.6. Ampleon
  • 12.7. Apple
  • 12.8. Atheraxon
  • 12.9. Commscope
  • 12.10. Echodyne
  • 12.11. Ericsson
  • 12.12. Fractal Antenna Systems
  • 12.13. Freshwave
  • 12.14. Fujitsu
  • 12.15. Greenerwave
  • 12.16. Huawei
  • 12.17. Kymeta
  • 12.18. Kyocera
  • 12.19. LATYS Intelligence
  • 12.20. LG Electronics
  • 12.21. META
  • 12.22. NEC Corporation
  • 12.23. Nokia
  • 12.24. NTT DoCoMo
  • 12.25. NXP Semiconductors
  • 12.26. NVIDIA
  • 12.27. Omniflow
  • 12.28. Orange France
  • 12.29. Panasonic
  • 12.30. Picocom
  • 12.31. Pivotal Commware
  • 12.32. Plasmonics
  • 12.33. Qualcomm
  • 12.34. Radi-Cool
  • 12.35. Renesas Electronics Corporation
  • 12.36. Samsung
  • 12.37. Sekisui
  • 12.38. SensorMetrix
  • 12.39. SK telecom
  • 12.40. Solvay
  • 12.41. Sony
  • 12.42. Teraview
  • 12.43. TMYTEK
  • 12.44. Vivo Mobile Communications
  • 12.45. ZTE

13. RESEARCH METHODOLOGY

14. REFERENCES

샘플 요청 목록
0 건의 상품을 선택 중
목록 보기
전체삭제